87
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Utilization of quantum dots in the sequestration of dyes and other micropollutants from aqueous systems: a review

&
Pages 29-39 | Received 06 Sep 2022, Accepted 06 Oct 2023, Published online: 16 Dec 2023

References

  • Seey TL. Equilibrium, kinetic and thermodynamic studies on the adsorption of direct dye on a novel adsorbent developed from Uncaria Gambir extract. J Phys Sci. 2012;23:1–13.
  • Thievarasu C, Mylsaney S. Removal of malachite green from aqueous solution by activated carbon developed from cocoa (theobroma cacao) shell – a kinetic and equilibrium studies. E J Chem. 2011;8:S363–S371. doi:10.1155/2011/714808
  • Talouizte H, Merzouki M, Benlemlih M, et al. Chemical characterization of specific micropollutants from textile industry effluents in Fez city, Morocco. J Chem. 2020;2020:11. Article ID 3268241. doi:10.1155/2020/3268241
  • Sathiskumar P, Sweena R, Wu JJ, et al. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution. Chem Eng J. 2011;171:136–140. doi:10.1016/j.cej.2011.03.074
  • Hong RY, Li JH, Chen LL, et al. Synthesis, surface modification and photocatalytic property of ZnO nanoparticles. Powder Technol. 2009;189:426–432. doi:10.1016/j.powtec.2008.07.004
  • Yurtserver A, Sahinkaya E, Atkas O, et al. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresc Technol. 2015;192: 564–573. doi:10.1016/j.biortech.2015.06.024
  • Golob V, Vender A, Simonic M. Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents. Dyes Pigm. 2005;67: 93–97. doi:10.1016/j.dyepig.2004.11.003
  • Castilo M, Barcelo D. Characterization of organic pollutants in industrial effluents by high temperature gas chromatography-mass spectrometry. Trend Anal Chem. 1999;18:6–36.
  • El Quada EN, Allen ST, Walker GN. Adsorption of Methylene blue onto activated carbon produced from steam activated bituminous coal: a study of equilibrium adsorption isotherm. Chem Eng J. 2006;124:103–110. doi:10.1016/j.cej.2006.08.015
  • Ihara H. Peptide based surface modified silica particles: adsorption materials for dye-loaded wastewater treatment. RSC Adv. 2013;3:23664–23672.
  • Sharma B, Dangi AK, Shukla P. Contemporary enzyme based technologies for bioremediation: a review. J Environ Manag. 2018;210:10–22. doi:10.1016/j.jenvman.2017.12.075
  • Sani ZM, Abdullahi IL, Sani A. Toxicity evaluation of selected dyes commonly used for clothing materials in urban Kano, Nigeria. Eur J Exp Biol. 2018;8(4): 1–4. doi:10.21767/2248-9215.100067
  • Adoum OA. Screening of medical plants native to Kano and Jigawa States of Northern Nigeria using artemia cysts (brine shrimp test). Am J Pharm Sci. 2016;4:7–10.
  • Thomaidi VS, Stasinakis AS, Borova VL. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study. J Hazard Mater. 2015;283:740–747.
  • Gerbersdorf SU, Cimatoribus C, Class H, et al. Anthropogenic trace compounds (ATCs) in aquatic habitats –research needs on sources, fate, detection and toxicity to ensure timely elimination strategies and risk management. Environ Int 2015;79:85–105. doi:10.1016/j.envint.2015.03.011
  • Gavrilescu M, Demnerová K, Aamand J, et al. Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. N Biotechnol. 2015;32:147–156. doi:10.1016/j.nbt.2014.01.001
  • Benstoem F, Nahrstedt A, Boehler M, et al. Performance of granular activated carbon to remove micropollutants from municipal wastewater – a meta-analysis of pilot- and large-scale studies. Chemosphere. 2017;185:105–118. doi:10.1016/j.chemosphere.2017.06.118
  • Wang Y, Fan L, Khan SJ, et al. Fugacity modelling of the fate of micropollutants in aqueous systems – uncertainty and sensitivity issues. Sci Total Environ. 2020;699:134249. doi:10.1016/j.scitotenv.2019.134249
  • Ahmad J, Naeem S, Ahmad M, et al. A critical review on organic micropollutants contamination in wastewater and removal through carbon nanotubes. J Environ Manag. 2019;246:214–228. doi:10.1016/j.jenvman.2019.05.152
  • Luo Y, Guo W, Ngo HH, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ. 2014;473–474:619–641.
