469
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Fermentation of algal biomass for its nutritional value: perspectives and revolutions in the food industry

, , , , , , , , ORCID Icon, & show all
Pages 1-28 | Received 23 Aug 2022, Accepted 17 Mar 2023, Published online: 16 Dec 2023

References

  • Vinayak V, Manoylov K, Gateau H, et al. Diatom milking: a review and new approaches. Mar Drugs. 2015;13(5):2629–2665. doi:10.3390/md13052629.
  • Ahirwar A, Kesharwani K, Deka R, et al. Microalgal drugs: a promising therapeutic reserve for the future. J Biotechnol. 2022;349:32–46. doi:10.1016/j.jbiotec.2022.03.012.
  • Seth K, Kumar A, Rastogi RP, et al. Bioprospecting of fucoxanthin from diatoms – challenges and perspectives. Algal Res. 2021;60:102475. doi:10.1016/j.algal.2021.102475.
  • Demarco M, et al. Digestibility, bioaccessibility and bioactivity of compounds from algae. Trends Food Sci Technol. 2022.
  • Ślusarczyk J, Adamska E, Czerwik-Marcinkowska J. Fungi and algae as sources of medicinal and other biologically active compounds: a review. Nutrients. 2021;13(9):3178. doi:10.3390/nu13093178.
  • Morais T, Inácio A, Coutinho T, et al. Seaweed potential in the animal feed: a review. J Mar Sci Eng. 2020;8(8):559. doi:10.3390/jmse8080559.
  • Chia WY, Kok H, Chew KW, et al. Can algae contribute to the war with COVID-19? Bioengineered. 2021;12(1):1226–1237. doi:10.1080/21655979.2021.1910432.
  • Pradhan B, Nayak R, Patra S, et al. Cyanobacteria and algae-derived bioactive metabolites as antiviral agents: evidence, mode of action, and scope for further expansion; a comprehensive review in light of the SARS-CoV-2 outbreak. Antioxidants. 2022;11(2):354. doi:10.3390/antiox11020354.
  • Ratha SK, Renuka N, Rawat I, et al. Prospective options of algae-derived nutraceuticals as supplements to combat COVID-19 and human coronavirus diseases. Nutrition. 2021;83:111089. doi:10.1016/j.nut.2020.111089.
  • Sidari R, Tofalo R. A comprehensive overview on microalgal-fortified/based food and beverages. Food Rev Int. 2019;35(8):778–805. doi:10.1080/87559129.2019.1608557.
  • Cofrades, S., M. Serdaroğlu, and F. Jiménez-Colmenero, Design of healthier foods and beverages containing whole algae. In Functional ingredients from algae for foods and nutraceuticals. Elsevier; 2013. p. 609–633. doi:10.1533/9780857098689.4.609.
  • Sirotiya V, et al. Astaxanthin bioaccumulation in microalgae under environmental stress simulated in industrial effluents highlighting prospects of Haematococcus pluvialis: knowledge gaps and prospective approaches. Phytochem Rev. 2022: 1–26.
  • Rahman KM. Food and high value products from microalgae: market opportunities and challenges. In: Microalgae biotechnology for food, health and high value products. 2020. p. 3–27.
  • Vinayak V. Algae as sustainable food in space missions. In: Biomass, biofuels, biochemicals. Elsevier; 2022. p. 517–540. doi:10.1016/B978-0-323-89855-3.00018-2.
  • Rai I, Ahirwar A, Rai A, et al. Biowaste recycling strategies for regenerative life support system: an overview. Sustain Energy Technol Assess. 2022-10-01;53.
  • To TQ, Procter K, Simmons BA, et al. Low cost ionic liquid–water mixtures for effective extraction of carbohydrate and lipid from algae. Faraday Discuss. 2018;206:93–112. doi:10.1039/C7FD00158D.
  • Jindal N and Khattar JS. Microbial polysaccharides in food industry. In: Biopolymers for food design. Elsevier; 2018. p. 95–123. doi:10.1016/B978-0-12-811449-0.00004-9.
  • Khalil H, et al. A review of extractions of seaweed hydrocolloids: properties and applications. Express Polym Lett. 2018;12(4.
  • Pina-Pérez MC, Rivas A, Martínez A, et al. Antimicrobial potential of macro and microalgae against pathogenic and spoilage microorganisms in food. Food Chem. 2017;235:34–44. doi:10.1016/j.foodchem.2017.05.033.
  • Kumoro A, Johnny D, Alfilovita D. Incorporation of microalgae and seaweed in instant fried wheat noodles manufacturing: nutrition and culinary properties study. Int Food Res J. 2016;23(2.
  • Enzing C, et al. Microalgae-based products for the food and feed sector: an outlook for Europe. JRC Sci Policy Rep. 2014: 19–37.
  • Van der Spiegel M, Noordam M, Van der Fels-Klerx H. Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Compr Rev Food Sci Food Saf. 2013;12(6):662–678. doi:10.1111/1541-4337.12032.
  • Michalak I, Chojnacka K. Functional fermented food and feed from seaweed. In: Fermented foods, part I: biochemistry and biotechnology. 2016. p. 246.
  • Patel AK, et al. Emerging prospects of macro-and microalgae as prebiotic. Microb Cell Fact. 2021;20(1):1–16. doi:10.1186/s12934-020-01497-9.
  • Ścieszka S, Klewicka E. Algae in food: a general review. Crit Rev Food Sci Nutr. 2019;59(21):3538–3547. doi:10.1080/10408398.2018.1496319.
  • Reboleira J, Silva S, Chatzifragkou A, et al. Seaweed fermentation within the fields of food and natural products. Trends Food Sci Technol. 2021;116:1056–1073. doi:10.1016/j.tifs.2021.08.018.
  • Warrand J. Healthy polysaccharides. Food Technol Biotechnol. 2006;44(3.
  • Council NR. Nutrient requirements of fish and shrimp. USA: National Academies Press; 2011. http://www.nap.edu/catalog.php?record_id=13039.
  • Praveen MA, Parvathy KRK, Balasubramanian P, et al. An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci Technol. 2019;92:46–64. doi:10.1016/j.tifs.2019.08.011.
  • Shannon E, Abu-Ghannam N. Seaweeds as nutraceuticals for health and nutrition. Phycologia. 2019;58(5):563–577. doi:10.1080/00318884.2019.1640533.
  • Veeragurunathan V, Kavale MG, Eswaran K. Novel methods to improve the biomass of seaweeds. In: Algae for food. Florida: CRC Press;2021. p. 71–82. doi:10.1201/9781003165941.
  • Martins DA, Custódio L, Barreira L, et al. Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs. 2013;11(7):2259–2281. doi:10.3390/md11072259.
  • Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol. 2011;22(6):315–326. doi:10.1016/j.tifs.2011.03.011.
  • Ganesan AR, Tiwari U, Rajauria G. Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci Human Wellness. 2019;8(3):252–263. doi:10.1016/j.fshw.2019.08.001.
  • Koyande AK, Chew KW, Manickam S, et al. Emerging algal nanotechnology for high-value compounds: a direction to future food production. Trends Food Sci Technol. 2021;116:290–302. doi:10.1016/j.tifs.2021.07.026.
  • Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, et al. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol. 2015;8(2):190–209. doi:10.1111/1751-7915.12167.
  • Vigani M, Parisi C, Rodríguez-Cerezo E, et al. Food and feed products from micro-algae: market opportunities and challenges for the EU. Trends Food Sci Technol. 2015;42(1):81–92. doi:10.1016/j.tifs.2014.12.004.
  • van den Oever SP, Mayer HK. Biologically active or just “pseudo”-vitamin B12 as predominant form in algae-based nutritional supplements? J Food Compos Anal. 2022;109:104464. doi:10.1016/j.jfca.2022.104464.
  • Nagarajan D, Lee D-J, Chen C-Y, et al. Resource recovery from wastewaters using microalgae-based approaches: a circular bioeconomy perspective. Bioresour Technol. 2020;302:122817. doi:10.1016/j.biortech.2020.122817.
  • Michalak I, Chojnacka K. Algae as production systems of bioactive compounds. Eng Life Sci. 2015;15(2):160–176. doi:10.1002/elsc.201400191.
  • Boukid F, Castellari M. Food and beverages containing algae and derived ingredients launched in the market from 2015 to 2019: a front-of-pack labeling perspective with a special focus on Spain. Foods. 2021;10(1):173. doi:10.3390/foods10010173.
  • Grahl S, Strack M, Weinrich R, et al. Consumer-oriented product development: the conceptualization of novel food products based on spirulina (arthrospira platensis) and resulting consumer expectations. J Food Qual. 2018;2018; doi:10.1155/2018/1919482.
  • Liao Y-C, Chang C-C, Nagarajan D, et al. Algae-derived hydrocolloids in foods: applications and health-related issues. Bioengineered. 2021;12(1):3787–3801. doi:10.1080/21655979.2021.1946359.
