77
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Separation and removal of oil from water/wastewater in the oil industry: a review

, , , ORCID Icon, , & ORCID Icon show all
Pages 325-343 | Received 28 Aug 2023, Accepted 07 Apr 2024, Published online: 24 Apr 2024

References

  • Osman AI, Mehta N, Elgarahy AM, et al. Hydrogen production, storage, utilisation and environmental impacts: a review. Environ Chem Lett. 2022: 1–36.
  • Varjani S, Mishra B, Yadavalli R, et al. Petroleum waste biorefinery: a way towards circular economy. In: Waste biorefinery. Thallada Bhaskar, Sunita Varjani, Ashok Pandey, Eldon R. Rene, Netherlands, Elsevier; 2021. p. 375–389.
  • Srivastava RK, Shetti NP, Reddy KR, et al. Biofuels, biodiesel and biohydrogen production using bioprocesses. A review. Environ Chem Lett. 2020;18:1049–1072. doi:10.1007/s10311-020-00999-7
  • Bijani M, Khamehchi E. Optimization and treatment of wastewater of crude oil desalting unit and prediction of scale formation. Environ Sci Pollut Res. 2019;26:25621–25640. doi:10.1007/s11356-019-05632-x
  • Mohammadi L, Rahdar A, Bazrafshan E, et al. Petroleum hydrocarbon removal from wastewaters: a review. Processes. 2020;8:447. doi:10.3390/pr8040447
  • Pintor AMA, Vilar VJP, Botelho CMS, et al. Oil and grease removal from wastewaters: sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chem Eng J. 2016;297:229–255. doi:10.1016/j.cej.2016.03.121
  • Rodríguez-Restrepo YA, Orrego CE. Immobilization of enzymes and cells on lignocellulosic materials. Environ Chem Lett. 2020;18:787–806. doi:10.1007/s10311-020-00988-w
  • Koul B, Yakoob M, Shah MP. Agricultural waste management strategies for environmental sustainability. Environ Res. 2022;206:112285. doi:10.1016/j.envres.2021.112285
  • Pinheiro CT, Quina MJ, Gando-Ferreira LM. Management of waste lubricant oil in Europe: a circular economy approach. Crit Rev Environ Sci Technol. 2021;51:2015–2050. doi:10.1080/10643389.2020.1771887
  • Zhong C, Nesbø CL, von Gunten K, et al. Complex impacts of hydraulic fracturing return fluids on soil microbial community respiration, structure and functional potentials. Environ Microbiol. 2022;24:4108–4123. doi:10.1111/1462-2920.16009
  • Chen SS, Sun Y, Tsang DCW, et al. Potential impact of flowback water from hydraulic fracturing on agricultural soil quality: metal/metalloid bioaccessibility, Microtox bioassay, and enzyme activities. Sci Total Environ. 2017;579:1419–1426. doi:10.1016/j.scitotenv.2016.11.141
  • Sakhile K, Sarkar JP, Gupta P, et al. Elimination of contaminants from petroleum wastewater by inverse fluidization technique, In: AIP conference proceedings. AIP Publishing; 2023.
  • Cheah WY, Siti-Dina RP, Leng STK, et al. Circular bioeconomy in palm oil industry: current practices and future perspectives. Environ Technol Innov. 2023;30:103050.
  • Shelare SD, Belkhode PN, Nikam KC, et al. Biofuels for a sustainable future: examining the role of nano-additives, economics, policy, internet of things, artificial intelligence and machine learning technology in biodiesel production. Energy. 2023;128874.
  • Oshinowo LM, Choi YC, Ahmed EA, et al. Separation processes for sustainable produced water treatment and management. In: Sustain Sep Eng Mater Tech Process Dev. 2022. p. 105–154.
  • Stewart M, Arnold K. Produced water treatment field manual. Texus: Gulf Professional Publishing; 2011.
  • Guerin TF. Heavy equipment maintenance wastes and environmental management in the mining industry. J Environ Manage. 2002;66:185–199. doi:10.1006/jema.2002.0583
  • Salem F, Thiemann T. Produced water from oil and gas exploration—problems, solutions and opportunities. J Water Resour Prot. 2022;14:142–185. doi:10.4236/jwarp.2022.142009
  • Khosravi A, Abdollahi F, Abbasi M, et al. Oil field produced water: issues and possible solutions. In: Joshi S, Jadhawar P, and Kumar A, editors. Challenges and recent advances in sustainable oil and gas recovery and transportation. Elsevier; 2023. p. 259–282.