  • Wols BA, Hofman-Caris CHM. Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res. 2012;46:2815–2827. doi:10.1016/j.watres.2012.03.036
  • Rizzo L, Malato S, Antakyali D, et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci Total Environ. 2019;655:986–1008. doi:10.1016/j.scitotenv.2018.11.265
  • Sousa JCG, Ribeiro AR, Barbosa MO, et al. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J Hazard Mater. 2018;344:146–162. doi:10.1016/j.jhazmat.2017.09.058
  • Ng A, Weerakoon D, Lim E, et al. Fate of environmental pollutants. Water Environ Res. 2019;91:1294–1325. doi:10.1002/wer.1225
  • Wanda EMM, Nyoni H, Mamba BB, et al. Occurrence of emerging micropollutants in water systems in gauteng, mpumalanga, and north west provinces, South Africa. Int J Environ Res Publ Health. 2017;14:79, doi:10.3390/ijerph14010079
  • Falciola L, Pifferi V, Testolin A. Detection methods of wastewater contaminants: state of the art and role of nanotechnology. Nanomater Detect Removal Wastewater Pollut. 2020: 47–68. doi:10.1016/B928-0-12-818489-900003.7
  • Fatta-Kassinos D, Meric S, Nikolaou A. Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem. 2011;399:251–275. doi:10.1007/s00216-010-4300-9
  • Sires J, Brillas E. Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: a review. Environ Int. 2012;40:212–229. doi:10.1016/j.envint.2011.07.012
  • Kokkinos P, Mantzavinos D, Veniery D. Current trends in the application of nanomaterials for the removal of emerging micropollutants and pathogens from water. Molecules. 2020;25:1–31. doi:10.3390/molecules25092016
  • Feng M, Wang Z, Dionysiou DD, et al. Metal-mediated oxidation of fluoroquinolone antibiotics in water: a review on kinetics, transformation products, and toxicity assessment. J Hazard Mater. 2018;344:1136–1154. doi:10.1016/j.jhazmat.2017.08.067
  • Mclellan SL, Fisher JC, Newton RJ. The microbiome of urban wastewaters. Int Microbial. 2015;18:141–149.
  • Kayzas G, Fu J, Matis K. The change from past to future for adsorbent materials in treatment of dyeing wastewaters. Materials (Basel). 2013;6:5131–5158. doi:10.3390/ma6115131
  • Gupta VK. Application of low-cost adsorbents for dye removal – a review. J Environ Manag. 2009;90(8):2313–2342. doi:10.1016/j.jenvman.2008.11.017
  • Cai Z, Sun Y, Liu W, et al. Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS. Environ Sci Pollut Res. 2017;24:1588–1596. doi:10.1007/s11356-016-7835-2
  • Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Phys E. 2004;25:1–12. doi:10.1016/j.physe.2004.07.013
  • Ekimov AI, Onushchenko AA. Quantum size effect in three-dimensional microscopic semiconductor crystals. JETP Lett (Engl Transl). 1981;34:354–349.
  • Ramalingam G, Kathirgamanathan R, Ravi G, et al. 2020. Quantum confinement. IntechOpen.
  • Brus LE. Electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys. 1984;80:4403–4409. doi:10.1063/1.447218
  • Kavitha KS, Baker S, Rakshith DK, et al. Plants as green sources towards synthesis of nanoparticles. Int Res J Biol Sci. 2013;2:66–76.