  • Jabeen A, Reeder B, Hisaindee S, et al. , effect of enzymatic pre-treatment of microalgae extracts on their anti-tumor activity. Biomed J. 2017;40(6):339–346. doi:10.1016/j.bj.2017.10.003.
  • Mehariya S, Goswami RK, Karthikeysan OP, et al. Microalgae for high-value products: a way towards green nutraceutical and pharmaceutical compounds. Chemosphere. 2021;280:130553. doi:10.1016/j.chemosphere.2021.130553.
  • Matos ÂP. The impact of microalgae in food science and technology. J Am Oil Chem Soc. 2017;94(11):1333–1350. doi:10.1007/s11746-017-3050-7.
  • Kona R, Pallerla P, Addipilli R, et al. Lutein and β-carotene biosynthesis in Scenedesmus sp. SVMIICT1 through differential light intensities. Bioresour Technol. 2021;341:125814. doi:10.1016/j.biortech.2021.125814.
  • Kamalanathan M, Chaisutyakorn P, Gleadow R, et al. A comparison of photoautotrophic, heterotrophic, and mixotrophic growth for biomass production by the green alga Scenedesmus sp.(Chlorophyceae). Phycologia. 2018;57(3):309–317. doi:10.2216/17-82.1.
  • Millao S, Uquiche E. Extraction of oil and carotenoids from pelletized microalgae using supercritical carbon dioxide. J Supercrit Fluids. 2016;116:223–231. doi:10.1016/j.supflu.2016.05.049.
  • Somaschi N, Giesz V, De Santis L, et al. Near-optimal single-photon sources in the solid state. Nat Photonics. 2016;10(5):340–345. doi:10.1038/nphoton.2016.23.
  • Nwachukwu ID, Udenigwe CC, Aluko RE. Lutein and zeaxanthin: production technology, bioavailability, mechanisms of action, visual function, and health claim status. Trends Food Sci Technol. 2016;49:74–84. doi:10.1016/j.tifs.2015.12.005.
  • Morowvat MH, Ghasemi Y. Culture medium optimization for enhanced β-carotene and biomass production by Dunaliella salina in mixotrophic culture. Biocatal Agric Biotechnol. 2016;7:217–223. doi:10.1016/j.bcab.2016.06.008.
  • Harvey PJ, Ben-Amotz A. Towards a sustainable Dunaliella salina microalgal biorefinery for 9-cis β-carotene production. Algal Res. 2020;50:102002. doi:10.1016/j.algal.2020.102002.
  • Ding W, Peng J, Zhao Y, et al. A strategy for boosting astaxanthin accumulation in green microalga Haematococcus pluvialis by using combined diethyl aminoethyl hexanoate and high light. J Appl Phycol. 2019;31(1):171–181. doi:10.1007/s10811-018-1561-8.
  • Xie Y, Xiong X, Chen S. Challenges and potential in increasing lutein content in microalgae. Microorganisms. 2021;9(5):1068. doi:10.3390/microorganisms9051068.
  • Kumar M, Sun Y, Rathour R, et al. Algae as potential feedstock for the production of biofuels and value-added products: opportunities and challenges. Sci Total Environ. 2020;716:137116. doi:10.1016/j.scitotenv.2020.137116.
  • Yu J, Hu H, Wu X, et al. Continuous cultivation of Arthrospira platensis for phycocyanin production in large-scale outdoor raceway ponds using microfiltered culture medium. Bioresour Technol. 2019;287:121420. doi:10.1016/j.biortech.2019.121420.
  • Vingiani GM, De Luca P, Ianora A, et al. Microalgal enzymes with biotechnological applications. Mar Drugs. 2019;17(8):459. doi:10.3390/md17080459.
  • Ahmad A, et al. Recent breakthroughs in integrated biomolecular and biotechnological approaches for enhanced lipid and carotenoid production from microalgae. Phytochem Rev. 2022: 1–21.
  • Salbitani G, Bolinesi F, Affuso M, et al. Rapid and positive effect of bicarbonate addition on growth and photosynthetic efficiency of the green microalgae Chlorella sorokiniana (Chlorophyta, Trebouxiophyceae). Appl Sci. 2020;10(13):4515. doi:10.3390/app10134515.
  • Molina-Márquez A, Vila M, Vigara J, et al. The bacterial phytoene desaturase-encoding gene (CRTI) is an efficient selectable marker for the genetic transformation of eukaryotic microalgae. Metabolites. 2019;9(3):49. doi:10.3390/metabo9030049.
  • Kumar BR, Mathimani T, Sudhakar MP, et al. A state of the art review on the cultivation of algae for energy and other valuable products: application, challenges, and opportunities. Renewable Sustainable Energy Rev. 2021;138:110649. doi:10.1016/j.rser.2020.110649.
  • Phull AR, Kim SJ. Undaria pinnatifida a rich marine reservoir of nutritional and pharmacological potential: insights into growth signaling and apoptosis mechanisms in cancer. Nutr Cancer. 2018;70(6):956–970. doi:10.1080/01635581.2018.1490449.
  • Ibañez E, Cifuentes A. Benefits of using algae as natural sources of functional ingredients. J Sci Food Agric. 2013;93(4):703–709. doi:10.1002/jsfa.6023.
  • Xie T, Xia Y, Zeng Y, et al. Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy. Bioresour Technol. 2017;233:247–255. doi:10.1016/j.biortech.2017.02.099.
  • Hoseini SM, Khosravi-Darani K, Mozafari MR. Nutritional and medical applications of spirulina microalgae. Mini Rev Med Chem. 2013;13(8):1231–1237. doi:10.2174/1389557511313080009.
  • O’Connor J, Meaney S, Williams GA, et al. Extraction of protein from four different seaweeds using three different physical pre-treatment strategies. Molecules. 2020;25(8):2005. doi:10.3390/molecules25082005.
  • Vásquez V, Martínez R, Bernal C. Enzyme-assisted extraction of proteins from the seaweeds macrocystis pyrifera and chondracanthus chamissoi: characterization of the extracts and their bioactive potential. J Appl Phycol. 2019;31(3):1999–2010. doi:10.1007/s10811-018-1712-y.
  • Harrysson H, Hayes M, Eimer F, et al. Production of protein extracts from Swedish red, green, and brown seaweeds, Porphyra umbilicalis Kützing, Ulva lactuca Linnaeus, and Saccharina latissima (Linnaeus) JV Lamouroux using three different methods. J Appl Phycol. 2018;30(6):3565–3580. doi:10.1007/s10811-018-1481-7.
  • Magnusson M, Glasson CRK, Vucko MJ, et al. Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. Algal Res. 2019;41:101555. doi:10.1016/j.algal.2019.101555.
  • Pimentel FB, Cermeño M, Kleekayai T, et al. Effect of in vitro simulated gastrointestinal digestion on the antioxidant activity of the red seaweed porphyra dioica. Food Res Int. 2020;136:109309. doi:10.1016/j.foodres.2020.109309.
  • García-Vaquero M, López-Alonso M, Hayes M. Assessment of the functional properties of protein extracted from the brown seaweed Himanthalia elongata (Linnaeus) SF gray. Food Res Int. 2017;99:971–978. doi:10.1016/j.foodres.2016.06.023.
  • Al-Adilah H, Al-Sharrah TK, Al-Bader D, et al. Assessment of Arabian gulf seaweeds from Kuwait as sources of nutritionally important polyunsaturated fatty acids (PUFAs). Foods. 2021;10(10):2442. doi:10.3390/foods10102442.
  • Katiyar R, Arora A. Health promoting functional lipids from microalgae pool: a review. Algal Res. 2020;46:101800. doi:10.1016/j.algal.2020.101800.
  • Mathimani T, Pugazhendhi A. Utilization of algae for biofuel, bio-products and bio-remediation. Biocatal Agric Biotechnol. 2019;17:326–330. doi:10.1016/j.bcab.2018.12.007.
  • Vinayak V, Gordon R, Gautam S, et al. Discovery of a diatom that oozes oil. Adv Sci Lett. 2014;20(7-8):1256–1267. doi:10.1166/asl.2014.5591.
  • Dalheim L, Svenning JB, Olsen RL. In vitro intestinal digestion of lipids from the marine diatom porosira glacialis compared to commercial LC n-3 PUFA products. PLoS One. 2021;16(6):e0252125. doi:10.1371/journal.pone.0252125.
  • Saini RK, Keum Y-S. Omega-3 and omega-6 polyunsaturated fatty acids: dietary sources, metabolism, and significance – A review. Life Sci. 2018;203:255–267. doi:10.1016/j.lfs.2018.04.049.
  • Singh R, Upadhyay AK, Chandra P, et al. Biotechnological application of algae in pharmaceuticals industries with special reference to omega-3 fatty acid and human health. In: Algae and sustainable technologies. CRC Press;2020. p. 29–42. doi:10.1201/9781003001911.
