131
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Use of environmental isotopes in leachate studies through multiple isotopic analysis – a review

, , ORCID Icon &
Pages 214-234 | Received 01 May 2023, Accepted 28 Jan 2024, Published online: 21 Feb 2024

References

  • Suthar S, Nema AK, Chabukdhara M, et al. Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. J Hazard Mater. 2009;171(1–3):1088–1095. doi:10.1016/j.jhazmat.2009.06.109
  • Verma AK, Prakash V, Saksena DN. Drinking water quality of Delhi, NCR and some areas of Uttar Pradesh in India. Asian J Exp Biol Sci. 2011;2(2):212–217.
  • Bhagwat A, Ojha CSP. Distributed mathematical model for simulating temperature profile in landfill. Waste Manage. 2023;167:64–73. doi:10.1016/j.wasman.2023.05.024
  • Tchobanoglous G, Kreith F. Handbook of solid waste management. McGraw-Hill Education; 2002.
  • Aziz SQ, Aziz SQ, Aziz HA, et al. Optimum process parameters for the treatment of landfill leachate using powdered activated carbon augmented sequencing batch reactor (SBR) technology. Sep Sci Technol. 2011;46(15):2348–2359. doi:10.1080/01496395.2011.595753
  • Bhagwat A, Kumar R, Ojha CSP, et al. Interaction of heavy metals in a mixed pollutant and their effect on phytoremediation process of Indian marigold. J Hazard Toxic Radioact Waste ASCE. 2022;27(1). doi:10.1061/(ASCE)HZ.2153-5515.0000731
  • Kjeldsen P, Barlaz MA, Rooker AP, et al. Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol. 2002;32(4):297–336.
  • Bhagwat A, Kumar R, Ojha CSP. Assessing efficiency and economic viability in treating leachates emanating from the municipal landfill site at Gazipur, India. Environ Sci Pollut Res. 2023;30. doi:10.1007/s11356-021-16724-y.
  • El-Fadel M, Findikakis AN, Leckie JO. Modeling leachate generation and transport in solid waste landfills. Environ Technol. 1997;18(7):669–686. doi:10.1080/09593331808616586
  • Sykes JF, Soyupak S, Farquhar GJ. Modeling of leachate organic migration and attenuation in groundwaters below sanitary landfills. Water Resour Res. 1982;18(1):135–145. doi:10.1029/WR018i001p00135
  • Negi P, Mor S, Ravindra K. Impact of landfill leachate on the groundwater quality in three cities of North India and health risk assessment. Environ Dev Sustain. 2020;22:1455–1474. doi:10.1007/s10668-018-0257-1
  • Andrei F, Barbieri M, Sappa G. Application of 2H and 18O isotopes for tracing municipal solid waste landfill contamination of groundwater: two Italian case histories. Water (Basel). 2021;13:1065, doi:10.3390/w13081065
  • Sappa G, Barbieri M, Andrei F. Isotope-based early-warning model for monitoring groundwater–leachate contamination phenomena: first quantitative assessments. Water (Basel). 2023;15:2646, doi:10.3390/w15142646
  • Srivastava SK, Mohiddin SK, Prakash D, et al. Impact of leachate percolation on groundwater quality near the Bandhwari Landfill Site Gurugram, India. J Geol Soc India. 2023;99:120–128. doi:10.1007/s12594-023-2274-4
  • Joshi R, Ahmed S. Status and challenges of municipal solid waste management in India: a review. Cogent Environ Sci. 2016;2(1):1139434. doi:10.1080/23311843.2016.1139434
  • Meents WF. Glacial-drift gas in Illinois: Illinois State Geological Survey, Dept of Natural Resources Circular. 1960;292:58.
  • Simpkins WW, Parkin TB. Hydrogeology and Redox Geochemistry of Methane in a late wisconsinan till and loess sequence in central Iowa. Water Resour Res. 1993;29:3643–3657.
  • Hackley KC, Liu CL, Coleman DD. Environmental isotope characteristics of landfill leachates and gases. Ground Water. 1996;34(5):827. doi:10.1111/j.1745-6584.1996.tb02077.x
  • Payne BR. Guidebook on nuclear techniques in hydrology. technical report series No. 91. Vienna: International Atomic Energy Agency; 1983.
  • Kumar B. Environmental isotopes. Encycl Snow Ice Glaciers. 2011: 261–262; doi:10.1007/978-90-481-2642-2_137
  • Nigro A, Sappa G, Barbieri M. Boron isotopes and rare earth elements in the groundwater of a landfill site. J Geochem Explor. 2018;190:200–206. doi:10.1016/j.gexplo.2018.02.019
  • Hoornweg D, Bhada-Tata P. (2012). What a waste: a global review of solid waste management.
  • Games LM, Hayes JM. Carbon isotopic study of the fate of landfill leachate in groundwater. J (Water Pollut Control Fed). 1977;49(4):668–677.