  • Pal D, Sen S. In-depth coverage of petroleum waste sources, characteristics, environmental impact, and sustainable remediation process. In: Behera ID, Das AP, editors. Impact of petroleum waste on environmental pollution and its sustainable management through circular economy. New York city: Springer; 2024. p. 1–38.
  • Pichtel J. Oil and gas production wastewater: soil contamination and pollution prevention. Appl Environ Soil Sci. 2016;2016:1–24. doi:10.1155/2016/2707989
  • Bacosa HP, Ancla SMB, Arcadio CGLA, et al. From surface water to the deep sea: a review on factors affecting the biodegradation of spilled oil in marine environment. J Mar Sci Eng. 2022;10:426. doi:10.3390/jmse10030426
  • Bakke T, Klungsøyr J, Sanni S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar Environ Res. 2013;92:154–169. doi:10.1016/j.marenvres.2013.09.012
  • Babuji P, Thirumalaisamy S, Duraisamy K, et al. Human health risks due to exposure to water pollution: a review. Water. 2023;15:2532. doi:10.3390/w15142532
  • Andrews N, Bennett NJ, Le Billon P, et al. Oil, fisheries and coastal communities: a review of impacts on the environment, livelihoods, space and governance. Energy Res Soc Sci. 2021;75:102009. doi:10.1016/j.erss.2021.102009
  • Etiope G. Natural gas seepage, earth’s hydrocarb degassing. 2015: 199.
  • Akhtar N, Syakir Ishak MI, Bhawani SA, et al. Various natural and anthropogenic factors responsible for water quality degradation: a review. Water. 2021;13:2660. doi:10.3390/w13192660
  • Jukić A. Petroleum refining and petrochemical processes. Nat Gas Compos Classif Process. 2013;16:1–47.
  • Kuppusamy S, Maddela NR, Megharaj M, et al. An overview of total petroleum hydrocarbons. Total Pet Hydrocarb Environ Fate, Toxicity, Remediat. 2020: 1–27.
  • Shaah MAH, Hossain MS, Allafi FAS, et al. A review on non-edible oil as a potential feedstock for biodiesel: physicochemical properties and production technologies. RSC Adv. 2021;11:25018–25037. doi:10.1039/D1RA04311K
  • Das P, Manna S, Pandey JK. Advances in oil-water separation: a complete guide for physical, chemical, and biochemical processes. Netherlands: Elsevier. 2022.
  • Elliott DC, Hart TR, Neuenschwander GG, et al. Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products. Environ Prog Sustain Energy An Off Publ Am Inst Chem Eng. 2009;28:441–449. doi:10.1002/ep.10384
  • Leong TSH, Wooster TJ, Kentish SE, et al. Minimising oil droplet size using ultrasonic emulsification. Ultrason Sonochem. 2009;16:721–727. doi:10.1016/j.ultsonch.2009.02.008
  • Sousa AM, Pereira MJ, Matos HA. Oil-in-water and water-in-oil emulsions formation and demulsification. J Pet Sci Eng. 2022;210:110041. doi:10.1016/j.petrol.2021.110041
  • Wang Z, An C, Lee K, et al. Factors influencing the fate of oil spilled on shorelines: a review. Environ Chem Lett. 2021;19:1611–1628. doi:10.1007/s10311-020-01097-4
  • Bera B, Khazal R, Schroën K. Coalescence dynamics in oil-in-water emulsions at elevated temperatures. Sci Rep. 2021;11:10990. doi:10.1038/s41598-021-89919-5
  • Barradas TN, de Holanda e Silva KG. Nanoemulsions of essential oils to improve solubility, stability and permeability: a review. Environ Chem Lett. 2021;19:1153–1171. doi:10.1007/s10311-020-01142-2
  • Mullins OC, Betancourt SS, Cribbs ME, et al. The colloidal structure of crude oil and the structure of oil reservoirs. Energy Fuels. 2007;21:2785–2794. doi:10.1021/ef0700883
  • Ossai IC, Ahmed A, Hassan A, et al. Remediation of soil and water contaminated with petroleum hydrocarbon: a review. Environ Technol Innov. 2020;17:100526. doi:10.1016/j.eti.2019.100526
  • Jafarinejad S, Jiang SC. Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters. J Environ Chem Eng. 2019;7:103326. doi:10.1016/j.jece.2019.103326