  • Richard DA, Maruani A, Chudasamu V. Antibody fragments as nanoparticle targeting ligands, a step in the right direction. Chem Sci. 2017;8(1):63–77. doi:10.1039/C6SC02403C
  • Bodas B, Khan-Malek C. Direct patterning of quantum dots on structured PDMS surface. Sens Actuat B. Chem. 2007;128:168–172. doi:10.1016/j.snb.2007.05.043
  • Wang J, Liu G, Leuny KC, et al. Opportunities and challenges of fluorescent carbon dots in translational optical imaging. Curr Pharm Des. 2015;21:5401–5416. doi:10.2174/1381612821666150917093232
  • Iqbal, P., Preece, J.A and Mendes, P.M. Nanotechnology: the “top-down” and “bottom-up” approaches. In: Supramolecular chemistry: from molecules to nanomaterials. John Wiley and Sons Ltd. 2012.
  • Saban MA, Choudhury KP, Neogi N. Advances with molecular nanomaterials in industrial manufacturing applications. Nanomanufacturing. 2021;1:75–97. doi:10.3390/nanomanufacturing1020008
  • Pal Singh J, Kumar M, Sharma A, et al. Bottom-up and top-down approaches for MgO. In: Karakuş S, editor. Sonochemical reactions. IntechOpen. 2020. doi:10.5772/intechopen.91182
  • Yang, H. Synthesis and application of Mn-dopped II-VI semiconductor nanocrystals. [Dissertation]. Univ. Florida, Gainesville. 2003.
  • Hu H, Gao H, Liu F. Quantitative model of heterogeneous nucleation and growth of SiGe quantum Dot molecules. Phys Rev Lett. 2012;109:106103, doi:10.1103/PhysRevLett.109.106103
  • Bang J, Yang H, Holloway PH. Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology. 2006;17:973–978. doi:10.1088/0957-4484/17/4/022
  • Calvin VL, Goldstein AN, Alivisatos AP. Semiconductor nanocrystals covalently bound to metal surfaces with self-assembled monolayers. J Am Chem Soc. 1992;114:5221–5230. doi:10.1021/ja00039a038
  • Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc. 1993;115:8706–8715. doi:10.1021/ja00072a025
  • Swihart MY. Vapor-phase synthesis of nanoparticles. Opin Colloid Interface Sci. 2003;8:127–133. doi:10.1016/S1359-0294(03)00007-4
  • Franc FC, Van der Merwe JH. One dimensional dislocations I. static theory. Proc Roy Soc Lond A. 1949;198(1053):205–216. doi:10.1098/rspa.1949.0095
  • Karmar R. Quantum dot and it’s methods of preparation. Revisited Prajnan O Sadhona. 2015;2:116–142.
  • Enterzari MMH, Ghows N. Micro-emulsion under ultrasound facilities. The fast synthesis of CdS at low temperature. Ultrasonic Chem. 2011;18:127–134.
  • Quin HF, Li L, Ren J. One step and rapid synthesis of high quality alloyed quantum dots (CdSe-CdS) in aqueous phase by microwave irradiation with controllable temperature. Mater Res Bull. 2005;40:1726–1736.
  • Mohammad C, Pall T, Strid JA. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat Nano. 2009;4:30–33.
  • Whaley SR, English DS, Hu EL, et al. Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly. Nature. 2000;405:665–668. doi:10.1038/35015043
  • Bandiyopadhyay S, Manon L, Kouklin N, et al. Electrochemically self-assembled quantum dot arrays. J Electron Mater. 1999;28:515–519. im, J., Park,M., doi:10.1007/s11664-999-0104-0
  • Pickett N. Controlled preparation of nanomaterials. U.S. Patent. 2011. 7,867,556.B2.
  • Lin J, Park M, Bae WK, et al. Efficient cadmium free quantum dots light emitting diodes enabled by the direct formation of exitons within lnP@ZnSeS quantum dots. ACS Nano. 2013;7:1919–1926.
  • Murphy CJ, Brauns EB, Gearheart L. Quantum dots as inorganic DNA-binding proteins. MRS Proc. 1996;453:452–597.
  • Domingos RF, Franco C, Pinheiro JP. Stability of core/shell quantum dots-role of pH and small organic ligands. Environ Sci Pollut Res. 2013;20:4872–4880. doi:10.1007/s11356-012-1457-0
  • Adama J, Lavelle N, Wang Y, et al. Size dependent dissociation of pH of thiolate ligands from cadmium chalcogenide nanocrystals. J Am Chem Soc. 2005;127:2496–2504.