  • Wimmer B, Hrad M, Huber-Humer M, et al. Stable isotope signatures for characterising the biological stability of landfilled municipal solid waste. Waste Manage. 2013;33(10):2083–2090. doi:10.1016/j.wasman.2013.02.017
  • North JC, Frew RD, Peake BM. The use of carbon and nitrogen isotope ratios to identify landfill leachate contamination: Green Island Landfill, Dunedin, New Zealand. Environ Int. 2004;30(5):631–637. doi:10.1016/j.envint.2003.12.006
  • Lee KS, Ko KS, Kim EY. Application of stable isotopes and dissolved ions for monitoring landfill leachate contamination. Environ Geochem Health. 2019;42:1387–1399.
  • Baker A. Fluorescence tracing of diffuse landfill leachate contamination in rivers. Water, Air, Soil Pollut. 2005;163(1–4):229–244. doi:10.1007/s11270-005-0279-9
  • Conrad R. Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal. Org Geochem. 2005;36(5):739–752. doi:10.1016/j.orggeochem.2004.09.006
  • Mohammadzadeh H, Clark I. Bioattenuation in groundwater impacted by landfill leachate traced with δ13C. Groundwater. 2011;49(6):880–890. doi:10.1111/j.1745-6584.2010.00790.x
  • Skidmore M, Sharp M, Tranter M. Kinetic isotopic fractionation during carbonate dissolution in laboratory experiments: implications for detection of microbial CO2 signatures using δ13C-DIC. Geochim Cosmochim Acta. 2004;68(21):4309–4317. doi:10.1016/j.gca.2003.09.024
  • Zhang J, Quay PD, Wilbur DO. Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta. 1995;59(1):107–114. doi:10.1016/0016-7037(95)91550-D
  • Hélie JF, Hillaire-Marcel C, Rondeau B. Seasonal changes in the sources and fluxes of dissolved inorganic carbon through the St. Lawrence River—isotopic and chemical constraint. Chem Geol. 2002;186(1–2):117–138. doi:10.1016/S0009-2541(01)00417-X
  • Giesler R, Mörth CM, Karlsson J, et al. Spatiotemporal variations of pCO2 and δ13C-DIC in subarctic streams in northern Sweden. Global Biogeochem Cycles. 2013;27(1):176–186. doi:10.1002/gbc.20024
  • Das A, Krishnaswami S, Bhattacharya SK. Carbon isotope ratio of dissolved inorganic carbon (DIC) in rivers draining the Deccan Traps, India: sources of DIC and their magnitudes. Earth Planet Sci Lett. 2005;236(1–2):419–429. doi:10.1016/j.epsl.2005.05.009
  • Klaminder J, Grip H, Mörth CM, et al. Carbon mineralization and pyrite oxidation in groundwater: importance for silicate weathering in boreal forest soils and stream base-flow chemistry. Appl Geochem. 2011;26(3):319–325. doi:10.1016/j.apgeochem.2010.12.005
  • Shin WJ, Chung GS, Lee D, et al. Dissolved inorganic carbon export from carbonate and silicate catchments estimated from carbonate chemistry and δ13C DIC. Hydrol Earth Syst Sci Discuss. 2011;15(8):2551–2560.
  • Whiticar MJ, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochim Cosmochim Acta. 1986;50(5):693–709. doi:10.1016/0016-7037(86)90346-7
  • Mayer B, Boyer EW, Goodale C, et al. Sources of nitrate in rivers draining sixteen watersheds in the northeastern US: isotopic constraints. Biogeochemistry. 2002;57(1):171–197. doi:10.1023/A:1015744002496
  • Waldron S, Scott EM, Soulsby C. Stable isotope analysis reveals lower-order river dissolved inorganic carbon pools are highly dynamic. Env Sci Tech. 2007;41:6156–6162.
  • Finlay JC. Controls of streamwater dissolved inorganic carbon dynamics in a forested watershed. Biogeochemistry. 2003;62(3):231–252. doi:10.1023/A:1021183023963
  • McCallister SL, Del Giorgio PA. Direct measurement of the d13C signature of carbon respired by bacteria in lakes: linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnol Oceanogr. 2008;53(4):1204–1216. doi:10.4319/lo.2008.53.4.1204
  • Opsahl SP, Zepp RG. Photochemically-induced alteration of stable carbon isotope ratios (δ13C) in terrigenous dissolved organic carbon. Geophys Res Lett. 2001;28(12):2417–2420. doi:10.1029/2000GL012686
  • Vähätalo AV, Wetzel RG. Long-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration of 13C:12C mass ratio. Limnol Oceanogr. 2008;53(4):1387–1392. doi:10.4319/lo.2008.53.4.1387
  • Finlay JC. Patterns and controls of lotic algal stable carbon isotope ratios. Limnol Oceanogr. 2004;49(3):850–861. doi:10.4319/lo.2004.49.3.0850
  • Parker SR, Poulson SR, Gammons CH, et al. Biogeochemical controls on diel cycling of stable isotopes of dissolved O2 and dissolved inorganic carbon in the big hole river, Montana. Environ Sci Technol. 2005;39(18):7134–7140. doi:10.1021/es0505595
  • Parker SR, Poulson SR, Smith MG, et al. Temporal variability in the concentration and stable carbon isotope composition of dissolved inorganic and organic carbon in two Montana, USA rivers. Aquat Geochem. 2010;16(1):61–84. doi:10.1007/s10498-009-9068-1
  • Campeau A, Wallin MB, Giesler R, et al. Multiple sources and sinks of dissolved inorganic carbon across Swedish streams, refocusing the lens of stable C isotopes. Sci Rep. 2017;7(1):1–14. doi:10.1038/s41598-017-09049-9
  • Kendall C, Doctor DH, Young MB. (2014). Environmental isotope applications in hydrologic studies.