  • Barclay W, Meager K, Abril J. Heterotrophic production of long chain omega-3 fatty acids utilizing algae and algae-like microorganisms. J Appl Phycol. 1994;6(2):123–129. doi:10.1007/BF02186066.
  • Robertson R, et al. Algae-derived polyunsaturated fatty acids: implications for human health. p. 45–99. Hauppauge (NY): Nova Sciences Publishers, Inc.; 2013.
  • Gupta J, Gupta R. Nutraceutical status and scientific strategies for enhancing production of omega-3 fatty acids from microalgae and their role in healthcare. Curr Pharm Biotechnol. 2020;21(15):1616–1631. doi:10.2174/1389201021666200703201014.
  • Barta DG, Coman V, Vodnar DC. Microalgae as sources of omega-3 polyunsaturated fatty acids: biotechnological aspects. Algal Res. 2021;58:102410. doi:10.1016/j.algal.2021.102410.
  • Tanaka T, Yabuuchi T, Maeda Y, et al. Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris. Bioresour Technol. 2017;245:567–572. doi:10.1016/j.biortech.2017.09.005.
  • Niu Y-F, Zhang M-H, Li D-W, et al. Improvement of neutral lipid and polyunsaturated fatty acid biosynthesis by overexpressing a type 2 diacylglycerol acyltransferase in marine diatom Phaeodactylum tricornutum. Mar Drugs. 2013;11(11):4558–4569. doi:10.3390/md11114558.
  • Hemaiswarya S, Raja R, Ravi Kumar R, et al. Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol. 2011;27(8):1737–1746. doi:10.1007/s11274-010-0632-z.
  • Seemashree M, Chauhan V, Sarada R. Phytohormone supplementation mediated enhanced biomass production, lipid accumulation, and modulation of fatty acid profile in porphyridium purpureum and Dunaliella salina cultures. Biocatal Agric Biotechnol. 2022;39:102253. doi:10.1016/j.bcab.2021.102253.
  • Archer L, Mc Gee D, Paskuliakova A, et al. Fatty acid profiling of new Irish microalgal isolates producing the high-value metabolites EPA and DHA. Algal Res. 2019;44:101671. doi:10.1016/j.algal.2019.101671.
  • Meireles LA, Guedes AC, Malcata FX. Increase of the yields of eicosapentaenoic and docosahexaenoic acids by the microalga Pavlova lutheri following random mutagenesis. Biotechnol Bioeng. 2003;81(1):50–55. doi:10.1002/bit.10451.
  • Harwood JL. Algae: critical sources of very long-chain polyunsaturated fatty acids. Biomolecules. 2019;9(11):708. doi:10.3390/biom9110708.
  • Fernando IS, Nah J-W, Jeon Y-J. Potential anti-inflammatory natural products from marine algae. Environ Toxicol Pharmacol. 2016;48:22–30. doi:10.1016/j.etap.2016.09.023.
  • Pal D, Raj K. Biological activities of marine products and nutritional importance. In: Bioactive natural products for pharmaceutical applications. Springer; 2021. p. 587–616. doi:10.1007/978-3-030-54027-2_17.
  • Chaudhry UA, et al. BIOLOGICAL IMPORTANCE OF ALGAL METABOLITES. Algal Genetic Resources: Cosmeceuticals, Nutraceuticals, and Pharmaceuticals from Algae, 2022: p. 153.
  • de Jesus Raposo MF, De Morais AMB, De Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs. 2015;13(5):2967–3028. doi:10.3390/md13052967.
  • Lafarga T, Acién-Fernández FG, Garcia-Vaquero M. Bioactive peptides and carbohydrates from seaweed for food applications: natural occurrence, isolation, purification, and identification. Algal Res. 2020;48:101909. doi:10.1016/j.algal.2020.101909.
  • Nagle V et al., Marine red alga Porphyridium sp. as a source of sulfated polysaccharides (SPs) for combating against COVID-19. 2020.
  • Zaporozhets T, Besednova N. Prospects for the therapeutic application of sulfated polysaccharides of brown algae in diseases of the cardiovascular system. Pharm Biol. 2016;54(12):3126–3135. doi:10.1080/13880209.2016.1185444.
  • Ku CS, Kim B, Pham TX, et al. Blue-green algae inhibit the development of atherosclerotic lesions in apolipoprotein E knockout mice. J Med Food. 2015;18(12):1299–1306. doi:10.1089/jmf.2015.0025.
  • Ptak SH, Fretté XC. Algae polysaccharides as nutraceuticals: isolation, characterization and bioactivities of fucoidans. In: Algae for food. CRC Press; 2021. p. 211–238. doi:10.1201/9781003165941.
  • Conde T, Lopes D, Łuczaj W, et al. Algal lipids as modulators of skin disease: a critical review. Metabolites. 2022;12(2):96. doi:10.3390/metabo12020096.
  • Patel AK, Albarico FPJB, Perumal PK, et al. Algae as an emerging source of bioactive pigments. Bioresour Technol. 2022: 126910. doi:10.1016/j.biortech.2022.126910.
  • Venil CK, Ramesh C, Renuka Devi P, et al. Marine algal colorants for the food industry. In: Sustainable global resources of seaweeds volume 2. Springer; 2022. p. 163–179. doi:10.1007/978-3-030-92174-3_8.
  • Manochkumar J, Doss CGP, Efferth T, et al. Tumor preventive properties of selected marine pigments against colon and breast cancer. Algal Res. 2022;61:102594. doi:10.1016/j.algal.2021.102594.
  • Gupta AK, et al. Biosynthesis and extraction of high-value carotenoid from algae. Front Biosci-Landmark. 2021;26(6):171–190. doi:10.52586/4932.
  • Kulczyński B, Gramza-Michałowska A, Kobus-Cisowska J, et al. The role of carotenoids in the prevention and treatment of cardiovascular disease–current state of knowledge. J Funct Foods. 2017;38:45–65. doi:10.1016/j.jff.2017.09.001.
  • Wang X, Mou J-H, Qin Z-H, et al. Supplementation with rac-GR24 facilitates the accumulation of biomass and astaxanthin in Two successive stages of Haematococcus pluvialis cultivation. J Agric Food Chem. 2022;70(15):4677–4689. doi:10.1021/acs.jafc.2c00479.
  • Nair A, Ahirwar A, Singh S, et al. Astaxanthin as a king of ketocarotenoids: structure, synthesis, accumulation, bioavailability and antioxidant properties. Mar Drugs. 2023;21.
  • Ahirwar A, Meignen G, Jahir Khan M, et al. Light modulates transcriptomic dynamics upregulating astaxanthin accumulation in Haematococcus: a review. Bioresour Technol. 2021;340:125707. doi:10.1016/j.biortech.2021.125707.
  • Sudharshan S, Subramaniyan S, Satheeshan G, et al. Astaxanthin supplementation reduces dichlorvos-induced cytotoxicity in Saccharomyces cerevisiae. 3 Biotech. 2019;9(3):1–8. doi:10.1007/s13205-019-1634-7.
  • Alagarsamy A, Arunkumar K, Carvalho IS, et al. Micro-and macroalgae: an updated view. In: Algae for food. CRC Press; 2021. p. 1–8. doi:10.1201/9781003165941.
  • Yildirim O, Tunay D, Ozkaya B. Reuse of sea water reverse osmosis brine to produce dunaliella salina based β-carotene as a valuable bioproduct: a circular bioeconomy perspective. J Environ Manag. 2022;302:114024. doi:10.1016/j.jenvman.2021.114024.
  • Terriente-Palacios C, Castellari M. Levels of taurine, hypotaurine and homotaurine, and amino acids profiles in selected commercial seaweeds, microalgae, and algae-enriched food products. Food Chem. 2022;368:130770. doi:10.1016/j.foodchem.2021.130770.
  • Molino A, Iovine A, Casella P, et al. Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. Int J Environ Res Public Health. 2018;15(11):2436. doi:10.3390/ijerph15112436.
  • Małecki J, Muszyński S, Sołowiej BG. Proteins in food systems – bionanomaterials, conventional and unconventional sources, functional properties, and development opportunities. Polymers (Basel). 2021;13(15):2506. doi:10.3390/polym13152506.
  • Hernández H, Nunes MC, Prista C, et al. Innovative and healthier dairy products through the addition of microalgae: a review. Foods. 2022;11(5):755. doi:10.3390/foods11050755.
  • Boukid F, et al. Non-animal proteins as cutting-edge ingredients to reformulate animal-free foodstuffs: present status and future perspectives. Crit Rev Food Sci Nutr. 2021: 1–31.
  • Raczyk M, Polanowska K, Kruszewski B, et al. Effect of Spirulina (Arthrospira platensis) supplementation on physical and chemical properties of semolina (triticum durum) based fresh pasta. Molecules. 2022;27(2):355. doi:10.3390/molecules27020355.
