186
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Valorisation of agricultural waste and their role in green synthesis of value-added nanoparticles

, & ORCID Icon
Pages 40-59 | Received 22 Sep 2022, Accepted 06 Oct 2023, Published online: 16 Dec 2023

References

  • Umamaheswari A, Prabu SL, John SA, et al. Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnol Reports. 2021;29:e00595. doi:10.1016/j.btre.2021.e00595
  • Devi M, Devi S, Sharma V, et al. Green synthesis of silver nanoparticles using methanolic fruit extract of Aegle marmelos and their antimicrobial potential against human bacterial pathogens. J Tradit Complement Med. 2020;10:158–165. doi:10.1016/j.jtcme.2019.04.007
  • Ahmad M, Ren J, Zhang Y, et al. Simple and facile preparation of tunable chitosan tubular nanocomposite microspheres for fast uranium(VI) removal from seawater. Chem Eng J. 2022;427:130934. doi:10.1016/j.cej.2021.130934
  • Ahmad M, Wang J, Xu J, et al. Magnetic tubular carbon nanofibers as efficient Cu(II) ion adsorbent from wastewater. J Clean Prod. 2020;252. doi:10.1016/j.jclepro.2019.119825
  • A review on biogenic synthesis, applications and toxicity aspects of zinc oxide nanoparticles; 2020.
  • Jain R, Mendiratta S, Kumar L, et al. Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin basic dye. Curr Res Green Sustain Chem. 2021;4:100086. doi:10.1016/j.crgsc.2021.100086
  • Sajesh Kumar NK, Vazhacharickal J, Mathew JJ, et al. Synthesis of silver nano particles from neem leaf (Azadirachta indica) extract and its antibacterial activity. Int J Appl Pharm Biol Res. 2017;2:38–49.
  • Devanesan S, Jayamala M, AlSalhi MS, et al. Antimicrobial and anticancer properties of Carica papaya leaves derived di-methyl flubendazole mediated silver nanoparticles. J Infect Public Health. 2021;14:577–587. doi:10.1016/j.jiph.2021.02.004
  • Oliani WL, Pusceddu FH, Parra DF. Silver-titanium polymeric nanocomposite non ecotoxic with bactericide activity. Polym Bull. 2022;79:10949–10968. doi:10.1007/s00289-021-04036-7
  • Li S, Al-Misned FA, El-Serehy HA, et al. Green synthesis of gold nanoparticles using aqueous extract of Mentha Longifolia leaf and investigation of its anti-human breast carcinoma properties in the in vitro condition. Arab J Chem. 2021;14:102931. doi:10.1016/j.arabjc.2020.102931
  • Garg R, Kumari M, Kumar M, et al. Green synthesis of calcium carbonate nanoparticles using waste fruit peel extract. Mater Today Proc. 2020;46:6665–6668. doi:10.1016/j.matpr.2021.04.124
  • Eddy NO, Garg R. Cao nanoparticles. In Garg R, Garg R, Eddy NO.: Handbook of research on green synthesis and applications of nanomaterials. IGI Global, USA. 2021. p. 247–268.
  • Garg R, Garg R, Thakur A, et al. Water remediation using biosorbent obtained from agricultural and fruit waste. Mater Today Proc. 2020;46:6669–6672. doi:10.1016/j.matpr.2021.04.132
  • Onyszko M, Markowska-Szczupak A, Rakoczy R, et al. The cellulose fibers functionalized with star-like zinc oxide nanoparticles with boosted antibacterial performance for hygienic products. Sci Rep. 2022;12:1321. doi:10.1038/s41598-022-05458-7
  • Ahmed S, Ahmad M, Swami BL, et al. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res. 2016;7:17–28. doi:10.1016/j.jare.2015.02.007
  • Shen Y. Rice husk silica-derived nanomaterials for battery applications: a literature review. J Agric Food Chem. 2017;65:995–1004. doi:10.1021/acs.jafc.6b04777
  • Vijayaram S, Razafindralambo H, Sun YZ, et al. Applications of green synthesized metal nanoparticles — a review. Biol Trace Elem Res. 2023.