  • Schwarcz HP, Agyei EK, McMullen CC. Earth Planet Sci Lett. 1969;6:1–5. doi:10.1016/0012-821X(69)90084-3
  • Swihart GH, Moore PB, Callis EL. Geochim Cosmochim Acta. 1986;50:1297–1301. doi:10.1016/0016-7037(86)90413-8
  • Vengosh A, Chivas AR, McCulloch MT, et al. Geochim Cosmochim Acta. 1991;55:2591–2606. doi:10.1016/0016-7037(91)90375-F
  • Vengosh A, Starinsky A, Kolodny Y, et al. Boron isotope variations during fractional evaporation of sea water: new constraints on the marine vs. nonmarine debate. Geology. 1992;20:799–802. doi:10.1130/0091-7613(1992)020<0799:BIVDFE>2.3.CO;2
  • Barth S. Boron isotope variations in nature: a synthesis. Geol Rundsch. 1993;82(4):640–651. doi:10.1007/BF00191491
  • Xiao Y, Yin D, Liu W, et al. Boron isotope method for study of seawater intrusion. Sci China Ser E Technol Sci. 2001;44(1):62–71. doi:10.1007/BF02916791
  • Davidson GR, Bassett RL. Application of boron isotopes for identifying contaminants such as fly ash leachate in groundwater. Environ Sci Technol. 1993;27(1):172–176. doi:10.1021/es00038a020
  • Eisenhut S, Heumann KG. Identification of ground water contaminations by landfills using precise boron isotope ratio measurements with negative thermal ionization mass spectrometry. Fresenius’ J Anal Chem. 1997;359(4–5):375–377. doi:10.1007/s002160050590
  • Barth SR. Geochemical and boron, oxygen and hydrogen isotopic constraints on the origin of salinity in groundwaters from the crystalline basement of the Alpine Foreland. Appl Geochem. 2000;15(7):937–952. doi:10.1016/S0883-2927(99)00101-8
  • Hogan JF, Blum JD. Boron and lithium isotopes as groundwater tracers: a study at the Fresh Kills Landfill, Staten Island, New York, USA. Appl Geochem. 2003;18(4):615–627. doi:10.1016/S0883-2927(02)00153-1
  • Vengosh A, Heumann KG, Juraske S, et al. Boron isotope application for tracing sources of contamination in groundwater. Environ Sci Technol. 1994;28(11):1968–1974. doi:10.1021/es00060a030
  • Biswal S. Liquid biomedical waste management: an emerging concern for physicians. Muller J Med Sci Res. 2013;4(2):99. doi:10.4103/0975-9727.118238
  • Mastromatteo E, Sullivan F. Summary: international symposium on the health effects of boron and its compounds. Environ Health Perspect. 1994;102(suppl. 7):139–141. doi:10.1289/ehp.94102s7139
  • Aggarwal SK, You CF. A review on the determination of isotope ratios of boron with mass spectrometry. Mass Spectrom Rev. 2017;36(4):499–519. doi:10.1002/mas.21490
  • Moseman RF. Chemical disposition of boron in animals and humans. Environ Health Perspect. 1994;102(suppl. 7):113–117. doi:10.1289/ehp.94102s7113
  • Keren R, Mezuman U. Boron adsorption by clay minerals using a phenomenological Equation1. Clays Clay Miner. 1981;29(3):198–204. doi:10.1346/CCMN.1981.0290305
  • Goldstein SL, Jacobsen SB. Nd and Sr isotopic systematics of river water suspended material: implications for crustal evolution. Earth Planet Sci Lett. 1988;87:249. doi:10.1016/0012-821X(88)90013-1
  • Singh V, Mittal A. (2009, June). Toxicity analysis and public health aspects of municipal landfill leachate: a case study of Okhla Landfill, Delhi.
  • Bhalla B, Saini MS, Jha MK. Characterization of leachate from municipal solid waste (MSW) landfilling sites of Ludhiana, India: a comparative study. Int J Eng Res Appl. 2012;2(6):732–745.