  • Phengsaart T, Srichonphaisan P, Kertbundit C, et al. Conventional and recent advances in gravity separation technologies for coal cleaning: a systematic and critical review. Heliyon. 2023;9:e13083. doi:10.1016/j.heliyon.2023.e13083
  • Sutar RS, Wu X, Latthe SS, et al. Efficient separation of oil-water emulsions: competent design of superwetting materials for practical applications. J Environ Chem Eng. 2023;11:111299. doi:10.1016/j.jece.2023.111299
  • Frising T, Noïk C, Dalmazzone C. The liquid/liquid sedimentation process: from droplet coalescence to technologically enhanced water/oil emulsion gravity separators: a review. J Dispers Sci Technol. 2006;27:1035–1057. doi:10.1080/01932690600767098
  • Parker HD, Pitt GD, Parker HD, et al. A technical review of the principles of oil-water separation. Pollut Control Instrum Oil Effluents. 1987: 175–194. doi:10.1007/978-94-009-3233-3_7
  • An oil retrieval technique using magnetic tube type oil skimmer, n.d. https://www.researchgate.net/publication/361209008_An_Oil_Retrieval_Technique_using_Magnetic_Tube_Type_Oil_Skimmer.
  • Elhemmali A, Anwar S, Zhang Y, et al. A comparison of oil-water separation by gravity and electrolysis separation process. Sep Sci Technol. 2021;56:359–373. doi:10.1080/01496395.2020.1713812
  • Abidli A, Huang Y, Cherukupally P, et al. Novel separator skimmer for oil spill cleanup and oily wastewater treatment: from conceptual system design to the first pilot-scale prototype development. Environ Technol Innov. 2020;18:100598. doi:10.1016/j.eti.2019.100598
  • Dhaka A, Chattopadhyay P. A review on physical remediation techniques for treatment of marine oil spills. J Environ Manage. 2021;288:112428. doi:10.1016/j.jenvman.2021.112428
  • Sayed K, Baloo L, Sharma NK. Bioremediation of total petroleum hydrocarbons (TPH) by bioaugmentation and biostimulation in water with floating oil spill containment booms as bioreactor basin. Int J Environ Res Public Health. 2021;18:2226. doi:10.3390/ijerph18052226
  • Đorđević M, Šabalja Đ, Mohović Đ, et al. Optimisation methodology for skimmer device selection for removal of the marine Oil pollution. J Mar Sci Eng. 2022;10. doi:10.3390/jmse10070925
  • Hoang AT, Nguyen XP, Duong XQ, et al. Sorbent-based devices for the removal of spilled oil from water: a review. Environ Sci Pollut Res. 2021;28:28876–28910. doi:10.1007/s11356-021-13775-z
  • Mir S, Naderifar A, morad Rahidi A, et al. Recent advances in oil/water separation using nanomaterial-based filtration methods for crude oil processing-a review. J Pet Sci Eng. 2022;215:110617. doi:10.1016/j.petrol.2022.110617
  • Sabir S. Approach of cost-effective adsorbents for oil removal from oily water. Crit Rev Environ Sci Technol. 2015;45:1916–1945. doi:10.1080/10643389.2014.1001143
  • Pund R, Mhaske R, Rahane S, et al. Review on analysis of oil skimmer. IRJET. 2018;5:680–681.
  • Fakhru’l-Razi A, Pendashteh A, Abdullah LC, et al. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170:530–551. doi:10.1016/j.jhazmat.2009.05.044
  • Levaggi R, Montefiori M. Horizontal and vertical cream skimming in the health care market; 2003.
  • Martin GR, Mcneil R, Rojas LM. Vision and the foraging technique of skimmers (Rynchopidae). Ibis (Lond 1859). 2007;149:750–757. doi:10.1111/j.1474-919X.2007.00706.x
  • Abidli A, Huang Y, Park CB. In situ oils/organic solvents cleanup and recovery using advanced oil-water separation system. Chemosphere. 2020;260:127586. doi:10.1016/j.chemosphere.2020.127586
  • Mikhak Y, Torabi MMA, Fouladitajar A. Chapter 3 - refinery and petrochemical wastewater treatment. In: Galanakis CM, Agrafioti E, editors. Netherlands: Elsevier; 2019. p. 55–91. doi:10.1016/B978-0-12-816170-8.00003-X
  • API Oil water Separators, n.d.