  • Saratale RG, Saratale GD, Shin HS, et al. New insights on the green synthesis of metallic nanoparticles using plant and waste biomaterials: current knowledge, their agricultural and environmental applications. Environ Sci Pollut Res. 2018;25:10164–10183. doi:10.1007/s11356-017-9912-6
  • Khan N, Le Roes-Hill M, Welz PJ, et al. Fruit waste streams in South Africa and their potential role in developing a bio-economy. S Afr J Sci 2015;111:1–11. doi:10.17159/sajs.2015/20140189
  • Zamani A, Poursattar Marjani A, Abedi Mehmandar M. Synthesis of high surface area magnesia by using walnut shell as a template. Green Process Synth. 2019;8:199–206. doi:10.1515/gps-2018-0066
  • Garg R, Rani P, Garg R, et al. Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turkish J Chem. 2021;45:1690–1706.
  • Zamani A, Marjani AP, Mousavi Z. Agricultural waste biomass-assisted nanostructures: synthesis and application. Green Process Synth. 2019;8:421–429. doi:10.1515/gps-2019-0010
  • Zuorro A, Iannone A, Natali S, et al. Green synthesis of silver nanoparticles using bilberry and red currantwaste extracts. Processes. 2019;7:193. doi:10.3390/pr7040193
  • Baiocco D, Lavecchia R, Natali S, et al. Production of metal nanoparticles by agro-industrial wastes: a green opportunity for nanotechnology. Chem Eng Trans. 2016;47:67–72.
  • Soto KM, Quezada-Cervantes CT, Hernández-Iturriaga M, et al. Fruit peels waste for the green synthesis of silver nanoparticles with antimicrobial activity against foodborne pathogens. Lwt. 2019;103:293–300. doi:10.1016/j.lwt.2019.01.023
  • Krishnaswamy K, Vali H, Orsat V. Value-adding to grape waste: green synthesis of gold nanoparticles. J Food Eng. 2014;142:210–220. doi:10.1016/j.jfoodeng.2014.06.014
  • Emam HE, El-Zawahry MM, Ahmed HB. One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydr Polym. 2017;166:1–13. doi:10.1016/j.carbpol.2017.02.091
  • Weng X, Guo M, Luo F, et al. One-step green synthesis of bimetallic Fe/Ni nanoparticles by eucalyptus leaf extract: biomolecules identification, characterization and catalytic activity. Chem Eng J. 2017;308:904–911. doi:10.1016/j.cej.2016.09.134
  • Al-Haddad J, Alzaabi F, Pal P, et al. Green synthesis of bimetallic copper–silver nanoparticles and their application in catalytic and antibacterial activities. Clean Technol Environ Policy. 2020;22:269–277. doi:10.1007/s10098-019-01765-2
  • Ahmad MM, Kotb HM, Mushtaq S, et al. Green synthesis of Mn + Cu bimetallic nanoparticles using vinca rosea extract and their antioxidant, antibacterial, and catalytic activities. Crystals. 2022;12.
  • Elemike EE, Onwudiwe DC, Nundkumar N, et al. Green synthesis of Ag, Au and Ag-Au bimetallic nanoparticles using Stigmaphyllon ovatum leaf extract and their in vitro anticancer potential. Mater Lett. 2019;243:148–152. doi:10.1016/j.matlet.2019.02.049
  • Ganaie SU, Abbasi T, Abbasi SA. Rapid and green synthesis of bimetallic Au–Ag nanoparticles using an otherwise worthless weed Antigonon leptopus. J Exp Nanosci. 2016;11:395–417. doi:10.1080/17458080.2015.1070311
  • Halder A, Biswas R, Kushwaha PP, et al. Green synthesis of bimetallic Au/Ag nanostructures using aqueous extract of eichhornia crassipes for antibacterial activity. Bionanoscience. 2022;12:322–331. doi:10.1007/s12668-022-00950-w
  • Meena Kumari M, Jacob J, Philip D. Green synthesis and applications of Au-Ag bimetallic nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015;137:185–192. doi:10.1016/j.saa.2014.08.079
  • Garg R, Rani P, Garg R, et al. Study on potential applications and toxicity analysis of green synthesized nanoparticles. Turkish J Chem. 2021;45:1690–1706.