  • Faure G, Powell JL. Strontium isotope geology. New York: SpringerVerlag; 1972; p 188.
  • Faure G. Principles of isotope geology. 2nd ed. United States: John Wiley & Sons; 1986; p 539.
  • Capo RC, Stewart BW, Chadwick OA. Strontium isotopes as tracers of ecosystem processes: theory and methods. Geoderma. 1998;82(1-3):197–225.
  • Dash E. J Geochim Cosmochim Acta. 1969;33:243.
  • DePaolo D. J Geology. 1986;14:103.
  • Vilomet JD, Angeletti B, Moustier S, et al. Application of strontium isotopes for tracing landfill leachate plumes in groundwater. Environ Sci Technol. 2001;35(23):4675–4679. doi:10.1021/es000169c
  • Burke WH, Denison RE, Hetherington EA, et al. Variation of seawater 87Sr/86Sr throughout Phanerozoic time. Geology. 1982;10(10):516–519.
  • IAEA. The Annual Report for 1983, International Atomic Energy Agency, GC(XXVIII)/713. 1984. https://www.iaea.org/sites/default/files/gc/gc28-713_en.pdf
  • Mook WG. Environmental isotopes in the hydrological cycle. Princ Appl IHP-V Tech Doc Hydrol. 2000;IV(39).
  • Gat JR. The isotopes of hydrogen and oxygen in precipitation. In: Fritz P, Fontes J Ch, editors. Handbook of Environmental Isotope Geochemistry. Amsterdam: Elsevier; 1980. p. 21–47.
  • Kazemi GA, Lehr JH, Perrochet P. Groundwater age. John Wiley and Sons; 2006.
  • Robinson HD, Gronow JR. Tritium levels in leachates and condensates from domestic wastes in landfill sites. Water Environ J. 1996;10(6):391–398. doi:10.1111/j.1747-6593.1996.tb00070.x
  • Mann WB, Unterweger MP, Coursey BM. Comments on the NBS tritiated-water standards and their use. Int J Appl Radiat Isot. 1982;33(5):383–386.
  • Varlam C, Stefanescu I, Varlam M, et al. Optimization of C-14 concentration measurement in aqueous samples using direct absorption method and liquid scintillation counting. Katowice, Poland: Advances in Liquid Scintillation Spectrometry Conference; 2005.
  • Lucas LL, Unterweger MP. Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol. 2000;105(4):541. doi:10.6028/jres.105.043
  • Tazioli A, Fronzi D, Mammoliti E. Tritium as a tracer of leachate contamination in groundwater: a brief review of tritium anomalies method. Hydrology. 2022;9:75, doi:10.3390/hydrology9050075
  • Fritz P, Matthess G, Brown RM. Deuterium and oxygen-18 as indicators of leachwater movement from a sanitary landfill. In: Interpretation of environmental isotope and hydrochemical data in groundwater hydrology. Vienna: IAEA; 1976. p. 131–142.
  • Egboka BCE, Cherry JA, Farvolden RN, et al. Migration of contaminants in groundwater at a landfill: a case study: 3. Tritium as an indicator of dispersion and recharge. J Hydrol. 1983;63(1-2):51–80.
  • Mutch Jr RD, Mahony JD. A study of tritium in municipal solid waste leachate and gas. Fusion Sci Technol. 2008;54(1):305–310. doi:10.13182/FST08-A1819
  • Lindsey BD, Jurgens BC, Belitz K. (2019). Tritium as an indicator of modern, mixed, and premodern groundwater age. Reston, VA: US Geological Survey.
  • Brkić Zˇ, Kuhta M, Hunjak T, et al. Regional isotopic signatures of groundwater in Croatia. Water (Basel). 2020;12:1983. doi:10.3390/w12071983
  • Tazioli A. Landfill investigation using tritium and isotopes as pollution tracers. Acquae Mundi. 2011;7:89–92.
  • Castañeda SS, Sucgang RJ, Almoneda RV, et al. Environmental isotopes and major ions for tracing leachate contamination from a municipal landfill in metro Manila, Philippines. J Environ Radioact. 2012;110:30–37. doi:10.1016/j.jenvrad.2012.01.022
  • Ramaroson V, Rakotomalala CU, Rajaobelison J, et al. Tritium as tracer of groundwater pollution extension: case study of Andralanitra landfill site, Antananarivo–Madagascar. Appl Water Sci. 2018;8(2):57. doi:10.1007/s13201-018-0695-9
  • Telloli C, Rizzo A, Salvi S, et al. Characterization of groundwater recharge through tritium measurements. Adv Geosci. 2022;57:21–36. doi:10.5194/adgeo-57-21-2022
  • Cartigny P, Busigny V. Nitrogen Isotopes. In: White W, editor. Encyclopedia of Geochemistry. Springer, Cham: Encyclopedia of Earth Sciences Series; 2018.