  • Bae WK, Joo J, Padilha LA, et al. Highly effective surface passivation of PbSe quantum dots through reaction with molecular chlorine. J Am Chem Soc. 2012;134:20160–20168. doi:10.1021/ja309783v
  • KO J, Jeon BJ, Chang j-h, et al. Electret formation in transition metal oxides by electrochemical amorphization. NPG Asia Mater. 2020;12(1):1–11. doi:10.1038/s41427-019-0187-x
  • Moon H, Lee C, Lee W, et al. Stability of quantum dots, quantum dot films and quantum dot light emitting diodes for display applications. Adv Mater. 2019;31:1804294.
  • Pechstedt K, Whittle T, Baumberg J, et al. Photoluminescence of colloidal CdSe/ZnS quantum dots: the critical effect of water. J Phys Chem C. 2010;114:12069–12077.
  • Jo J-H, Kim J-H, Lee S-H, et al. Photostability enhancement of InP/ZnS quantum dots enabled by In­2O­3 overcoating. J Alloys Comp. 2015;647:6–13. doi:10.1016/j.jallcom.2015.05.245
  • Chen Y, Vela J, Htoon H, et al. ‘Giant’ multishell CdSe nanocrystal quantum dots with suppressed blinking. J Am Chem Soc. 2008;130(15):5026–5027. doi:10.1021/ja711379k
  • Shahind R, Gorlov M, El-Sayed R, et al. Microwave assisted synthesis of ZnS quantum dots using ionic liquids. Mater Lett. 2012;89:316–319. doi:10.1016/j.matlet.2012.08.143
  • Augustus E, Samuel A, Nimibofa A, et al. Removal of Congo red from aqueous solutions using fly ash modified with hydrochloric acid. BJAST. 2017;20(4):1–7. doi:10.9734/BJAST/2017/29880
  • Anand KV, Anand SS, Sripathi SK, et al. A review on the removal of dyes, pesticides and pathogens from wastewater using quantum dots. Eur J Adv Chem Res. 2020;1:1–6. doi:10.24018/ejchem.20201.5.14
  • Ma Y, Ding Q, Yang L, et al. Ag nanoparticles as multifunctional SERS substrate for the adsorption, degradation and detection of dye molecules. Appl Surf Sci. 2013;265:346–351. doi:10.1016/j.apsusc.2012.11.010
  • Gupta VK, Jain R, Varshney S. Electrochemical removal of the hazardous dye Reactofix Red 3 BFN from industrial effluents. J Coll Interf Sci. 2007;312:292–296. doi:10.1016/j.jcis.2007.03.054
  • Gibson LT. Mesosilica materials and organic pollutant adsorption: part B removal from aqueous solution. Chem Soc Rev. 2014;43:5173–5182. doi:10.1039/C3CS60095E
  • Saha S, Mondai S. Photochemistry and photophysics-fundamentals to applications. Intechopen. 2018. doi:10.5772/interchopen.71810
  • Elmorsi TM, Riyad YM, Mohamed ZH, et al. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. J Hazard Mater. 174(1–3):352–358. doi:10.1016/j.jhazmat.2009.09.057
  • Tehrani-Bagha AR, Mahmoodi NM, Menger FM. Degradation of a persistent organic dye from colored textile wastewater by ozonation. Desalin. 2010;260:34–38. doi:10.1016/j.desal.2010.05.004
  • Fujishima A, Zhang X, Tryk DA. Photocatalysis and related surface phenomena. Surf Sci Rep. 2008;63:515–582.
  • Adronic L, Enesca A, Vladuta C, et al. Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes. Chem Eng J. 2009;152:64–71. doi:10.1016/j.cej.2009.03.031
  • Saeed M, Ahmad A, Boddula R, et al. Ag@MnXOy: an effective catalyst for photo degradation of rhodamine B dye. Environ Chem Lett. 2018;, 16:287–294.
