126
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A comprehensive review of the role of soft computing techniques in municipal solid waste management

&
Pages 168-185 | Received 10 Apr 2023, Accepted 21 Nov 2023, Published online: 29 Dec 2023

References

  • Kaza S, Yao L, Bhada-Tata P, et al. What a waste 2.0: a global snapshot of solid waste management to 2050. Maldives: The World Bank; 2018.
  • Pichtel J. Municipal solid waste collection. In: Waste management practices. Boca Raton: CRC Press; 2005. p. 133–154.
  • Halkos G, Petrou KN. Efficient waste management practices: a review. 2016.
  • Tanguay-Rioux F, Spreutels L, Héroux M, et al. Mixed modeling approach for mechanical sorting processes based on physical properties of municipal solid waste. Waste Manag. 2022;144:533–542. doi: 10.1016/j.wasman.2022.04.025
  • Wilts H, Garcia BR, Garlito RG, et al. Artificial intelligence in the sorting of municipal waste as an enabler of the circular economy. Resources. 2021;10:28. doi: 10.3390/resources10040028
  • Thomas B, Tamblyn D, Baetz B. Expert systems in municipal solid waste management planning. J Urban Plan Dev. 1990;116:150–155. doi: 10.1061/(ASCE)0733-9488(1990)116:3(150)
  • Abdallah M, Talib MA, Feroz S, et al. Artificial intelligence applications in solid waste management: A systematic research review. Waste Manag. 2020;109:231–246. doi: 10.1016/j.wasman.2020.04.057
  • Karabulut BY, Derin P, Yeşilnacar Mİ, et al. A study on evaluation of site selection in sanitary landfill with regard to urban growth. Environ Res Technol. 2021;4:117–125. doi: 10.35208/ert.841200
  • Karabulut Aİ., Yazici-Karabulut B, Derin P, et al. Landfill siting for municipal solid waste using remote sensing and geographic information system integrated analytic hierarchy process and simple additive weighting methods from the point of view of a fast-growing metropolitan area in gap area of turkey. Environ Sci Pollut Res. 2022;29:4044–4061. doi: 10.1007/s11356-021-15951-7
  • Salmador A, Pérez Cid J, Rodríguez Novelle I. Intelligent garbage classifier. 2008.
  • Lu HW, Huang GH, Xu Y, et al. Inexact two-phase fuzzy programming and its application to municipal solid waste management. Eng Appl Artif Intell. 2012;25:1529–1536. doi: 10.1016/j.engappai.2012.08.006
  • Nowakowski P, Pamuła T. Application of deep learning object classifier to improve e-waste collection planning. Waste Manag. 2020;109:1–9. doi: 10.1016/j.wasman.2020.04.041
  • Jahandideh S, Jahandideh S, Asadabadi EB, et al. The use of artificial neural networks and multiple linear regression to predict rate of medical waste generation. Waste Manag. 2009;29:2874–2879. doi: 10.1016/j.wasman.2009.06.027
  • Rızvanoğlu O, Kaya S, Ulukavak M, et al. Optimization of municipal solid waste collection and transportation routes, through linear programming and geographic information system: a case study from şanlıurfa, turkey. Environ Monit Assess. 2020;192:1–12. doi: 10.1007/s10661-019-7904-3
  • Pamukçu H, Yapıcıoğlu PS, Yeşilnacar Mİ. Investigating the mitigation of greenhouse gas emissions from municipal solid waste management using ant colony algorithm, monte carlo simulation and LCA approach in terms of eu green deal. Waste Manag Bull. 2023;1:6–14. doi: 10.1016/j.wmb.2023.05.001
  • Güulşen H, Yapıcıoğlu P. Minimizing greenhouse gas emissions from leachate treatment by using zeolite column. Carbon Manag. 2021;12:51–68.
  • Directive E. Directive 2008/98/ec of the european parliament and of the council of 19 november 2008 on waste and repealing certain directives. Official J Eur Union. 2008;L 312:3–13.
  • Pires A, Martinho G, Chang NB. Solid waste management in european countries: A review of systems analysis techniques. J Environ Manage. 2011;92:1033–1050. doi: 10.1016/j.jenvman.2010.11.024
  • Aljerf L. Data of thematic analysis of farmer s use behavior of recycled industrial wastewater. Data Brief. 2018;21:240–250. doi: 10.1016/j.dib.2018.09.125
  • Zaman AU, Lehmann S. Urban growth and waste management optimization towards ‘zero waste city’. City Cult Soc. 2011;2:177–187. doi: 10.1016/j.ccs.2011.11.007
  • Harvey P, Baghri S, Reed B. Emergency sanitation: assessment and programme design. Loughborough: WEDC, Loughborough University; 2002.