  • Vitvar T, Aggarwal PK, McDonnell JJ. A review of isotope applications in catchment hydrology. In: Aggarwal Pradeep K, Gat Joel R, Froehlich Klaus FO, editors. Isotopes in the water cycle: past, present and future of a developing science. Dordrecht: Springer; 2005. p. 151–169.
  • Hendry MJ, Wassenaar LI, Barbour SL, et al. Assessing the fate of explosives derived nitrate in mine waste rock dumps using the stable isotopes of oxygen and nitrogen. Sci Total Environ. 2018;640–641:127–137. doi:10.1016/j.scitotenv.2018.05.275
  • White J, Robinson J, Ren Q. Modelling the biochemical degradation of solid waste in landfills. Waste Manage. 2004;24(3):227–240. doi:10.1016/j.wasman.2003.11.009
  • Wang F, Smith DW, El-Din MG. Application of advanced oxidation methods for landfill leachate treatment–a review. J Environ Eng Sci. 2003;2(6):413–427. doi:10.1139/s03-058
  • EPA. Water Quality in 2017: an Indicators Report, Compiled by Wayne Trodd and Shane O’Boyle, Environmental Protection Agency; 2017. https://www.epa.ie/publications/monitoring--assessment/freshwater--marine/Water-Quality-in-2017---an-indicatorsreport.pdf.
  • Macko SA. Pollution studies using stable isotopes. In: Lajtha K, Michener R, editors. Stable isotopes in ecology and environmental science. Oxford, UK: Blackwell Scientific Pub; 1994. p. 45–62.
  • Nadelhoffer KJ. Nitrogen isotope studies in forest ecosystems. Stable Isot Ecol Environ Sci. 1994;19:22–44.
  • Hecnar SJ. Acute and chronic toxicity of ammonium nitrate fertilizer to amphibians from southern Ontario. Environ Toxicol Chem: Int J. 1995;14(12):2131–2137.
  • Moreau JW, Minard AM. Coupled nitrogen and oxygen isotope study of nitrate at a rural unlined landfill in Western Victoria, Australia. Am J Environ Sci. 2014;10(4):383–390. doi:10.3844/ajessp.2014.383.390
  • Tucker J, Sheats N, Giblin AE, et al. Using stable isotopes to trace sewage-derived material through Boston Harbor and Massachusetts Bay. Mar Environ Res. 1999;48(4-5):353–375. doi:10.1016/S0141-1136(99)00069-0
  • Pommen LW. The effect on water quality of explosives use in surface mining, volume 1: nitrogen sources, water quality, and prediction and management of impacts. British Columbia: Ministry of Environment; 1983.
  • Ferguson KD, Leask SM. The export of nutrients from surface coal mines. Environment Canada, Conservation and Protection, Environmental Protection, Pacific and Yukon Region; 1988.
  • Bailey BL, Smith LJ, Blowes DW, et al. The Diavik waste rock project: persistence of contaminants from blasting agents in waste rock effluent. Appl Geochem. 2013;36:256–270. doi:10.1016/j.apgeochem.2012.04.008
  • Mahmood FN. Nitrate in coal waste rock dumps, Elk Valley [Doctoral dissertation]. British Columbia, Canada: University of Saskatchewan; 2016.
  • Kellman L, Hillaire-Marcel C. Nitrate cycling in streams: using natural abundances of NO3–δ15N to measure in-situ denitrification. Biogeochemistry. 1998;43(3):273–292. doi:10.1023/A:1006036706522
  • Mariotti A, Germon JC, Hubert P, et al. Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil. 1981;62(3):413–430. doi:10.1007/BF02374138
  • Smith S, Harvey RL, & LeBlanc RW, et al. Importance of closely spaced vertical sampling in delineating chemical and microbiological gradients in groundwater studies. J Contam Hydrol. 1991;7(3):285–300. doi:10.1016/0169-7722(91)90032-V
  • Fukada T, Hiscock KM, Dennis PF, et al. A dual isotope approach to identify denitrification in groundwater at a river-bank infiltration site. Water Res. 2003;37(13):3070–3078. doi:10.1016/S0043-1354(03)00176-3
  • Boumaiza L, Chesnaux R, Drias T, et al. Identifying groundwater degradation sources in a Mediterranean coastal area experiencing significant multi-origin stresses. Sci Total Environ. 2020: 141203. doi:10.1016/j.scitotenv.2020.141203
  • Vilomet JD, Veron A, Ambrosi JP, et al. Isotopic tracing of landfill leachates and pollutant lead mobility in soil and groundwater. Environ Sci Technol. 2003;37(20):4586–4591. doi:10.1021/es010245r
  • Doe BR. Lead isotopes (Vol. 3). California: Springer Science & Business Media; 2012.
  • Attendorn HG, Bowen RNC. Uranium-thorium-lead dating. In: Radioactive and stable isotope geology. Dordrecht: Springer; 1997. p. 85–130.
  • Kónya J, Nagy NM. Nuclear and radiochemistry. Elsevier; 2018.