  • Ali K, Dwivedi S, Azam A, et al. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates. J Colloid Interface Sci. 2016;472:145–156. doi:10.1016/j.jcis.2016.03.021
  • Kumar B, Vizuete KS, Sharma V, et al. Ecofriendly synthesis of monodispersed silver nanoparticles using Andean Mortiño berry as reductant and its photocatalytic activity. Vacuum. 2019;160:272–278. doi:10.1016/j.vacuum.2018.11.027
  • Garg R, Rani P, Garg R, et al. Biomedical and catalytic applications of agri-based biosynthesized silver nanoparticles. Environ Pollut. 2022;310:119830. doi:10.1016/j.envpol.2022.119830
  • Das D, Sabaraya IV, Sabo-Attwood T, et al. Insights into metal oxide and zero-valent metal nanocrystal formation on multiwalled carbon nanotube surfaces during sol-gel process. Nanomaterials. 2018;8.
  • Vasyliev GS, Vorobyova VI, Linyucheva OV. Evaluation of reducing ability and antioxidant activity of fruit pomace extracts by spectrophotometric and electrochemical methods. J Anal Methods Chem. 2020;2020. doi:10.1155/2020/8869436
  • Dauthal P, Mukhopadhyay M. Biofabrication, characterization, and possible bio-reduction mechanism of platinum nanoparticles mediated by agro-industrial waste and their catalytic activity. J Ind Eng Chem. 2015;22:185–191. doi:10.1016/j.jiec.2014.07.009
  • Mohamad Sukri SNA, Shameli K, Mei-Theng Wong M, et al. Cytotoxicity and antibacterial activities of plant-mediated synthesized zinc oxide (ZnO) nanoparticles using Punica granatum (pomegranate) fruit peels extract. J Mol Struct. 2019;1189:57–65. doi:10.1016/j.molstruc.2019.04.026
  • Zamani A, Marjani AP, Abdollahpour N. Synthesis of high surface area boehmite and alumina by using walnut shell as template. Int J Nano Biomater. 2019;8:1–14. doi:10.1504/IJNBM.2019.097588
  • El-Hamadi M, Schätzlein AG. Nanoparticles in medical imaging. Fundam Pharm Nanosci. 2013;6:543–566. doi:10.1007/978-1-4614-9164-4_20
  • McNamara K, Tofail SAM. Nanoparticles in biomedical applications. Adv Phys X. 2017;2:54–88.
  • Hassan SS, El-Shafie AS, Zaher N, et al. Application of pineapple leaves as adsorbents for removal of rose bengal from wastewater: process optimization operating face-centered central composite design (FCCCD). Molecules. 2020;25:1–19.
  • Das G, Patra JK, Debnath T, et al. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One. 2019;14:e0220950.
  • Kumar R, Roopan SM, Prabhakarn A, et al. Agricultural waste Annona squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2012;90:173–176. doi:10.1016/j.saa.2012.01.029
  • de Barros CHN, Cruz GCF, Mayrink W, et al. Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol Sci Appl. 2018;11:1–14. doi:10.2147/NSA.S156115
  • Yan D, Zhang H, Chen L, et al. Supercapacitive properties of Mn3O4 nanoparticles bio-synthesized from banana peel extract. RSC Adv. 2014;4:23649–23652. doi:10.1039/c4ra02603a
  • Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci. 2015;8:265–275.
  • Khorrami S, Kamali F, Zarrabi A. Bacteriostatic activity of aquatic extract of black peel pomegranate and silver nanoparticles biosynthesized by using the extract. Biocatal Agric Biotechnol. 2020;25:101620. doi:10.1016/j.bcab.2020.101620
  • Fernandes RA, Berretta AA, Torres EC, et al. Antimicrobial potential and cytotoxicity of silver nanoparticles phytosynthesized by pomegranate peel extract. Antibiotics. 2018;7:1–14.