  • Kosyanchuk V, Yakunchikov A. Aeroseparation of gas mixture during supersonic outflow in vacuumed reservoir with skimmer. Vacuum. 2022;199:110959. doi:10.1016/j.vacuum.2022.110959
  • Santo CE, Vilar VJP, Botelho CMS, et al. Optimization of coagulation–flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chem Eng J. 2012;183:117–123. doi:10.1016/j.cej.2011.12.041
  • Odiete WE, Agunwamba JC. Novel design methods for conventional oil-water separators. Heliyon. 2019;5:e01620. doi:10.1016/j.heliyon.2019.e01620
  • Yue Y, Hara M, Mukai Y. Continuous coalescence and separation of oil-in-water emulsion via polyacrylonitrile nanofibrous membrane coalescer. Colloids Surfaces A Physicochem Eng Asp. 2023;657:130626. doi:10.1016/j.colsurfa.2022.130626
  • Xu J, Hrnjak P. Coalescing oil separator for compressors. Int J Refrig. 2019;106:41–53. doi:10.1016/j.ijrefrig.2019.06.027
  • Amakiri KT, Canon AR, Molinari M, et al. Review of oilfield produced water treatment technologies. Chemosphere. 2022;298:134064. doi:10.1016/j.chemosphere.2022.134064
  • de Oliveira MCK, Miranda LRO, De Carvalho ABM, et al. Viscosity of water-in-oil emulsions from different American petroleum institute gravity Brazilian crude oils. Energy Fuels. 2018;32:2749–2759. doi:10.1021/acs.energyfuels.7b02808
  • Saxena A, Tripathi BP, Kumar M, et al. Membrane-based techniques for the separation and purification of proteins: an overview. Adv Colloid Interface Sci. 2009;145:1–22. doi:10.1016/j.cis.2008.07.004
  • Rasouli S, Rezaei N, Hamedi H, et al. Superhydrophobic and superoleophilic membranes for oil-water separation application: a comprehensive review. Mater Des. 2021;204:109599. doi:10.1016/j.matdes.2021.109599
  • Behin J, Bahrami S. Modeling an industrial dissolved air flotation tank used for separating oil from wastewater. Chem Eng Process Process Intensif. 2012;59:1–8. doi:10.1016/j.cep.2012.05.004
  • Semenova SI. Polymer membranes for hydrocarbon separation and removal. J Memb Sci. 2004;231:189–207. doi:10.1016/j.memsci.2003.11.022
  • Maguire-Boyle SJ, Barron AR. A new functionalization strategy for oil/water separation membranes. J Memb Sci. 2011;382:107–115. doi:10.1016/j.memsci.2011.07.046
  • Maguire-Boyle SJ, Huseman JE, Ainscough TJ, et al. Superhydrophilic functionalization of microfiltration ceramic membranes enables separation of hydrocarbons from frac and produced water, n.d. doi:10.1038/s41598-017-12499-w
  • Hadidi M, Zydney AL. Fouling behavior of zwitterionic membranes: impact of electrostatic and hydrophobic interactions. J Memb Sci. 2014;452:97–103. doi:10.1016/j.memsci.2013.09.062
  • Ghimire NP. Wastewater treatment by phytoremediation in constructed wetland a comparative study using Chrysopogon zizanioides and Phragmites karka, 2015.