  • Flegal AR, Smith DR. Measurements of environmental lead contamination and human exposure. Rev Environ Contam Toxicol. 1995;143:1–45.
  • Novak M, Pacherova P, Erbanova L, et al. Using S and Pb isotope ratios to trace leaching of toxic substances from an acid-impacted industrial-waste landfill (Pozdatky, Czech Republic). J Hazard Mater. 2012;235–236:54–61. doi:10.1016/j.jhazmat.2012.06.018
  • Siegel DI, Bickford ME, Orrell SE. The use of strontium and lead isotopes to identify sources of water beneath the Fresh Kills landfill, Staten Island, New York, USA. Appl Geochem. 2000;15(4):493–500. doi:10.1016/S0883-2927(99)00063-3
  • Norrström AC, Knutsson G. Stable lead isotopes as tracers of groundwater pollution in the water supply for a small village. Environ Earth Sci. 2012;67:1085–1095. doi:10.1007/s12665-012-1553-y
  • Craig H. Isotopic variations in meteoric waters. Science. 1961;133:1702–1703.
  • Clark ID, Fritz P. Environmental isotopes in hydrogeology. Boca Raton: CRC Press; 1997.
  • Hoefs J. Stable isotope geochemistry. Vol. 201. Berlin: Springer-Verlag; 1973, p 102.
  • Humprey JD. Stable isotopes of hydrogen as an environmental indicator for landfill leachate. Proceedings of Denver Annual Meeting; 2004, November, pp. 169e175.
  • North JC, Frew RD, Van Hale R. Can stable isotopes be used to monitor landfill leachate impact on surface waters? J Geochem Explor. 2006;88(1-3):49–53. doi:10.1016/j.gexplo.2005.08.003
  • Pujiindiyati ER. Application of deuterium and oxygen-18 to trace leachate movement in Bantar Gebang Sanitary Landfill. Atom Indones. 2011;37(2):76–82. doi:10.17146/aij.2011.66
  • North JC, Frew RD, Van Hale R. Can stable isotopes be used to monitor landfill leachate impact on surface waters?. Journal of Geochemical Exploration. 2006;88(1-3):49–53.
  • Morasch B, Richnow HH, Schink B, et al. Carbon and hydrogen stable isotope fractionation during aerobic bacterial degradation of aromatic hydrocarbons. Appl Environ Microbiol. 2002;68(10):5191–5194. doi:10.1128/AEM.68.10.5191-5194.2002
  • Wang H, Zhang Q. Research advances in identifying sulfate contamination sources of water environment by using stable isotopes. Int J Environ Res Public Health. 2019;16(11):1914. doi:10.3390/ijerph16111914
  • Huang H, Liu M, Wang J, et al. Sources identification of nitrogen using major ions and isotopic tracers in Shenyang, China. Geofluids. 2018;2018:1–11.
  • Pujiindiyati ER, Sidauruk P. Study of leachate contamination in Bantar Gebang landfill to its shallow groundwater using natural isotope tracers of 18 O, 2 H and 3 H. Atom Indones. 2015;41(1):31–39. doi:10.17146/aij.2015.353
  • Hendrya MJ. Do isotopes have a place in ground-water studies? Groundwater. 1988;26(4):410–415. doi:10.1111/j.1745-6584.1988.tb00406.x
  • Zhang D, Li XD, Zhao ZQ, et al. Using dual isotopic data to track the sources and behaviors of dissolved sulfate in the western North China plain. Appl Geochem. 2015;52:43–56. doi:10.1016/j.apgeochem.2014.11.011
  • Cortecci G, Dinelli E, Bencini A, et al. Natural and anthropogenic SO4 sources in the Arno river catchment, northern Tuscany, Italy: a chemical and isotopic reconnaissance. Appl Geochem. 2002;17(2):79–92. doi:10.1016/S0883-2927(01)00100-7
  • Ulanovskii ML, Miroshnichenko DV. Sulfur in coal and its influence on the quality and consumption of coke in the blast furnace. Coke Chem. 2008;51(2):51–56.
  • Hong Y, Zhang H, Zhu Y. Sulfur isotopic characteristics of coal in China and sulfur isotopic fractionation during coal-burning process. Chin J Geochem. 1993;12(1):51–59. doi:10.1007/BF02869045
  • Lefticariu L, Behum PT, Bender KS, et al. Sulfur isotope fractionation as an indicator of biogeochemical processes in an AMD passive bioremediation system. Minerals. 2017;7(3):41. doi:10.3390/min7030041
  • Wolkersdorfer C, Nordstrom DK, Beckie RD, et al. Guidance for the integrated use of hydrological, geochemical, and isotopic tools in mining operations. Mine Water Environ. 2020;39(2):204–228.
  • Mohapatra I, Das SC, Samantaray S. Health impact on women using solid cooking fuels in rural area of Cuttack district. Odisha. J Family Med Prim Care. 2018;7(1):11.