  • Xu H, Wang L, Su H, et al. Making good use of food wastes: green synthesis of highly stabilized silver nanoparticles from grape seed extract and their antimicrobial activity. Food Biophys. 2015;10:12–18. doi:10.1007/s11483-014-9343-6
  • Karnan T, Selvakumar SAS. Biosynthesis of ZnO nanoparticles using rambutan (Nephelium lappaceum L.) peel extract and their photocatalytic activity on methyl orange Dye. J Mol Struct. 2016;1125. doi:10.1016/j.molstruc.2016.07.029
  • Yuvakkumar R, Suresh J, Nathanael AJ, et al. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications. Mater Sci Eng C. 2014;41:17–27. doi:10.1016/j.msec.2014.04.025
  • Ajmal N, Saraswat K. In-vitro antibacterial and antioxidant activities of zinc oxide nanoparticles synthesized using Prunus domestica L .(Plum) agro-. Adv Biores. 2017;8:39–46.
  • Deokar GK, Ingale AG. Green synthesis of gold nanoparticles (Elixir of life) from banana fruit waste extract-an efficient multifunctional agent. RSC Adv. 2016;6:74620–74629. doi:10.1039/C6RA14567A
  • Bankar A, Joshi B, Ravi Kumar A, et al. Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B Biointerf. 2010;80:45–50. doi:10.1016/j.colsurfb.2010.05.029
  • Dang H, Fawcett D, Poinern GEJ. Green synthesis of gold nanoparticles from waste macadamia nut shells and their antimicrobial activity against Escherichia coli and Staphylococcus epidermis. Int J Res Med Sci. 2019;7:1171. doi:10.18203/2320-6012.ijrms20191320
  • Ukpe RA, Odoemelam SA, Odiongenyi AO, et al. Inhibition of the corrosion of aluminium in 0 . 1 M HCl by ethanol extract of mango peel waste (EMPW). J Bioprocess Chem Eng. 2014;2:1–9.
  • Yang N, Weihong L, Hao L. Biosynthesis of Au nanoparticles using agricultural waste mango peel extract and its in vitro cytotoxic effect on two normal cells. Mater Lett. 2014;134:67–70. doi:10.1016/j.matlet.2014.07.025
  • Chums-ard W, Fawcett D, Fung CC, et al. Biogenic synthesis of gold nanoparticles from waste watermelon and their antibacterial activity against Escherichia coli and Staphylococcus epidermidis. Int J Res Med Sci. 2019;7:2499. doi:10.18203/2320-6012.ijrms20192874
  • Yallappa S, Manjanna J, Dhananjaya BL. Phytosynthesis of stable Au, Ag and Au-Ag alloy nanoparticles using J. Sambac leaves extract, and their enhanced antimicrobial activity in presence of organic antimicrobials. Spectrochim Acta - Part A Mol Biomol Spectrosc. 2015;137:236–243. doi:10.1016/j.saa.2014.08.030
  • Rokade SS, Joshi KA, Mahajan K, et al. Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer. Bioinorg Chem Appl. 2018;2018. doi:10.1155/2018/4924186
  • Kaur P, Thakur R, Chaudhury A. Biogenesis of copper nanoparticles using peel extract of Punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem Lett Rev. 2016;9:33–38. doi:10.1080/17518253.2016.1141238
  • Hasheminya SM, Dehghannya J. Green synthesis and characterization of copper nanoparticles using Eryngium caucasicum Trautv aqueous extracts and its antioxidant and antimicrobial properties. Part Sci Technol. 2020;38:1019–1026. doi:10.1080/02726351.2019.1658664
  • Helen SM, Rani MHE. Characterization and antimicrobial study of nickel nanoparticles synthesized from dioscorea (Elephant Yam) by green route. Int J Sci Res. 2015;4:216–219.
  • Rusu ME, Fizesan I, Pop A, et al. Walnut (Juglans regia L.) septum: assessment of bioactive molecules and in vitro biological effects. Molecules. 2020;25:1–21.