  • Maag P, Dirr S, Özmutlu Karslioglu Ö. Investigation of bioavailability and food-processing properties of Arthrospira platensis by enzymatic treatment and micro-encapsulation by spray drying. Foods. 2022;11(13):1922. doi:10.3390/foods11131922.
  • Almeida LMR, Cruz LFdS, Machado BAS, et al. Effect of the addition of spirulina sp. biomass on the development and characterization of functional food. Algal Res. 2021;58:102387. doi:10.1016/j.algal.2021.102387.
  • Castillejo N, Martínez-Hernández G B, Goffi V, etal. Natural vitamin B12 and fucose supplementation of green smoothies with edible algae and related quality changes during their shelf life. J Sci Food Agric. 2018;98(6):2411–2421.
  • Ashaolu TJ, Samborska K, Lee CC, et al. Phycocyanin, a super functional ingredient from algae; properties, purification characterization, and applications. Int J Biol Macromol. 2021;193:2320–2331. doi:10.1016/j.ijbiomac.2021.11.064.
  • Jiang L, Wang Y, Yin Q, et al. Phycocyanin: a potential drug for cancer treatment. J Cancer. 2017;8(17):3416. doi:10.7150/jca.21058.
  • Khan M J, Gordon R, Varjani S, et al. Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. Sci Total Environ. 2022;823.
  • Gordon R, Merz C R, Gurke S, et al. Bubble farming: scalable microcosms for diatom biofuel and the next green revolution. Diatoms Fundam Appl. 2019: 583–654.
  • Mourya M, Khan M J, Sirotiya V, et al. Enhancing the biochemical growth of Haematococcus pluvialis by mitigation of broad-spectrum light stress in wastewater cultures. RSC Adv. 2023;13(26):17611–17620.
  • Khan MJ, Harish, Ahirwar A, et al. Insights into diatom microalgal farming for treatment of wastewater and pretreatment of algal cells by ultrasonication for value creation. Environ Res. 2021;201:111550. doi:10.1016/j.envres.2021.111550
  • Petrushkina M, Gusev E, Sorokin B, et al. Fucoxanthin production by heterokont microalgae. Algal Res. 2017;24:387–393. doi:10.1016/j.algal.2017.03.016.
  • Aryee AN, Agyei D, Akanbi TO. Recovery and utilization of seaweed pigments in food processing. Curr Opin Food Sci. 2018;19:113–119. doi:10.1016/j.cofs.2018.03.013.
  • Sellimi S, Ksouda G, Benslima A, et al. Enhancing colour and oxidative stabilities of reduced-nitrite Turkey meat sausages during refrigerated storage using fucoxanthin purified from the Tunisian seaweed Cystoseira barbata. Food Chem Toxicol. 2017;107:620–629. doi:10.1016/j.fct.2017.04.001.
  • Sudhakar M, Jagatheesan A, Perumal K, et al. Methods of phycobiliprotein extraction from gracilaria crassa and its applications in food colourants. Algal Res. 2015;8:115–120. doi:10.1016/j.algal.2015.01.011.
  • Kumar Y, Tarafdar A, Kumar D, et al. Effect of Indian brown seaweed Sargassum wightii as a functional ingredient on the phytochemical content and antioxidant activity of coffee beverage. J Food Sci Technol. 2019;56(10):4516–4525. doi:10.1007/s13197-019-03943-y.
  • Canberra A. Australia New Zealand Food Standards Code: Schedule 5 – Nutrient profiling scoring method.[Google Scholar]. 2017.
  • Kusmayadi A, Leong YK, Yen H-W, et al. Microalgae as sustainable food and feed sources for animals and humans–biotechnological and environmental aspects. Chemosphere. 2021;271:129800. doi:10.1016/j.chemosphere.2021.129800.
  • Andrade L, et al. Chlorella and spirulina microalgae as sources of functional foods. Nutraceuticals Food Suppl. 2018;6(1):45–58.
  • Coutinho P, Rema P, Otero A, et al. Use of biomass of the marine microalga isochrysis galbana in the nutrition of goldfish (Carassius auratus) larvae as source of protein and vitamins. Aquac Res. 2006;37(8):793–798. doi:10.1111/j.1365-2109.2006.01492.x.
  • Grossman A. Nutrient acquisition: the generation of bioactive vitamin B12 by microalgae. Curr Biol. 2016;26(8):R319–R321. doi:10.1016/j.cub.2016.02.047.
  • Kumudha A, Sarada R. Characterization of vitamin B12 in Dunaliella salina. J Food Sci Technol. 2016;53(1):888–894. doi:10.1007/s13197-015-2005-y.
  • Kumudha A, Selvakumar S, Dilshad P, et al. Methylcobalamin–A form of vitamin B12 identified and characterised in Chlorella vulgaris. Food Chem. 2015;170:316–320. doi:10.1016/j.foodchem.2014.08.035.
  • Edelmann M, Aalto S, Chamlagain B, et al. Riboflavin, niacin, folate and vitamin B12 in commercial microalgae powders. J Food Compos Anal. 2019;82:103226. doi:10.1016/j.jfca.2019.05.009.
  • Tarento TD, McClure DD, Talbot AM, et al. A potential biotechnological process for the sustainable production of vitamin K1. Crit Rev Biotechnol. 2019;39(1):1–19. doi:10.1080/07388551.2018.1474168.
  • Tarento TD, McClure DD, Vasiljevski E, et al. Microalgae as a source of vitamin K1. Algal Res. 2018;36:77–87. doi:10.1016/j.algal.2018.10.008.
  • Hughes LJ, Black L, Sherriff J, et al. Vitamin D content of Australian native food plants and Australian-grown edible seaweed. Nutrients. 2018;10(7):876. doi:10.3390/nu10070876.
  • Bito T, Tanioka Y, Watanabe F. Characterization of vitamin B12 compounds from marine foods. Fish Sci. 2018;84(5):747–755. doi:10.1007/s12562-018-1222-5.
  • Anagnostopoulou C, Kontogiannopoulos KN, Gaspari M, et al. Valorization of household food wastes to lactic acid production: a response surface methodology approach to optimize fermentation process. Chemosphere. 2022;296:133871. doi:10.1016/j.chemosphere.2022.133871.
  • Oliveira AS, Weinberg ZG, Ogunade IM, et al. Meta-analysis of effects of inoculation with homofermentative and facultative heterofermentative lactic acid bacteria on silage fermentation, aerobic stability, and the performance of dairy cows. J Dairy Sci. 2017;100(6):4587–4603. doi:10.3168/jds.2016-11815.
  • Kandasamy S, Kavitake D, Shetty PH. Lactic acid bacteria and yeasts as starter cultures for fermented foods and their role in commercialization of fermented foods. In: Innovations in technologies for fermented food and beverage industries. Springer; 2018. p. 25–52. doi:10.1007/978-3-319-74820-7_2.
  • Wikandari R, Kinanti DA, Permatasari RD, et al. Correlations between the chemical, microbiological characteristics and sensory profile of fungal fermented food. Fermentation. 2021;7(4):261. doi:10.3390/fermentation7040261.
  • Wang Y, et al. Ecological succession and functional characteristics of lactic acid bacteria in traditional fermented foods. Crit Rev Food Sci Nutr. 2022: 1–15.
  • Hu Y, et al. Role of lactic acid bacteria in flavor development in traditional Chinese fermented foods: a review. Crit Rev Food Sci Nutr. 2020: 1–15.
  • Uchida M, Murata M, Ishikawa F. Lactic acid bacteria effective for regulating the growth of contaminant bacteria during the fermentation of undaria pinnatifida (phaeophyta). Fish Sci. 2007;73(3):694–704. doi:10.1111/j.1444-2906.2007.01383.x.
  • Monteiro P, Lomartire S, Cotas J, et al. Seaweeds as a fermentation substrate: a challenge for the food processing industry. Processes. 2021;9(11):1953. doi:10.3390/pr9111953.
  • Pérez-Alva A, MacIntosh AJ, Baigts-Allende DK, et al. Fermentation of algae to enhance their bioactive activity: a review. Algal Res. 2022;64:102684. doi:10.1016/j.algal.2022.102684.
  • Kuda T, Eda M, Kataoka M, et al. Anti-glycation properties of the aqueous extract solutions of dried algae products and effect of lactic acid fermentation on the properties. Food Chem. 2016;192:1109–1115. doi:10.1016/j.foodchem.2015.07.073.
  • Milledge JJ, Nielsen BV, Harvey PJ. The inhibition of anaerobic digestion by model phenolic compounds representative of those from Sargassum muticum. J Appl Phycol. 2019;31(1):779–786. doi:10.1007/s10811-018-1512-4.