  • World Health Organization. Handling, storage, and transportation of health-care waste. 2008.
  • Karabulut Aİ, Karabulut BY, Pamukçu H, et al. A study on collection and transportation route optimizations for municipal solid wastes.
  • mohua2intro. 2020. Chapter 2: Principles of municipal solid waste management. Available from: http://mohua.gov.in/upload/uploadfiles/files/chap2.pdf. [Online; accessed on 2019 September 17].
  • Singh E, Kumar A, Mishra R, et al. Solid waste management during covid-19 pandemic: recovery techniques and responses. Chemosphere. 2022;288:132451. doi: 10.1016/j.chemosphere.2021.132451
  • McCartney MS. Volume reduction of low-level radiation waste by incineration. US Patent 4,700,637. 1987.
  • Flasiński M. Application areas of ai systems. In: Introduction to artificial intelligence. London: Springer; 2016. p. 223–234.
  • Abbasi M, El Hanandeh A. Forecasting municipal solid waste generation using artificial intelligence modelling approaches. Waste Manag. 2016;56:13–22. doi: 10.1016/j.wasman.2016.05.018
  • Aljerf L. Development of a method for classification of hospitals based on results of the diagnosis-related groups and the principle of case-mix index. EMHJ-Eastern Mediterr Health J. 2016;22:327–334. doi: 10.26719/2016.22.5.327
  • Holland JH. Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. Singapore: MIT press; 1992.
  • Ramasami K, Velumani B. Location prediction for solid waste management–a genetic algorithmic approach. In: 2016 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC). IEEE; 2016. p. 1–5.
  • Dorigo M, Colorni A, Maniezzo V. Distributed optimization by ant colonies. 1991.
  • Pérez-Delgado ML, Matos-Franco JC. Artificial intelligence for picking up recycling bins: a practical application. In: 7th International Conference on Practical Applications of Agents and Multi-Agent Systems (PAAMS 2009). Springer; 2009. p. 392–400.
  • Hoque MM, Rahman MTU. Landfill area estimation based on solid waste collection prediction using ann model and final waste disposal options. J Clean Prod. 2020;256:120387. doi: 10.1016/j.jclepro.2020.120387
  • Shahabi H, Khezri S, Ahmad BB, et al. Application of artificial neural network in prediction of municipal solid waste generation (case study: saqqez city in kurdistan province). World Appl Sci J. 2012;20:336–343.
  • Antanasijević D, Pocajt V, Popović I, et al. The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustain Sci. 2013;8:37–46. doi: 10.1007/s11625-012-0161-9
  • Ali SA, Ahmad A. Forecasting msw generation using artificial neural network time series model: a study from metropolitan city. SN Appl Sci. 2019;1:1338. doi: 10.1007/s42452-019-1382-7
  • Meza JKS, Yepes DO, Rodrigo-Ilarri J, et al. Predictive analysis of urban waste generation for the city of bogotá, colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon. 2019;5:e02810. doi: 10.1016/j.heliyon.2019.e02810
  • Islam MS, Hannan M, Basri H, et al. Solid waste bin detection and classification using dynamic time warping and mlp classifier. Waste Manag. 2014;34:281–290. doi: 10.1016/j.wasman.2013.10.030
  • Awasthi SK, Sarsaiya S, Kumar V, et al. Processing of municipal solid waste resources for a circular economy in China: an overview. Fuel. 2022;317:123478. doi: 10.1016/j.fuel.2022.123478
  • Al-Jarrah O, Abu-Qdais H. Municipal solid waste landfill siting using intelligent system. Waste Manag. 2006;26:299–306. doi: 10.1016/j.wasman.2005.01.026
  • Li P, Chen B. Fsilp: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management. J Environ Manage. 2011;92:1198–1209. doi: 10.1016/j.jenvman.2010.12.013
  • Faria R, Ahmed F, Das A, et al. Classification of organic and solid waste using deep convolutional neural networks. In: 2021 IEEE 9th Region 10 Humanitarian Technology Conference (R10-HTC). IEEE; p. 01–06.
  • Talabis M, McPherson R, Miyamoto I, et al. Chapter 1-analytics defined. Inf Sec Anal. 2015;:–.
  • Lesot MJ. Kernel-based outlier preserving clustering with representativity coefficients. In: Modern information processing. USA: Elsevier Science; 2006. p. 183–194.
  • Sutton RS, Barto AG. Reinforcement learning: an introduction. North Sydney, NSW: MIT Press; 2018.
  • Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20:273–297.
  • Abbasi M, Abduli M A, Omidvar B, et al. Forecasting municipal solid waste generation by hybrid support vector machine and partial least square model. 2013.