  • Izadiyan Z, Shameli K, Miyake M, et al. Cytotoxicity assay of plant-mediated synthesized iron oxide nanoparticles using Juglans regia green husk extract. Arab J Chem. 2020;13:2011–2023. doi:10.1016/j.arabjc.2018.02.019
  • Rangaraj S, Venkatachalam R. A lucrative chemical processing of bamboo leaf biomass to synthesize biocompatible amorphous silica nanoparticles of biomedical importance. Appl Nanosci. 2017;7:145–153. doi:10.1007/s13204-017-0557-z
  • Zulkifli NSC, Ab Rahman I, Mohamad D, et al. A green sol-gel route for the synthesis of structurally controlled silica particles from rice husk for dental composite filler. Ceram Int. 2013;39:4559–4567. doi:10.1016/j.ceramint.2012.11.052
  • Mor S, Manchanda CK, Kansal SK, et al. Nanosilica extraction from processed agricultural residue using green technology. J Clean Prod. 2017;143:1284–1290. doi:10.1016/j.jclepro.2016.11.142
  • Garg R, Garg R, Sillanpää M, et al. Rapid adsorptive removal of chromium from wastewater using walnut-derived biosorbents. Sci Rep. 2023;13:6859. doi:10.1038/s41598-023-33843-3
  • Mohseni MS, Khalilzadeh MA, Mohseni M, et al. Green synthesis of Ag nanoparticles from pomegranate seeds extract and synthesis of Ag-starch nanocomposite and characterization of mechanical properties of the films. Biocatal Agric Biotechnol. 2020;25:101569. doi:10.1016/j.bcab.2020.101569
  • Annan E, Nyankson E, Agyei-Tuffour B, et al. Synthesis and characterization of modified kaolin-bentonite composites for enhanced fluoride removal from drinking water. Adv Mater Sci Eng 2021;2021. doi:10.1155/2021/6679422
  • Shendre LP, Ukesh CS, Patil SD. Impact of biosurfactant from Kocuria rosea and pseudomonas aeruginosa on germinating seedlings of Glycine max, Pisum sativum and Spinacia oleracea. Int J Life-Sci Sci Res. 2017;3:1100–1105.
  • Prasad C, Yuvaraja G, Venkateswarlu P. Biogenic synthesis of Fe3O4 magnetic nanoparticles using pisum sativum peels extract and its effect on magnetic and methyl orange dye degradation studies. J Magn Magn Mater. 2017;424:376–381. doi:10.1016/j.jmmm.2016.10.084
  • Pan Y, Peng Z, Liu Z, et al. Activation of peroxydisulfate by bimetal modified peanut hull-derived porous biochar for the degradation of tetracycline in aqueous solution. J Environ Chem Eng. 2022;10:107366. doi:10.1016/j.jece.2022.107366
  • Besharati N, Alizadeh N, Shariati S. Removal of cationic dye methylene blue (Mb) from aqueous solution by coffee and peanut husk modified with magnetite iron oxide nanoparticles. J Mex Chem Soc. 2018;62:110–124.
  • Sebastian A, Nangia A, Prasad MNV. A green synthetic route to phenolics fabricated magnetite nanoparticles from coconut husk extract: implications to treat metal contaminated water and heavy metal stress in oryza sativa L. J Clean Prod. 2018;174:355–366. doi:10.1016/j.jclepro.2017.10.343
  • Jabasingh SA, Belachew H, Yimam A. Iron oxide induced bagasse nanoparticles for the sequestration of Cr 6 + ions from tannery effluent using a modified batch reactor. J Appl Polym Sci. 2018;135:46683. doi:10.1002/app.46683
  • Buthiyappan A, Gopalan J, Abdul Raman AA. Synthesis of iron oxides impregnated green adsorbent from sugarcane bagasse: characterization and evaluation of adsorption efficiency. J Environ Manage. 2019;249:109323. doi:10.1016/j.jenvman.2019.109323
  • Xin Lee K, Shameli K, Miyake M, et al. Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. J Nanomater. 2016;2016. doi:10.1155/2016/8489094
  • Aminuzzaman M, Ying LP, Goh WS, et al. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull Mater Sci. 2018;41:50. doi:10.1007/s12034-018-1568-4
  • Nava OJ, Soto-Robles CA, Gómez-Gutiérrez CM, et al. Fruit peel extract mediated green synthesis of zinc oxide nanoparticles. J Mol Struct. 2017;1147:1–6. doi:10.1016/j.molstruc.2017.06.078
  • Kumar B, Smita K, Cumbal L, et al. Green approach for fabrication and applications of zinc oxide nanoparticles. Bioinorg Chem Appl. 2014;2014.