  • Li J-Y, Yang F, Jin L, et al. Safety and quality of the green tide algal species ulva prolifera for option of human consumption: a nutrition and contamination study. Chemosphere. 2018;210:1021–1028. doi:10.1016/j.chemosphere.2018.07.076.
  • Bhattacharya M, Goswami S. Microalgae–A green multi-product biorefinery for future industrial prospects. Biocatal Agri Biotechnol. 2020;25:101580. doi:10.1016/j.bcab.2020.101580.
  • Rahman KM. Food and high value products from microalgae: market opportunities and challenges. In: Microalgae biotechnology for food, health and high value products. Springer; 2020. p. 3–27. doi:10.1007/978-981-15-0169-2_1.
  • Skonberg D, Fader S, Perkins LB, et al. Lactic acid fermentation in the development of a seaweed sauerkraut-style product: microbiological, physicochemical, and sensory evaluation. J Food Sci. 2021;86(2):334–342. doi:10.1111/1750-3841.15602.
  • Hayes M, García-Vaquero M. Bioactive compounds from fermented food products. Novel Food Fermentation Technologies; 2016. p. 293–310. doi:10.1007/978-3-319-42457-6_14.
  • Felix N, Brindo RA. Evaluation of raw and fermented seaweed, ulva lactuca as feed ingredient in giant freshwater prawn macrobrachium rosenbergii. Int J Fish Aquat Stud. 2014;1(3):199–204.
  • Kantachote D, Ratanaburee A, Hayisama-ae W, et al. The use of potential probiotic lactobacillus plantarum DW12 for producing a novel functional beverage from mature coconut water. J Funct Foods. 2017;32:401–408. doi:10.1016/j.jff.2017.03.018.
  • Stedt K, Pavia H, Toth GB. Cultivation in wastewater increases growth and nitrogen content of seaweeds: a meta-analysis. Algal Res. 2022;61:102573. doi:10.1016/j.algal.2021.102573.
  • Salgado CL, Muñoz R, Blanco A, et al. Valorization and upgrading of the nutritional value of seaweed and seaweed waste using the marine fungi paradendryphiella salina to produce mycoprotein. Algal Res. 2021;53:102135. doi:10.1016/j.algal.2020.102135.
  • Tan IS, Lee KT. Enzymatic hydrolysis and fermentation of seaweed solid wastes for bioethanol production: an optimization study. Energy. 2014;78:53–62. doi:10.1016/j.energy.2014.04.080.
  • Montet D, Ray RC. Fermented foods, part I: biochemistry and biotechnology. CRC Press; 2016. doi:10.1201/b19872.
  • Uchida M, Kurushima H, Ishihara K, et al. Characterization of fermented seaweed sauce prepared from nori (Pyropia yezoensis). J Biosci Bioeng. 2017;123(3):327–332. doi:10.1016/j.jbiosc.2016.10.003.
  • Nie J, et al. A systematic review of fermented Saccharina japonica: fermentation conditions, metabolites, potential health benefits and mechanisms. Trends Food Sci Technol. 2022.
  • Charoensiddhi S, Conlon MA, Vuaran MS, et al. Impact of extraction processes on prebiotic potential of the brown seaweed Ecklonia radiata by in vitro human gut bacteria fermentation. J Funct Foods. 2016;24:221–230. doi:10.1016/j.jff.2016.04.016.
  • Zhu X, Healy L, Zhang Z, et al. Novel postharvest processing strategies for value-added applications of marine algae. J Sci Food Agric. 2021;101(11):4444–4455. doi:10.1002/jsfa.11166.
  • Santiago-Díaz P, Rivero A, Rico M, et al. Characterization of novel selected microalgae for antioxidant activity and polyphenols, amino acids, and carbohydrates. Mar Drugs. 2021;20(1):40. doi:10.3390/md20010040.
  • El-Bahr S, Shousha S, Shehab A, et al. Effect of dietary microalgae on growth performance, profiles of amino and fatty acids, antioxidant status, and meat quality of broiler chickens. Animals (Basel). 2020;10(5):761. doi:10.3390/ani10050761.
  • de Medeiros VPB, Pimentel TC, Sant’Ana AS, et al. Microalgae in the meat processing chain: feed for animal production or source of techno-functional ingredients. Curr Opin Food Sci. 2021;37:125–134. doi:10.1016/j.cofs.2020.10.014.
  • Hosseinkhani N, McCauley JI, Ralph PJ. Key challenges for the commercial expansion of ingredients from algae into human food products. Algal Res. 2022;64:102696. doi:10.1016/j.algal.2022.102696.
  • Patias LD, Maroneze MM, Siqueira SF, et al. Single-cell protein as a source of biologically active ingredients for the formulation of antiobesity foods. In: Alternative and replacement foods. Elsevier; 2018. p. 317–353. doi:10.1016/B978-0-12-811446-9.00011-3.
  • Tanna B, Yadav S, Mishra A. Anti-proliferative and ROS-inhibitory activities reveal the anticancer potential of caulerpa species. Mol Biol Rep. 2020;47(10):7403–7411. doi:10.1007/s11033-020-05795-8.
  • Mahadevan K. Seaweeds: a sustainable food source. In: Seaweed sustainability. Elsevier; 2015. p. 347–364. doi:10.1016/B978-0-12-418697-2.00013-1.
  • Pangestuti R, Kim SK. An overview of phycocolloids: the principal commercial seaweed extracts. In: Marine algae extracts: processes, products, and applications. 2015. p. 319–330. doi:10.1002/9783527679577.ch19.
  • Ghannam A, Murad H, Jazzara M, et al. Isolation, structural characterization, and antiproliferative activity of phycocolloids from the red seaweed Laurencia papillosa on MCF-7 human breast cancer cells. Int J Biol Macromol. 2018;108:916–926. doi:10.1016/j.ijbiomac.2017.11.001.
  • Muthukumar J, Chidambaram R, Sukumaran S. Sulfated polysaccharides and its commercial applications in food industries – A review. J Food Sci Technol. 2021;58(7):2453–2466. doi:10.1007/s13197-020-04837-0.
  • Morais T, Cotas J, Pacheco D, et al. Seaweeds compounds: an ecosustainable source of cosmetic ingredients? Cosmetics. 2021;8(1):8. doi:10.3390/cosmetics8010008.
  • Gomez-Zavaglia A, Prieto Lage MA, Jimenez-Lopez C, et al. The potential of seaweeds as a source of functional ingredients of prebiotic and antioxidant value. Antioxidants. 2019;8(9):406. doi:10.3390/antiox8090406.
  • Zeroual S, et al. Cell wall thickening in two Ulva species in response to heavy metal marine pollution. Reg Stud Mar Sci. 2020;35:101125.
  • Cai Y, Lim HR, Khoo KS, et al. An integration study of microalgae bioactive retention: from microalgae biomass to microalgae bioactives nanoparticle. Food Chem Toxicol. 2021;158:112607. doi:10.1016/j.fct.2021.112607.
  • de Morais MG, et al. Biologically active metabolites synthesized by microalgae. BioMed Res Int. 2015;2015.
  • Matos J, Cardoso C, Bandarra NM, et al. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8(8):2672–2685. doi:10.1039/C7FO00409E.
  • Özyurt G, Uslu L, Yuvka I, et al. Evaluation of the cooking quality characteristics of pasta enriched with Spirulina platensis. J Food Qual. 2015;38(4):268–272. doi:10.1111/jfq.12142.
  • Lafarga T, Rodríguez-Bermúdez R, Morillas-España A, et al. Consumer knowledge and attitudes towards microalgae as food: the case of Spain. Algal Res. 2021;54:102174. doi:10.1016/j.algal.2020.102174.
  • Champenois J, Marfaing H, Pierre R. Review of the taxonomic revision of chlorella and consequences for its food uses in Europe. J Appl Phycol. 2015;27(5):1845–1851. doi:10.1007/s10811-014-0431-2.
  • EFSA Panel on Nutrition NF, et al. Safety of oil from schizochytrium limacinum (strain FCC-3204) for use in infant and follow-on formula as a novel food pursuant to regulation (EU) 2015/2283. EFSA J. 2021;19(1):e06344.
  • EFSA Panel on Nutrition NF, et al. Safety of schizochytrium sp. oil as a novel food pursuant to regulation (EU) 2015/2283 (a). EFSA J. 2020;18(10):e06242.
  • Bhatia S, Sharma AK, De La Cruz CBV, et al. Nutraceutical, antioxidant, antimicrobial properties of Pyropia vietnamensis (Tanaka et Pham-Hong Ho) JE Sutherl. et Monotilla. Curr Bioact Compd. 2021;17(2):151–164. doi:10.2174/1573407216666200227094935.
  • Mandalka A, Cavalcanti MILG, Harb TB, et al. Nutritional composition of beach-cast marine algae from the Brazilian coast: added value for algal biomass considered as waste. Foods. 2022;11(9):1201. doi:10.3390/foods11091201.