  • Jakóbczyk-Karpierz S, Ślósarczyk K. Isotopic signature of anthropogenic sources of groundwater contamination with sulfate and its application to groundwater in a heavily urbanized and industrialized area (Upper Silesia, Poland). J Hydrol. 2022;612:128255. doi:10.1016/j.jhydrol.2022.128255
  • Gammons CH, Duaime TE, Parker SR, et al. Geochemistry and stable isotope investigation of acid mine drainage associated with abandoned coal mines in central Montana, USA. Chem Geol. 2010;269(1–2):100–112. doi:10.1016/j.chemgeo.2009.05.026
  • Migaszewski ZM, Gałuszka A, Dołęgowska S. Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (south-central Poland). Appl Geochem. 2018;95:45–56. doi:10.1016/j.apgeochem.2018.05.015
  • Aharon P, Fu B. Sulfur and oxygen isotopes of coeval sulfate–sulfide in pore fluids of cold seep sediments with sharp redox gradients. Chem Geol. 2003;195(1–4):201–218. doi:10.1016/S0009-2541(02)00395-9
  • Antler G, Turchyn AV, Rennie V, et al. Coupled sulfur and oxygen isotope insight into bacterial sulfate reduction in the natural environment. Geochim Cosmochim Acta. 2013;118:98–117. doi:10.1016/j.gca.2013.05.005
  • Zhang D, Liu C. A preliminary study on sulfate reduction bacteria behaviors in groundwater by sulfur and carbon isotopes: a case study in Jiaozuo City, China. Ecotoxicol. 2014;23:10.
  • Bachinski DJ. Bond strength and sulfur isotopic fractionation in coexisting sulfides. Econ Geol. 1969;64(1):56–65. doi:10.2113/gsecongeo.64.1.56
  • Long Y, Fang Y, Shen D, et al. Hydrogen sulfide (H2S) emission control by aerobic sulfate reduction in landfill. Sci Rep. 2016;6:38103. doi:10.1038/srep38103
  • Tomascak PB, Magna T, Dohmen R. Advances in lithium isotope geochemistry. Berlin: Springer; 2016. p. 119-146.
  • Wedepohl KH, Correns CW, Shaw DM, et al. Handbook of geochemistry. Berlin: Springer; 1969.
  • Bassett RL, Buszka PM, Davidson GR, et al. Identification of groundwater solute sources using boron isotopic composition. Environ Sci Technol. 1995;29(12):2915–2922. doi:10.1021/es00012a005
  • Komor SC. Boron contents and isotopic compositions of hog manure, selected fertilizers, and water in Minnesota. J Environ Qual. 1997;26(5):1212–1222. doi:10.2134/jeq1997.00472425002600050004x
  • Choi HB, Ryu JS, Shin WJ, et al. The impact of anthropogenic inputs on lithium content in river and tap water. Nat Commun. 2019;10(1):1–7. doi:10.1038/s41467-018-07882-8
  • Randell H. The short-term impacts of development-induced displacement on wealth and subjective well-being in the Brazilian Amazon. World Dev. 2016;87:385–400.
  • Ji TT, Jiang XW, Gou LF, et al. Behaviors of lithium and its isotopes in groundwater with different concentrations of dissolved CO2. Geochim Cosmochim Acta. 2022;326:313–327. doi:10.1016/j.gca.2022.03.038
  • Négrel P, Millot R, Brenot A, et al. Lithium isotopes as tracers of groundwater circulation in a peat land. Chem Geol. 2010;276(1–2):119–127. doi:10.1016/j.chemgeo.2010.06.008
  • Qi H, Ma C, He Z, et al. Lithium and its isotopes as tracers of groundwater salinization: a study in the southern coastal plain of Laizhou Bay, China. Sci Total Environ. 2019;650:878–890. doi:10.1016/j.scitotenv.2018.09.122
  • Manaka T, Araoka D, Yoshimura T, et al. Downstream and seasonal changes of lithium isotope ratios in the Ganges–Brahmaputra river system. Geochem Geophys Geosyst. 2017;18(8):3003–3015. doi:10.1002/2016GC006738
  • Kszos LA, Stewart AJ. Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotoxicology. 2003;12(5):439–447. doi:10.1023/A:1026112507664
  • Marschner H. Mineral Nutrition of Higher Plants. London: Academic Press; 1986.
  • Gardiner J. The chemistry of cadmium in natural water—II. The adsorption of cadmium on river muds and naturally occurring solids. Water Res. 1974;8(3):157–164. doi:10.1016/0043-1354(74)90038-4
  • WHO. Cadmium. Geneva: World Health Organization (Environmental Health Criteria 134); 1992.
  • OECD. Risk reduction monograph no. 5, Cadmium background and national experience with reducing risk, OECD environment monograph series no. 104; 1994. https://one.oecd.org/document/OCDE/GD(94)97/en/pdf.