  • Garg R, Garg R, Okon Eddy N, et al. Biosynthesized silica-based zinc oxide nanocomposites for the sequestration of heavy metal ions from aqueous solutions. J King Saud Univ - Sci. 2022;34:101996. doi:10.1016/j.jksus.2022.101996
  • Rovani S, Santos JJ, Corio P, et al. Highly pure silica nanoparticles with high adsorption capacity obtained from sugarcane waste Ash. ACS Omega. 2018;3:2618–2627. doi:10.1021/acsomega.8b00092
  • Shim J, Velmurugan P, Oh BT. Extraction and physical characterization of amorphous silica made from corn cob ash at variable pH conditions via sol gel processing. J Ind Eng Chem. 2015;30:249–253. doi:10.1016/j.jiec.2015.05.029
  • Ali SM. Fabrication of a nanocomposite from an agricultural waste and its application as a biosorbent for organic pollutants. Int J Environ Sci Technol. 2018;15:1169–1178. doi:10.1007/s13762-017-1477-x
  • Lakshmipathy R, Palakshi Reddy B, Sarada NC, et al. Watermelon rind-mediated green synthesis of noble palladium nanoparticles: catalytic application. Appl Nanosci. 2015;5:223–228. doi:10.1007/s13204-014-0309-2
  • Touqeer T, Mumtaz MW, Mukhtar H, et al. Fe3O4-PDA-lipase as surface functionalized nano biocatalyst for the production of biodiesel using waste cooking oil as feedstock: characterization and process optimization. Energies. 2020;13:177. doi:10.3390/en13010177
  • Dewan A, Sarmah M, Bora U, et al. In situ generation of palladium nanoparticles using agro waste and their use as catalyst for copper-, amine- and ligand-free Sonogashira reaction. Appl Organomet Chem. 2017;31:e3646. doi:10.1002/aoc.3646
  • Pandit PR, Fulekar MH. Egg shell waste as heterogeneous nanocatalyst for biodiesel production: optimized by response surface methodology. J Environ Manage. 2017;198:319–329. doi:10.1016/j.jenvman.2017.04.100
  • Gandhi CP, Garg R, Eddy NO. Application of biosynthesized nano-catalyst for biodiesel synthesis and impact assessment of factors influencing the yield. Nanosyst Phys Chem Math. 2021;12:808–817.
  • Eddy NO, Odiongenyi AO, Garg R, et al. Quantum and experimental investigation of the application of Crassostrea gasar (mangrove oyster) shell–based CaO nanoparticles as adsorbent and photocatalyst for the removal of procaine penicillin from aqueous solution. Environ Sci Pollut Res. 2023.
  • Nehra S, Raghav S, Kumar D. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study. Environ Pollut. 2020;258:113773. doi:10.1016/j.envpol.2019.113773
  • Zamani A, Marjani AP, Alimoradlu K. Walnut shell-templated ceria nanoparticles: green synthesis, characterization and catalytic application. Int J Nanosci. 2018;17:1–8. doi:10.1142/S0219581X18500084
  • Hsieh YY, Tsai YC, He JR, et al. Rice husk agricultural waste-derived low ionic content carbon–silica nanocomposite for green reinforced epoxy resin electronic packaging material. J Taiwan Inst Chem Eng. 2017;78:493–499. doi:10.1016/j.jtice.2017.06.010
  • Sanmugam A, Vikraman D, Venkatesan S, et al. Optical and structural properties of solvent free synthesized starch/chitosan-ZnO nanocomposites. J Nanomater. 2017;2017. doi:10.1155/2017/7536364
  • Madhu R, Veeramani V, Chen SM, et al. Functional porous carbon-ZnO nanocomposites for high-performance biosensors and energy storage applications. Phys Chem Chem Phys. 2016;18:16466–16475. doi:10.1039/C6CP01285J
  • Yuan C, Lin H, Lu H, et al. Synthesis of hierarchically porous MnO2/rice husks derived carbon composite as high-performance electrode material for supercapacitors. Appl Energy. 2016;178:260–268. doi:10.1016/j.apenergy.2016.06.057
  • Benassai E, Del Bubba M, Ancillotti C, et al. Green and cost-effective synthesis of copper nanoparticles by extracts of non-edible and waste plant materials from vaccinium species: characterization and antimicrobial activity. Mater Sci Eng C. 2021;119:111453. doi:10.1016/j.msec.2020.111453

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.