  • Wang M, et al. Applications of algae to obtain healthier meat products: a critical review on nutrients, acceptability and quality. Crit Rev Food Sci Nutr. 2022: 1–18.
  • Gullón P, Astray G, Gullón B, et al. Inclusion of seaweeds as healthy approach to formulate new low-salt meat products. Curr Opin Food Sci. 2021;40:20–25. doi:10.1016/j.cofs.2020.05.005.
  • Circuncisão AR, Catarino M, Cardoso S, et al. Minerals from macroalgae origin: health benefits and risks for consumers. Mar Drugs. 2018;16(11):400. doi:10.3390/md16110400.
  • López-López I, Bastida S, Ruiz-Capillas C, et al. Composition and antioxidant capacity of low-salt meat emulsion model systems containing edible seaweeds. Meat Sci. 2009;83(3):492–498. doi:10.1016/j.meatsci.2009.06.031.
  • Akram A, Suleria HAR. Functional and nutraceutical significance of macro and micro algae. In: Bioactive compounds from multifarious natural foods for human health. Apple Academic Press; 2022. p. 119–159. doi:10.1201/9781003189763.
  • Mehariya S, Karthikeyan OP, Bhatia SK. Algal biorefineries and the circular bioeconomy: algal products and processes. CRC Press; 2022. p. 1–398. doi:10.1201/9781003195405.
  • Harnedy PA, FitzGerald RJ. Bioactive proteins, peptides, and amino acids from macroalgae 1. J Phycol. 2011;47(2):218–232. doi:10.1111/j.1529-8817.2011.00969.x.
  • Gordalina M, Pinheiro HM, Mateus M, et al. Macroalgae as protein sources – a review on protein bioactivity, extraction, purification and characterization. Appl Sci. 2021;11(17):7969. doi:10.3390/app11177969.
  • Kazir M, Abuhassira Y, Robin A, et al. Extraction of proteins from two marine macroalgae, ulva sp. and gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocolloids. 2019;87:194–203. doi:10.1016/j.foodhyd.2018.07.047.
  • Wells ML, Potin P, Craigie JS, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29(2):949–982. doi:10.1007/s10811-016-0974-5.
  • Christaki E, Karatzia M, Florou-Paneri P. The use of algae in animal nutrition. J Hellenic Vet Med Soc. 2010;61(3):267–276. doi:10.12681/jhvms.14894.
  • Packer MA, Harris GC, Adams SL. Food and feed applications of algae. In: Algae biotechnology. Springer; 2016. p. 217–247. doi:10.1007/978-3-319-12334-9_12.
  • Menshova RV, Shevchenko NM, Imbs TI, et al. Fucoidans from brown alga fucus evanescens: structure and biological activity. Front Marine Sci. 2016;3:129. doi:10.3389/fmars.2016.00129.
  • de Borba Gurpilhares D, Cinelli LP, Simas NK, et al. Marine prebiotics: polysaccharides and oligosaccharides obtained by using microbial enzymes. Food Chem. 2019;280:175–186. doi:10.1016/j.foodchem.2018.12.023.
  • Ale MT, Meyer AS. Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv. 2013;3(22):8131–8141. doi:10.1039/C3RA23373A.
  • Menshova RV, Anastyuk SD, Ermakova SP, et al. Structure and anticancer activity in vitro of sulfated galactofucan from brown alga Alaria angusta. Carbohydr Polym. 2015;132:118–125. doi:10.1016/j.carbpol.2015.06.020.
  • Bi D, Yu B, Han Q, et al. Immune activation of RAW264. 7 macrophages by low molecular weight fucoidan extracted from New Zealand Undaria pinnatifida. J Agric Food Chem. 2018;66(41):10721–10728. doi:10.1021/acs.jafc.8b03698.
  • Alizadeh Khaledabad M, Ghasempour Z, Moghaddas Kia E, et al. Probiotic yoghurt functionalised with microalgae and Zedo gum: chemical, microbiological, rheological and sensory characteristics. Int J Dairy Technol. 2020;73(1):67–75. doi:10.1111/1471-0307.12625.
  • Butt UD, Lin N, Akhter N, et al. Overview of the latest developments in the role of probiotics, prebiotics and synbiotics in shrimp aquaculture. Fish Shellfish Immunol. 2021;114:263–281. doi:10.1016/j.fsi.2021.05.003.
  • Rao AR, Ravishankar GA. Global microalgal-based products for industrial applications. In: Handbook of algal technologies and phytochemicals. CRC Press; 2019. p. 267–278. doi:10.1201/9780429057892.
  • Yaqoob S, Riaz M, Shabbir A, et al. Commercialization and marketing potential of carotenoids. In: Carotenoids: structure and function in the human body. Springer; 2021. p. 799–826. doi:10.1007/978-3-030-46459-2_27.
  • Fernández-Verdejo R, Moya-Osorio JL, Fuentes-López E, et al. Metabolic health and its association with lifestyle habits according to nutritional status in Chile: a cross-sectional study from the national health survey 2016-2017. PLoS One. 2020;15(7):e0236451. doi:10.1371/journal.pone.0236451.
  • Sharma P, Sharma N. Industrial and biotechnological applications of algae: a review. J Adv Plant Biol. 2017;1(1):01. doi:10.14302/issn.2638-4469.japb-17-1534.
  • Handayani NA, Ariyanti D, Hadiyanto H. Potential production of polyunsaturated fatty acids from microalgae. Int J Sci Eng. 2011;2(1):13–16.
  • Krienitz L.The algae, in lesser flamingos. Springer; 2018. p. 19–36. doi:10.1007/978-3-662-58163-6_2.
  • Hoppe T. Cyanotech: A Strategic Audit. 2019.
  • Taniguchi M, Kuda T, Shibayama J, et al. In vitro antioxidant, anti-glycation and immunomodulation activities of fermented blue-green algae Aphanizomenon flos-aquae. Mol Biol Rep. 2019;46(2):1775–1786. doi:10.1007/s11033-019-04628-7.
  • Turek C, Stintzing FC. Stability of essential oils: a review. Compr Rev Food Sci Food Saf. 2013;12(1):40–53. doi:10.1111/1541-4337.12006.
  • Kandylis P, Pissaridi K, Bekatorou A, et al. Dairy and non-dairy probiotic beverages. Curr Opin Food Sci. 2016;7:58–63. doi:10.1016/j.cofs.2015.11.012.
  • Panghal A, Janghu S, Virkar K, et al. Potential non-dairy probiotic products–A healthy approach. Food Biosci. 2018;21:80–89. doi:10.1016/j.fbio.2017.12.003.
  • Di Cagno R, Coda R, De Angelis M, et al. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013;33(1):1–10. doi:10.1016/j.fm.2012.09.003.
  • Kini S, Divyashree M, Mani MK, et al. Algae and cyanobacteria as a source of novel bioactive compounds for biomedical applications. In: Advances in cyanobacterial biology. Elsevier; 2020. p. 173–194. doi:10.1016/B978-0-12-819311-2.00012-7.
  • Lucakova S, Branyikova I, Hayes M. Microalgal proteins and bioactives for food, feed, and other applications. Appl Sci. 2022;12(9):4402. doi:10.3390/app12094402.
  • Niyigaba T, Liu D, Habimana J. The extraction, functionalities and applications of plant polysaccharides in fermented foods: a review. Foods. 2021;10(12):3004. doi:10.3390/foods10123004.
  • Lin H-TV, Huang M-Y, Kao T-Y, et al. Production of lactic acid from seaweed hydrolysates via lactic acid bacteria fermentation. Fermentation. 2020;6(1):37. doi:10.3390/fermentation6010037.
  • Sahu L, Panda SK. Innovative technologies and implications in fermented food and beverage industries: an overview. In: Innovations in technologies for fermented food and beverage industries. 2018. p. 1–23. doi:10.1007/978-3-319-74820-7_1.
  • Beheshtipour H, Mortazavian AM, Haratian P, et al. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur Food Res Technol. 2012;235(4):719–728. doi:10.1007/s00217-012-1798-4.
  • Ghaeni FA, Amin B, Hariri AT, et al. Antilithiatic effects of crocin on ethylene glycol-induced lithiasis in rats. Urolithiasis. 2014;42(6):549–558. doi:10.1007/s00240-014-0711-y.
  • Bigagli E, Cinci L, Paccosi S, et al. Nutritionally relevant concentrations of resveratrol and hydroxytyrosol mitigate oxidative burst of human granulocytes and monocytes and the production of pro-inflammatory mediators in LPS-stimulated RAW 264.7 macrophages. Int Immunopharmacol. 2017;43:147–155. doi:10.1016/j.intimp.2016.12.012.
  • Niccolai A, Shannon E, Abu-Ghannam N, et al. Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products. J Appl Phycol. 2019;31(2):1077–1083. doi:10.1007/s10811-018-1602-3.