  • Elinder Carl-G, Järup L. Cadmium exposure and health risks: Recent findings. Ambio. 1996;25(5):370–373.
  • Madala S, Nadavala SK, Vudagandla S, et al. Equilibrium, kineticsand thermodynamics of cadmium (II) biosorption on to composite chitosan biosorbent. Arab J Chem. 2013;10:1883–1893.
  • Salmanzadeh M, Hartland A, Stirling CH, et al. Isotope tracing of long-term cadmium fluxes in an agricultural soil. Environ Sci Technol. 2017;51:7369–7377.
  • Rahmi L. Preparation of chitosan composite film reinforcedwith cellulose isolated from oil palm empty fruit bunch and application in cadmium ionsremoval from aqueous solutions. Carbohyd Polym. 2017;170:226–233.
  • Fouskas F, Ma L, Engle MA, et al. Cadmium isotopefractionation during coal combustion: Insights from two US coal-fired power plants. Appl Geochem. 2018;96:100–112.
  • Pamela GT. (2008). Cadmium Toxicity. Agency for Toxic Substances and Disease Registry Cadmium Toxicity Case Studies in Environmental Medicine (CSEM). The HTML version http://www.atsdr.cdc.gov/csem/cadmium/.
  • Zhong Q, Zhou Y, Tsang DC, et al. Cadmium isotopes as tracers in environmental studies: a review. Sci Total Environ. 2020;736:139585. doi:10.1016/j.scitotenv.2020.139585
  • Rehkämper M, Wombacher F, Horner TJ, et al. (2012). Natural and anthropogenic Cd isotope variations. In: Baskaran M, editor. Handbook of environmental isotope geochemistry: advances in isotope geochemistry. Berlin, Heidelberg: Springer; 2012.
  • Abouchami W, Galer SJ, Horner TJ, et al. A common reference material for cadmium isotope studies-NIST SRM 3108. Geostand Geoanal Res. 2013;37(1):5–17.
  • Schmitt AD, Galer SJ. High-precision cadmium stable isotope measurements by double spike thermal ionisation mass spectrometry. J Anal At Spectrom. 2009;24(8):1079–1088.
  • Shiel AE, Weis D, Orians KJ. Evaluation of zinc, cadmium and lead isotope fractionation during smelting and refining. Sci Total Environ. 2010;408(11):2357–2368.
  • Zhu C, Wen H, Zhang Y. Cadmium and sulfur isotopic compositions of the Tianbaoshan Zn-Pb-Cd deposit. Ore Geol Rev. 2016;76:152–162.
  • Wen H, Zhu C, Zhang Y, et al. Zn/Cd ratios and cadmium isotope evidence for the classification of lead-zinc deposits. Sci Rep. 2016;6(1), 25273.
  • Chrastný V, Čadková E, Vaněk A, et al. Cadmium isotope fractionation within the soil profile complicates source identification in relation to Pb-Zn mining and smelting processes. Chem Geol. 2015;405:1–9.
  • Martinková E, Chrastný V, Francová M, et al. Cadmium isotope fractionation of materials derived from various industrial processes. J Hazard Mater. 2016;302:114–119.
  • Yang WJ, Ding KB, Zhang P, et al. Cadmium stable isotope variation in a mountain area impacted by acid mine drainage. Sci Total Environ. 2019;646:696–703.
  • Cloquet C, Carignan J, Libourel G, et al. Tracing source pollution in soils using cadmium and lead isotopes. Environ Sci Technol Lett. 2006;40:2525–2530.
  • Abasiyan SMA, Tofighi H. Functions of natural organic matter in changing environment. Netherlands: Springer; 2013. p. 665–668.
  • Lane ES, Semeniuk DM, Strzepek RF, et al. Effects of iron limitation on intracellular cadmium of cultured phytoplankton: implications for surface dissolved cadmium to phosphate ratios. Mar Chem. 2009;115(3-4):155–162.
  • Scott SR, Smith KE, Dahman C, et al. Cd isotope fractionation during tobacco combustion produces isotopic variation outside the range measured in dietary sources. Sci Total Environ. 2019;688:600–608.
  • Wombacher F, Rehkämper M, Mezger K, et al. Stable isotope compositions of cadmium in geological materials and meteorites determined by multiple-collector ICPMS. Geochim Cosmochim Acta. 2003;67(23):4639–4654.
  • Weiss DJ, Rehkdmper M, Schoenberg R, et al. Application of nontraditional stable-isotope systems to the study of sources and fate of metals in the environment. Environ Sci Technol. 2008;42(3):655–664.
  • Tan D, Zhu JM, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS. J Anal At Spectrom. 2020;35(4):713–727.
  • Park SD, Kim JG, Kim WH, et al. Distribution of tritium in the leachates and methane gas condensates from municipal waste landfills in Korea. Water Environ J. 2005;19(2):91–99. doi:10.1111/j.1747-6593.2005.tb00556.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.