  • Dong S. N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation andmechanism insight. J Photochem Photobiol A: Chem. 2016;325:104–110. doi:10.1016/j.jphotochem.2016.04.012
  • Sharma G, Kumar A, Naushad M, et al. Photo remediation of toxic dye from aqueous environment using monometallic and bimetallic quantum dots-based nanocomposites. J Clen Prod. 2016;172:260–267.
  • Sharmispur M, Rajabi HR. Study of the photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet; effect of ferric ion dopping. Spectrochem Acta Part A: Mol Biomol Spect. 2014;122:260–267.
  • Farshbaf M, Dakavan S, Rahimi F, et al. Carbon quantum dots: recent progresses on synthesis, surface modification and applications. Artificial Cells. Nanomed Biotechnol. 2018;46:1331–1348. doi:10.1080/21691401.2017.1377725
  • Ying Y, He P, Ding G, et al. Ultrafast adsorption and selective desorption of aqueous aromatic dyes by graphene sheets modified by graphene quantum dots. Nanotechnol. 2016;27. doi: 10.1088/0957-4484/27/245703.
  • Gu S, Hsieh CT, Tsai Y-Y, et al. Sulfur and nitrogen Co-doped graphene quantum dots as a fluorescent quenching probe for highly sensitive detection toward mercury ions. ACS Appl Nano Mater. 2019;2:790–798. doi:10.1021/acsanm.8b02010
  • Ren C, Yang B, Wu M, et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J Hazard Mater. 2010;182(1):123–129. doi:10.1016/j.jhazmat.2010.05.141
  • Liu Y, Sun N, Chen S, et al. Synthesis of nano SnO2-coupled mesoporous molecular sieve titanium phosphate as a recyclable photocatalyst for efficient decomposition of 2,4-dichlorophenol. Nano Res. 2018;11(3):1612–1624. doi:10.1007/s12274-017-1776-z
  • Velanganni S, Pravinraj S, Immanuel P, et al. Nanostructure CdS/ZnO heterojunction configuration for photocatalytic degradation of methylene blue. Phys B. 2018;534:56–62. doi:10.1016/j.physb.2018.01.027
  • Patel J, Singh AK, Jain B, et al. Solochrome dark blue azo dye removal by sonophotocatalysis using Mn2+ doped ZnS quantum dots. Catalysts. 2021;11:1025, doi:10.3390/catal11091025
  • Jin Y, Duan W, Wo F, et al. Two-dimensional fluorescent strategy based on porous silicon quantum dots for metal-Ion detection and recognition. ACS Appl Nano Mater. 2019;2:6110–6115. doi:10.1021/acsanm.9b01647
  • Shenadhayalan N, Lin T-W, Lee H-L, et al. Multi sensing capability of MoSe2 quantum dots by tunning surface functional groups. ACS Appl Nano Mater. 2018;1:3453–3463.
  • Li H, Li Y, Cheng J. Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater. 2010;22:2451–2457. doi:10.1021/cm902856y
  • Li H, Qu F. Synthesis of CdTe quantum dots in sol−gel-derived composite silica spheres coated with calix[4]arene as luminescent probes for pesticides. Chem Mater 2007;19:4148–4154. doi:10.1021/cm0700089
  • Zor E, Morales-Narvaez E, Zamora-Galvez A, et al. Graphene quantum dot-based photoluminescent sensor: a multifunctional composite for pesticide detection. ACS Appl Mater Interfaces. 2015;36:20272–20279.
  • Fan L, Wang Y, Li L, et al. Carbon quantum dots activated metal organic frameworks for selective detection of Cu(II) and Fe(III). Colloid Surf A. 2020;588:124378, doi:10.1016/j.colsurfa.2019.124378
  • Dong Y, Li G, Zhou N, et al. Graphene quantum dot as a green and facile sensor for free chlorine in drinking water. Anal Chem. 2012;84:8378–8382. doi:10.1021/ac301945z
  • Suryawanshi A, Biswal M, Mhamane D, et al. Large scale synthesis of graphene quantum dots (GQDs) from waste biomass and their use as an efficient and selective photoluminescence on–off–on probe for Ag+ions. Nanoscale. 2014;6:11664–11670. doi:10.1039/C4NR02494J

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.