  • Peñalver R, Lorenzo JM, Ros G, et al. Seaweeds as a functional ingredient for a healthy diet. Mar Drugs. 2020;18(6):301. doi:10.3390/md18060301.
  • Uchida M, Miyoshi T, Yoshida G, et al. Isolation and characterization of halophilic lactic acid bacteria acting as a starter culture for sauce fermentation of the red alga nori (porphyra yezoensis). J Appl Microbiol. 2014;116(6):1506–1520. doi:10.1111/jam.12466.
  • Jang J-Y, Lee ME, Lee H-W, et al. Extending the shelf life of kimchi with lactococcus lactis strain as a starter culture. Food Sci Biotechnol. 2015;24(3):1049–1053. doi:10.1007/s10068-015-0134-8.
  • Varfolomeev S, Wasserman L. Microalgae as source of biofuel, food, fodder, and medicines. Appl Biochem Microbiol. 2011;47(9):789–807. doi:10.1134/S0003683811090079.
  • Lafarga T. Effect of microalgal biomass incorporation into foods: nutritional and sensorial attributes of the end products. Algal Res. 2019;41:101566. doi:10.1016/j.algal.2019.101566.
  • Lim J, Lee CL, Kim GH, et al. Using lactic acid bacteria and packaging with grapefruit seed extract for controlling Listeria monocytogenes growth in fresh soft cheese. J Dairy Sci. 2020;103(10):8761–8770. doi:10.3168/jds.2020-18349.
  • Martelli F, Alinovi M, Bernini V, et al. Arthrospira platensis as natural fermentation booster for milk and soy fermented beverages. Foods. 2020;9(3):350. doi:10.3390/foods9030350.
  • de Caire GZ, Parada JL, Zaccaro MC, et al. Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World J Microbiol Biotechnol. 2000;16(6):563–565. doi:10.1023/A:1008928930174.
  • Gupta A, Mani I. Beneficial effects of psychobiotic bacteria, cyanobacteria, algae, and modified yeast in various food industries. In: Recent advances in food biotechnology. Springer; 2022. p. 161–173. doi:10.1007/978-981-16-8125-7_8.
  • Narayanan M, Kandasamy S, He Z, et al. Algae biotechnology for nutritional and pharmaceutical applications. In: Biotechnology in healthcare, volume 1. Elsevier; 2022. p. 177–194. doi:10.1016/B978-0-323-89837-9.00015-2.
  • Perković L, Djedović E, Vujović T, et al. Biotechnological enhancement of probiotics through co-cultivation with algae: future or a trend? Mar Drugs. 2022;20(2):142. doi:10.3390/md20020142.
  • Hosoglu MI. Aroma characterization of five microalgae species using solid-phase microextraction and gas chromatography–mass spectrometry/olfactometry. Food Chem. 2018;240:1210–1218. doi:10.1016/j.foodchem.2017.08.052.
  • Lappa IK, Papadaki A, Kachrimanidou V, et al. Cheese whey processing: integrated biorefinery concepts and emerging food applications. Foods. 2019;8(8):347. doi:10.3390/foods8080347.
  • Varga L, Szigeti J, Kovács R, et al. Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). J Dairy Sci. 2002;85(5):1031–1038. doi:10.3168/jds.S0022-0302(02)74163-5.
  • Akalin A, Unal G, Dalay M. Influence of Spirulina platensis biomass on microbiological viability in traditional and probiotic yogurts during refrigerated storage. Ital J Food Sci. 2009;21(3):357–364.
  • Ricigliano VA, Simone-Finstrom M. Nutritional and prebiotic efficacy of the microalga Arthrospira platensis (spirulina) in honey bees. Apidologie. 2020;51(5):898–910. doi:10.1007/s13592-020-00770-5.
  • Takyar MBT, Khajavi SH, Safari R. Evaluation of antioxidant properties of Chlorella vulgaris and Spirulina platensis and their application in order to extend the shelf life of rainbow trout (Oncorhynchus mykiss) fillets during refrigerated storage. Lwt. 2019;100:244–249. doi:10.1016/j.lwt.2018.10.079.
  • Choi EJ, Kim EK. Effect of Moringa oleifera leaf on antioxidant and quality characteristics of the Korean traditional rice cake sulgidduk. J Food Process Preserv. 2017;41(2):e12820. doi:10.1111/jfpp.12820.
  • Mallick N, Mohn FH. Reactive oxygen species: response of algal cells. J Plant Physiol. 2000;157(2):183–193. doi:10.1016/S0176-1617(00)80189-3.
  • Cho K, Ueno M, Liang Y, et al. Generation of reactive oxygen species (ROS) by harmful algal bloom (HAB)-forming phytoplankton and their potential impact on surrounding living organisms. Antioxidants. 2022;11(2):206. doi:10.3390/antiox11020206.
  • Majumder D, Nath P, Debnath R, et al. Understanding the complicated relationship between antioxidants and carcinogenesis. J Biochem Mol Toxicol. 2021;35(2):e22643. doi:10.1002/jbt.22643.
  • Tziveleka L-A, Tammam MA, Tzakou O, et al. Metabolites with antioxidant activity from marine macroalgae. Antioxidants. 2021;10(9):1431. doi:10.3390/antiox10091431.
  • Kruk J, Aboul-Enein HY, Kładna A, et al. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical activity on cellular redox homeostasis. Free Radical Res. 2019;53(5):497–521. doi:10.1080/10715762.2019.1612059.
  • Sen S, Chakraborty R. The role of antioxidants in human health, in oxidative stress: diagnostics, prevention, and therapy ACS Publications; 2011. p. 1–37. doi:10.1021/bk-2011-1083.ch001.
  • Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: a review. Eur J Med Chem. 2015;97:55–74. doi:10.1016/j.ejmech.2015.04.040.
  • Pereira AG, Otero P, Echave J, et al. Xanthophylls from the sea: algae as source of bioactive carotenoids. Mar Drugs. 2021;19(4):188. doi:10.3390/md19040188.
  • Sonani R, Rastogi R, Madamwar D. Natural antioxidants from algae: a therapeutic perspective. In: Algal green chemistry. Elsevier; 2017. p. 91–120. doi:10.1016/B978-0-444-63784-0.00005-9.
  • Christaki E, Bonos E, Giannenas I, et al. Functional properties of carotenoids originating from algae. J Sci Food Agric. 2013;93(1):5–11. doi:10.1002/jsfa.5902.
  • Martins CDL, Ramlov F, Nocchi Carneiro NP, et al. Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. J Appl Phycol. 2013;25(4):1179–1187. doi:10.1007/s10811-012-9918-x.
  • Hormozi M, Ghoreishi S, Baharvand P. Astaxanthin induces apoptosis and increases activity of antioxidant enzymes in LS-180 cells. Artif Cells Nanomed Biotechnol. 2019;47(1):891–895. doi:10.1080/21691401.2019.1580286.
  • Di Marzo N, Chisci E, Giovannoni R. The role of hydrogen peroxide in redox-dependent signaling: homeostatic and pathological responses in mammalian cells. Cells. 2018;7(10):156. doi:10.3390/cells7100156.
  • Gobler CJ, Berry DL, Dyhrman ST, et al. Niche of harmful alga Aureococcus anophagefferens revealed through ecogenomics. Proc Natl Acad Sci USA. 2011;108(11):4352–4357. doi:10.1073/pnas.1016106108.
  • Liu W-C, Zhu Y-R, Zhao Z-H, et al. Effects of dietary supplementation of algae-derived polysaccharides on morphology, tight junctions, antioxidant capacity and immune response of duodenum in broilers under heat stress. Animals (Basel). 2021;11(8):2279. doi:10.3390/ani11082279.
  • Rezayian M, Niknam V, Ebrahimzadeh H. Oxidative damage and antioxidative system in algae. Toxicol Rep. 2019;6:1309–1313. doi:10.1016/j.toxrep.2019.10.001.
  • Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26(3):165–176. doi:10.1016/j.tcb.2015.10.014.
  • Batista AP, Niccolai A, Fradinho P, et al. Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility. Algal Res. 2017;26:161–171. doi:10.1016/j.algal.2017.07.017.
  • Iwamoto K, Shiraiwa Y. Salt-regulated mannitol metabolism in algae. Mar Biotechnol. 2005;7(5):407–415. doi:10.1007/s10126-005-0029-4.
  • Omar H, Al-Judaibiand A, El-Gendy A. Antimicrobial, antioxidant, anticancer activity and phytochemical analysis of the red alga, laurencia papillosa. Int J Pharmacol. 2018;14(4):572–583. doi:10.3923/ijp.2018.572.583.
  • Surget G, Roberto VP, Le Lann K, et al. Marine green macroalgae: a source of natural compounds with mineralogenic and antioxidant activities. J Appl Phycol. 2017;29(1):575–584. doi:10.1007/s10811-016-0968-3.