  • Behzad M, Asghari K, Eazi M, et al. Generalization performance of support vector machines and neural networks in runoff modeling. Expert Syst Appl. 2009;36:7624–7629. doi: 10.1016/j.eswa.2008.09.053
  • Abbasi M, Abduli M, Omidvar B, et al. Results uncertainty of support vector machine and hybrid of wavelet transform-support vector machine models for solid waste generation forecasting. Environ Prog Sustain Energy. 2014;33:220–228. doi: 10.1002/ep.v33.1
  • Hu R, Chen K, Chen W, et al. Estimation of construction waste generation based on an improved on-site measurement and svm-based prediction model: a case of commercial buildings in China. Waste Manag. 2021;126:791–799. doi: 10.1016/j.wasman.2021.04.012
  • Kumar A, Samadder S. An empirical model for prediction of household solid waste generation rate–a case study of dhanbad, India. Waste Manag. 2017;68:3–15. doi: 10.1016/j.wasman.2017.07.034
  • Inyurt S, Kashani MH, Sekertekin A. Ionospheric tec forecasting using gaussian process regression (GPR) and multiple linear regression (MLR) in turkey. Astrophys Space Sci. 2020;365:1–17. doi: 10.1007/s10509-020-03817-2
  • Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967;13:21–27. doi: 10.1109/TIT.1967.1053964
  • Singh A. Solid waste management through the applications of mathematical models. Resour Conserv Recycl. 2019;151:104503. doi: 10.1016/j.resconrec.2019.104503
  • Das S, Lee SH, Kumar P, et al. Solid waste management: scope and the challenge of sustainability. J Clean Prod. 2019;228:658–678. doi: 10.1016/j.jclepro.2019.04.323
  • Kolekar K, Hazra T, Chakrabarty S. A review on prediction of municipal solid waste generation models. Procedia Environ Sci. 2016;35:238–244. doi: 10.1016/j.proenv.2016.07.087
  • Abbasi M, Rastgoo M N, Nakisa B. Monthly and seasonal modeling of municipal waste generation using radial basis function neural network. Environmental Progress and Sustainable Energy. 2019;38(3):e13033.
  • Oliveira M, Slezakova K, Delerue-Matos C, et al. Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: A review on indoor and outdoor exposure levels, major sources and health impacts. Environment international. 2019;124:180–204.
  • Costa M B, Tavares F V, Martinez C B, et al. Accumulation and effects of copper on aquatic macrophytes Potamogeton pectinatus L.: Potential application to environmental monitoring and phytoremediation. Ecotoxicology and Environmental Safety. 2018;155:117–124.
  • Sudha S, Vidhyalakshmi M, Pavithra K, et al. An automatic classification method for environment: Friendly waste segregation using deep learning2016 IEEE Technological Innovations in ICT for Agriculture and Rural Development (TIAR). IEEE; 2016. p. 65–70.
  • Akhter S, Mcdonald M A, Van Breugel P, et al. Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. Land Use Policy. 2017;60:223–232.
  • Ahmed SN. Physics and engineering of radiation detection. Malaysia: Academic Press; 2007.
  • Renaud O, Victoria-Feser MP. A robust coefficient of determination for regression. J Stat Plan Inference. 2010;140:1852–1862. doi: 10.1016/j.jspi.2010.01.008
  • Willmott CJ, Matsuura K. Advantages of the mean absolute error (mae) over the root mean square error (RMSE) in assessing average model performance. Climate Res. 2005;30:79–82. doi: 10.3354/cr030079
  • Botchkarev A. Performance metrics (error measures) in machine learning regression, forecasting and prognostics: Properties and typology. arXiv preprint arXiv:1809.03006. 2018.
  • De Myttenaere A, Golden B, Le Grand B, et al. Mean absolute percentage error for regression models. Neurocomputing. 2016;192:38–48. doi: 10.1016/j.neucom.2015.12.114
  • Wallach D, Goffinet B. Mean squared error of prediction as a criterion for evaluating and comparing system models. Ecol Modell. 1989;44:299–306. doi: 10.1016/0304-3800(89)90035-5
  • Ojha C, Goyal MK, Kumar S. Applying fuzzy logic and the point count system to select landfill sites. Environ Monit Assess. 2007;135:99–106. doi: 10.1007/s10661-007-9713-3
  • Majid M, Mir BA. Landfill site selection using GIS based multi criteria evaluation technique. A case study of srinagar city, India. Environ Chall. 2021;3:100031. doi: 10.1016/j.envc.2021.100031
  • Li Y, Huang G. Modeling municipal solid waste management system under uncertainty. J Air Waste Manage Assoc. 2010;60:439–453. doi: 10.3155/1047-3289.60.4.439

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.