  • Miranda MA, Ghosh A, Mahmodi G, et al. Treatment and recovery of high-value elements from produced water. Water. 2022;14:880. doi:10.3390/w14060880
  • Penney WR. Chapter 11 - Gas–liquid dispersions. In: Mauri E, Zhang ZJ, editors. Netherlands: Elsevier; 2021. p. 247–275. doi:10.1016/B978-0-12-818975-7.00001-4
  • Yasin M, Jang N, Lee M, et al. Bioreactors, gas delivery systems and supporting technologies for microbial synthesis gas conversion process. Bioresour Technol Reports. 2019;7:100207. doi:10.1016/j.biteb.2019.100207
  • Azam M, Liu L, Ahmad N. Impact of institutional quality on environment and energy consumption: evidence from developing world. Environ Dev Sustain. 2021;23:1646–1667. doi:10.1007/s10668-020-00644-x
  • Jamaly S, Giwa A, Hasan SW. Recent improvements in oily wastewater treatment: progress, challenges, and future opportunities. J Environ Sci. 2015;37:15–30. doi:10.1016/j.jes.2015.04.011
  • Adham S, Hussain A, Minier-Matar J, et al. Membrane applications and opportunities for water management in the oil & gas industry. Desalination. 2018;440:2–17. doi:10.1016/j.desal.2018.01.030
  • Eldos HI, Khan M, Zouari N, et al. Characterization and assessment of process water from oil and gas production: a case study of process wastewater in Qatar. Case Stud Chem Environ Eng. 2022;6:100210. doi:10.1016/j.cscee.2022.100210
  • Saeed MU, Hussain N, Sumrin A, et al. Microbial bioremediation strategies with wastewater treatment potentialities – A review. Sci Total Environ. 2022;818:151754. doi:10.1016/j.scitotenv.2021.151754
  • Wei X, Zhang S, Han Y, et al. Treatment of petrochemical wastewater and produced water from oil and gas. Water Environ Res. 2019;91:1025–1033. doi:10.1002/wer.1172
  • Abuhasel K, Kchaou M, Alquraish M, et al. Oily wastewater treatment: overview of conventional and modern methods, challenges, and future opportunities. Water. 2021;13; doi:10.3390/w13070980
  • Marathe D, Singh A, Raghunathan K, et al. Current available treatment technologies for saline wastewater and land-based treatment as an emerging environment-friendly technology: a review. Water Environ Res. 2021;93:2461–2504. doi:10.1002/wer.1633
  • Sanghamitra P, Mazumder D, Mukherjee S. Treatment of wastewater containing oil and grease by biological method- a review. J Environ Sci Heal Part A. 2021;56:394–412. doi:10.1080/10934529.2021.1884468
  • Su X, Wang Y, Xue B, et al. Impact of resuscitation promoting factor (Rpf) in membrane bioreactor treating high-saline phenolic wastewater: performance robustness and Rpf-responsive bacterial populations. Chem Eng J. 2019;357:715–723. doi:10.1016/j.cej.2018.09.197
  • Campo R, Di Bella G. Petrochemical slop wastewater treatment by means of aerobic granular sludge: effect of granulation process on bio-adsorption and hydrocarbons removal. Chem Eng J. 2019;378:122083. doi:10.1016/j.cej.2019.122083
  • Patsios SI, Karabelas AJ. An investigation of the long-term filtration performance of a membrane bioreactor (MBR): the role of specific organic fractions. J Memb Sci. 2011;372:102–115. doi:10.1016/j.memsci.2011.01.055
  • Leyva-Díaz JC, Martín-Pascual J, Poyatos JM. Moving bed biofilm reactor to treat wastewater. Int J Environ Sci Technol. 2017;14:881–910. doi:10.1007/s13762-016-1169-y
  • Onaizi SA. Effect of salinity on the characteristics, pH-triggered demulsification and rheology of crude oil/water nanoemulsions. Sep Purif Technol. 2022;281:119956. doi:10.1016/j.seppur.2021.119956
  • Parrino F, Corsino SF, Bellardita M, et al. Sequential biological and photocatalysis based treatments for shipboard slop purification: a pilot plant investigation. Process Saf Environ Prot. 2019;125:288–296. doi:10.1016/j.psep.2019.03.025
  • Khader EH, Mohammed TJ, Albayati TM, et al. Current trends for wastewater treatment technologies with typical configurations of photocatalytic membrane reactor hybrid systems: a review. Chem Eng Process – Process Intensif. 2023;192:109503. doi:10.1016/j.cep.2023.109503
  • Neoh CH, Noor ZZ, Mutamim NSA, et al. Green technology in wastewater treatment technologies: integration of membrane bioreactor with various wastewater treatment systems. Chem Eng J. 2016;283:582–594. doi:10.1016/j.cej.2015.07.060
  • Jadoun S, Fuentes JP, Yepsen O, et al. Removal of environmental microplastics by advanced oxidation processes. In: Wang C, Babel S, Lichtfouse E, editors. Microplastic occurrence, fate, impact, and remediation. New York City: Springer; 2023. p. 109–125.