  • Hoseinifar SH, Yousefi S, Capillo G, et al. Mucosal immune parameters, immune and antioxidant defence related genes expression and growth performance of zebrafish (Danio rerio) fed on Gracilaria gracilis powder. Fish Shellfish Immunol. 2018;83:232–237. doi:10.1016/j.fsi.2018.09.046.
  • Pekkoh J, Phinyo K, Thurakit T, et al. Lipid profile, antioxidant and antihypertensive activity, and computational molecular docking of diatom fatty acids as ACE inhibitors. Antioxidants. 2022;11(2):186. doi:10.3390/antiox11020186.
  • Olasehinde TA, Olaniran AO, Okoh AI. Therapeutic potentials of microalgae in the treatment of Alzheimer’s disease. Molecules. 2017;22(3):480. doi:10.3390/molecules22030480.
  • Paudel P, Seong SH, Zhou Y, et al. Anti-Alzheimer’s disease activity of bromophenols from a red alga, symphyocladia latiuscula (harvey) yamada. ACS Omega. 2019;4(7):12259–12270. doi:10.1021/acsomega.9b01557.
  • Mishra N, Gupta E, Singh P, et al. Application of microalgae metabolites in food and pharmaceutical industry. In: Preparation of phytopharmaceuticals for the management of disorders. Elsevier; 2021. p. 391–408. doi:10.1016/B978-0-12-820284-5.00005-8.
  • Cheng P, Li Y, Wang C, et al. Integrated marine microalgae biorefineries for improved bioactive compounds: a review. Sci Total Environ. 2022: 152895. doi:10.1016/j.scitotenv.2021.152895.
  • Ahirwar A, et al. Nanotechnological approaches to disrupt the rigid cell walled microalgae grown in wastewater for value-added biocompounds: commercial applications, challenges, and breakthrough. Biomass Convers Biorefin. 2021: 1–26.
  • Janssen M, Wijffels RH, Barbosa MJ. Microalgae based production of single-cell protein. Curr Opin Biotechnol. 2022;75:102705. doi:10.1016/j.copbio.2022.102705.
  • Vinayak V, Khan MJ, Varjani S, et al. Microbial fuel cells for remediation of environmental pollutants and value addition: special focus on coupling diatom microbial fuel cells with photocatalytic and photoelectric fuel cells. J Biotechnol. 2021;338:5–19. doi:10.1016/j.jbiotec.2021.07.003.
  • Khan MJ, Gordon R, Varjani S, et al. Employing newly developed plastic bubble wrap technique for biofuel production from diatoms cultivated in discarded plastic waste. Sci Total Environ. 2022;823:153667. doi:10.1016/j.scitotenv.2022.153667.
  • Ahirwar A, et al. Pulsed electric field–assisted cell permeabilization of microalgae (haematococcus pluvialis) for milking of value-added compounds. Bioenergy Res. 2022: 1–14.
  • Khan MJ, Das S, Vinayak V, et al. Live diatoms as potential biocatalyst in a microbial fuel cell for harvesting continuous diafuel, carotenoids and bioelectricity. Chemosphere. 2022;291:132841. doi:10.1016/j.chemosphere.2021.132841.
  • Kashyap M, Chakraborty S, Kumari A, et al. Strategies and challenges to enhance commercial viability of algal biorefineries for biofuel production. Biores Technol. 2023.
  • de Jesus Raposo MF, De Morais AMMB, De Morais RMSC. Emergent sources of prebiotics: seaweeds and microalgae. Mar Drugs. 2016;14(2):27. doi:10.3390/md14020027.
  • Zheng L-X, Chen X-Q, Cheong K-L. Current trends in marine algae polysaccharides: the digestive tract, microbial catabolism, and prebiotic potential. Int J Biol Macromol. 2020;151:344–354. doi:10.1016/j.ijbiomac.2020.02.168.
  • Rzymski P, Jaśkiewicz M. Microalgal food supplements from the perspective of Polish consumers: patterns of use, adverse events, and beneficial effects. J Appl Phycol. 2017;29(4):1841–1850. doi:10.1007/s10811-017-1079-5.
  • Roleda MY, Marfaing H, Desnica N, et al. Variations in polyphenol and heavy metal contents of wild-harvested and cultivated seaweed bulk biomass: health risk assessment and implication for food applications. Food Control. 2019;95:121–134. doi:10.1016/j.foodcont.2018.07.031.
  • Al-Obaidi JR, Alobaidi KH, Al-Taie BS, et al. Uncovering prospective role and applications of existing and new nutraceuticals from bacterial, fungal, algal and cyanobacterial, and plant sources. Sustainability. 2021;13(7):3671. doi:10.3390/su13073671.
  • Khan MJ, Pugazhendhi A, Schoefs B, et al. Perovskite-based solar cells fabricated from TiO2 nanoparticles hybridized with biomaterials from mollusc and diatoms. Chemosphere. 2022;291:132692. doi:10.1016/j.chemosphere.2021.132692.
  • Ampofo J, Abbey L. Microalgae: bioactive composition, health benefits, safety and prospects as potential high-value ingredients for the functional food industry. Foods. 2022;11(12):1744. doi:10.3390/foods11121744.
  • Srivastava RK, Shetti NP, Reddy KR, et al. Biomass utilization and production of biofuels from carbon neutral materials. Environ Pollut. 2021;276:116731. doi:10.1016/j.envpol.2021.116731.
  • Ragusa I, Nardone GN, Zanatta S, et al. Spirulina for skin care: a bright blue future. Cosmetics. 2021;8(1):7. doi:10.3390/cosmetics8010007.
  • MU N, Mehar JG, Mudliar SN, et al. Recent advances in microalgal bioactives for food, feed, and healthcare products: commercial potential, market space, and sustainability. Compr Rev Food Sci Food Saf. 2019;18(6):1882–1897. doi:10.1111/1541-4337.12500.
  • Aly N, Balasubramanian P. Effect of geographical coordinates on carbon dioxide sequestration potential by microalgae. Int J Environ Sci Dev. 2017;8(2):147. doi:10.18178/ijesd.2017.8.2.937.
  • Cañedo JCG, Lizárraga GLL. Considerations for photobioreactor design and operation for mass cultivation of microalgae. In: Algae-organisms for imminent biotechnology Vol. 142016. p. 55–80. doi:10.5772/61365.
  • Sirohi R, Joun J, Choi HI, et al. Algal glycobiotechnology: omics approaches for strain improvement. Microb Cell Fact. 2021;20(1):1–10. doi:10.1186/s12934-021-01656-6.
  • Mishra A, Medhi K, Malaviya P, et al. Omics approaches for microalgal applications: prospects and challenges. Bioresour Technol. 2019;291:121890. doi:10.1016/j.biortech.2019.121890.
  • Bocanegra A, Macho-González A, Garcimartín A, et al. Whole alga, algal extracts, and compounds as ingredients of functional foods: composition and action mechanism relationships in the prevention and treatment of type-2 diabetes mellitus. Int J Mol Sci. 2021;22(8):3816. doi:10.3390/ijms22083816.
  • Samanta A, Jayapal N, Jayaram C, et al. Xylooligosaccharides as prebiotics from agricultural by-products: production and applications. Bioact Carbohydr Diet Fibre. 2015;5(1):62–71. doi:10.1016/j.bcdf.2014.12.003.
  • EFSA Panel on Dietetic Products N, et al. Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of regulation (EU) 2015/2283. EFSA J. 2016;14(11):e04594.
  • Villaró S, Viñas I, Lafarga T. Consumer acceptance and attitudes toward microalgae and microalgal-derived products as food. In: Cultured microalgae for the food industry. Elsevier; 2021. p. 367–385. doi:10.1016/B978-0-12-821080-2.00001-0.
  • Varshney P, Mikulic P, Vonshak A, et al. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour Technol. 2015;184:363–372. doi:10.1016/j.biortech.2014.11.040.
  • Ghosh A, Khanra S, Mondal M, et al. Progress toward isolation of strains and genetically engineered strains of microalgae for production of biofuel and other value added chemicals: a review. Energy Convers Manage. 2016;113:104–118. doi:10.1016/j.enconman.2016.01.050.
  • Vinayak V, Khan MJ, Jha AN. Photosystem I P700 chlorophyll a apoprotein A1 as PCR marker to identify diatoms and their associated lineage. J Eukaryot Microbiol. 2021;68(6):e12866. doi:10.1111/jeu.12866.
  • Ahmad A, Banat F, Alsafar H, et al. Algae biotechnology for industrial wastewater treatment, bioenergy production, and high-value bioproducts. Sci Total Environ. 2022;806:150585. doi:10.1016/j.scitotenv.2021.150585.
  • Chen W, Yang H, Chen Y, et al. Transformation of nitrogen and evolution of N-containing species during algae pyrolysis. Environ Sci Technol. 2017;51(11):6570–6579. doi:10.1021/acs.est.7b00434.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.