  • Jadoun S, Yáñez J, Mansilla HD, et al. Conducting polymers/zinc oxide-based photocatalysts for environmental remediation: a review. Environ Chem Lett. 2022;20:2063–2083. doi:10.1007/s10311-022-01398-w
  • Jangid NK, Jadoun S, Yadav A, et al. Polyaniline-TiO 2-based photocatalysts for dyes degradation. Polym Bull. 2021;78:4743–4777. doi:10.1007/s00289-020-03318-w
  • Lakkimsetty NR, Al-Sharji HMN, Varghese MJ, et al. Experimental investigation on ZnO-fenton as solar photocatalyst to treat the oilfield produced water by response surface methodology. In: AIP conference proceedings. AIP Publishing; 2023. p. 020019.
  • al deen D, Aljuboury A, Shaik F. Assessment of TiO2/ZnO/H2O2 photocatalyst to treat wastewater from oil refinery within visible light circumstances. South African J Chem Eng. 2021;35:69–77. doi:10.1016/j.sajce.2020.11.004
  • Yousif Mohamed Salih F, Sakhile K, Shaik F, et al. Treatment of petroleum wastewater using synthesised haematite (α-Fe2O3) photocatalyst and optimisation with response surface methodology. Int J Environ Anal Chem. 2022;102:6732–6751. doi:10.1080/03067319.2020.1817422
  • Syed MA, Mauriya AK, Shaik F. Investigation of epoxy resin/nano-TiO2 composites in photocatalytic degradation of organics present in oil-produced water. Int J Environ Anal Chem. 2022;102:4518–4534. doi:10.1080/03067319.2020.1784889
  • Cerqueira AA, da C. Marques MR. Electrolytic treatment of wastewater in the oil industry. In: Gomes JS, editors. Rijeka: IntechOpen; 2012. p. Ch. 1. doi:10.5772/50712
  • Adetunji AI, Olaniran AO. Treatment of industrial oily wastewater by advanced technologies: a review. Appl Water Sci. 2021;11:98. doi:10.1007/s13201-021-01430-4
  • Wilkin RT, McNeil MS. Laboratory evaluation of zero-valent iron to treat water impacted by acid mine drainage. Chemosphere. 2003;53:715–725. doi:10.1016/S0045-6535(03)00512-5
  • Rangsivek R, Jekel MR. Removal of dissolved metals by zero-valent iron (ZVI): kinetics, equilibria, processes and implications for stormwater runoff treatment. Water Res. 2005;39:4153–4163. doi:10.1016/j.watres.2005.07.040
  • Xu X, Cheng Y, Zhang T, et al. Treatment of pharmaceutical wastewater using interior micro-electrolysis/fenton oxidation-coagulation and biological degradation. Chemosphere. 2016;152:23–30. doi:10.1016/j.chemosphere.2016.02.100
  • Mantzavinos D, Psillakis E. Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J Chem Technol Biotechnol. 2004;79:431–454. doi:10.1002/jctb.1020
  • Guan X, Xu X, Lu M, et al. Pretreatment of oil shale retort wastewater by acidification and ferric-carbon micro-electrolysis. Energy Procedia. 2012;17:1655–1661. doi:10.1016/j.egypro.2012.02.294
  • Han Y, Wu C, Su Z, et al. Micro-electrolysis biological fluidized bed process for coking wastewater treatment. J Water Process Eng. 2020;38:101624. doi:10.1016/j.jwpe.2020.101624
  • Ghafoori S, Omar M, Koutahzadeh N, et al. New advancements, challenges, and future needs on treatment of oilfield produced water: a state-of-the-art review. Sep Purif Technol. 2022;289:120652. doi:10.1016/j.seppur.2022.120652
  • Sakhile K, Sarkar JP, Gupta P, et al. Effect of physical properties of solid particles and liquid media on the hydrodynamics of a liquid–solid inverse fluidized bed. Arab J Sci Eng. 2023. doi:10.1007/s13369-023-08377-5
  • Gurpreet K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci. 2018;80. doi:10.4172/pharmaceutical-sciences.1000422
  • Mokif LA, Jasim HK, Abdulhusain NA. Petroleum and oily wastewater treatment methods: a mini review. Mater Today Proc. 2022;49:2671–2674. doi:10.1016/j.matpr.2021.08.340
  • Sakhile K, Sarkar JP, Gupta P, et al. Removal of major pollutants from petroleum wastewater by adsorption with activated carbon derived from date seed in an inverse fluidized bed. Arab J Sci Eng. 2023;48:8557–8569. doi:10.1007/s13369-022-07109-5

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.