307
Views
7
CrossRef citations to date
0
Altmetric
ARTICLES

Development of early numerical abilities of Spanish-speaking Mexican preschoolers: A new assessment tool

, , &

References

  • Abreu-Mendoza, R., Soto-Alba, E. E., & Arias-Trejo, N. (2013). Area vs. density: Influence of visual variables and cardinality knowledge in early number comparison. Frontiers in psychology, 4(805), 1–10.
  • Anders, Y., Rossbach, H., Weinert, S., Ebert, S., Kuger, S., Lehrl, S., & von Maurice, J. (2012). Home and preschool learning environments and their relations to the development of early numeracy skills. Early Childhood Research Quarterly, 27, 231–244. doi:10.1016/j.ecresq.2011.08.003
  • Bayley, N. (2006). Bayley Scales of Infant and Toddler Development (3rd ed.). San Antonio, TX: PyschCorp.
  • Boehm, A. E. (2001). Boehm Test of Basic Concepts (3rd ed.). San Antonio, TX: The Psychological Corporation.
  • Bonny, J., & Lourenco, S. (2015). Individual differences in children’s approximations of area correlate with competence in basic geometry. Learning and Individual Differences, 44, 16–24. doi:10.1016/j.lindif.2015.11.001
  • Bracken, B. A. (2006). The Bracken Basic Concept Scale Third Edition: Receptive. San Antonio, TX: Harcourt Assessment.
  • Brannon, E., Lutz, D., & Cordes, S. (2006). The development of area discrimination and its implications of number representation in infancy. Developmental Science, 9(6), F59–F64. doi:10.1111/j.1467-7687.2006.00530.x
  • Brannon, E., Suanda, S., & Libertus, K. (2007). Temporal discrimination increases in precision over development and parallels the development of numerosity discrimination. Developmental Science, 10(6), 770–777. doi:10.1111/j.1467-7687.2007.00635.x
  • Brooks-Gunn, J., & Duncan, G. J. (1997). The effects of poverty on children. The Future of Children, 7(2), 55–71. doi:10.2307/1602387
  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Science, 14(12), 534–541. doi:10.1016/j.tics.2010.09.007
  • Carey, S. (2009). The origin of concepts. New York, NY: Oxford University Press.
  • Clements, D., & Sarama, J. (2008). Experimental evaluation of the effects of a research-based preschool mathematics curriculum. American Educational Research Journal, 45(2), 443–494. doi:10.3102/0002831207312908
  • Cordes, S., & Brannon, E. (2008). Quantitative competencies in infancy. Developmental Science, 11(6), 803–808. doi:10.1111/j.1467-7687.2008.00770.x
  • Coubart, A., Izard, V., Spelke, E., Marie, J., & Streri, A. (2014). Dissoaciation between small and large numerosities in new born infants. Psychological Science, 17(1), 11–22. doi:10.1111/desc.12108
  • De Hevia, M. D., Izard, V., Coubart, A., Spelke, E., & Streri, A. (2014). Representations of space, time, and number in neonates. Proceedings of the National Academy of Sciences, 111, 4809–4813. doi:10.1073/pnas.1323628111
  • Duncan, G. J., Dowsett, C. J., Claessens, A., Magnuson, K., Huston, A. C., Klebanov, P., … Japel, C. (2007). School readiness and later achievement. Developmental Psychology, 43(6), 1428–1446.
  • Feifer, S. G., & Kovach Clark, H. (2016). Feifer Assessment of Mathematics. Lutz, FL: PAR.
  • Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files: Evidence from infants’ manual search. Developmental Science, 6(5), 568–584. doi:10.1111/1467-7687.00313
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Science, 8(7), 307–314. doi:10.1016/j.tics.2004.05.002
  • Field, A. (2005). Discovering statistics using SPSS. London, UK: Sage.
  • Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press.
  • Gilmore, C., McCarthy, S. E., & Spelke, E. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115, 394–406. doi:10.1016/j.cognition.2010.02.002
  • Ginsburg, H. P., & Baroody, A. J. (2003). Test of Early Mathematics Ability (3rd ed.). Austin, TX: PRO-ED.
  • Ginsburg, H. P., Baroody, A. J., del Río, M. C. N., & Guerra, I. L. (2007). Tema-3: Test de competencia matemática básica [Test of Early Mathematics Ability]. Madrid, Spain: Tea Ediciones.
  • Grégoire, J., Nöel, M.-P., & Van Nieuwenhoven, C. (2015). TEDI-MATH, test para el diagnóstico de las competencias básicas en matemáticas [Test for the Diagnosis of Basic Skills in Mathematics] (2nd ed.) (Manuel J. Sueiro y Jaime Pereña, adaptadores, ed.). Madrid, Spain: TEA Ediciones.
  • Gunderson, E. A., & Levine, S. (2011). Some types of parent number talk count more than others: relations between parents’ input and children’s cardinal-number knowledge. Developmental Science, 14(5), 1021–1032. doi:10.1111/j.1467-7687.2011.01050.x
  • Hackman, D. A., & Farah, M. J. (2008). Socioeconomic status and the developing brain. Trends in Cognitive Science, 13(2), 65–73. doi:10.1016/j.tics.2008.11.003
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “number sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457–1465. doi:10.1037/a0012682
  • Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(2), 665–668. doi:10.1038/nature07246
  • Huttenlocher, J., Jordan, N. C., & Levine, S. (1994). A mental model for early arithmetic. Journal of Experimental Psychology: General, 123(3), 284–296. doi:10.1037//0096-3445.123.3.284
  • INEE. (2015). Panorama educativo de México 2014. Indicadores del sistema educativo nacional. Educación básica y media superior [Educational Overview of Mexico, 2014. Indicators of the National Educational System. Primary and Secondary Education]. D.F., México: INEE.
  • Instituto Nacional de Estadística y Geografía. (2015). Panorama sociodemográfico de México 2015 [Sociodemographic Overview of Mexico 2015]. D.F., México: INEGI.
  • Izard, V., Sann, C., Spelke, E., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382–10385. doi:10.1073/pnas.0812142106
  • Jordan, N. C., Huttenlocher, J., & Levine, S. (1992). Differential calculation abilities in young children from middle- and low-income families. Developmental Psychology, 28(4), 644–653. doi:10.1037//0012-1649.28.4.644
  • Jordan, N. C., Kaplan, D., Locuniak, M., & Ramineni, C. (2007). Predicting first-grade math achievement from developmental number sense trajectories. Learning Disabilities Research & Practice, 22(1), 36–46. doi:10.1111/j.1540-5826.2007.00229.x
  • Jordan, N. C., Kaplan, D., Nabors Oláh, L., & Locuniak, M. (2006). Number sense growth in kindergarten: A longitudinal investigation of children at risk for mathematics difficulties. Child Development, 77, 153–175. doi:10.1111/j.1467-8624.2006.00862.x
  • Jordan, N. C., Kaplan, D., Ramineni, C., & Locuniak, M. (2009). Early math matters: Kindergarten number competence and later mathematics outcomes. Developmental Psychology, 45(3), 850–867. doi:10.1037/a0014939.
  • Jordan, N. C., & Levine, S. (2009). Socioeconomic variation, number, competence, and mathematics learning difficulties in young children. Developmental Disabilities Research Reviews, 15, 60–68. doi:10.1002/ddrr.46
  • Kaufman, A. (1993). Kaufman Survey of Early Academic and Language Skills (K-SEALS). Circle Pines, MN: American Guidance Service, Inc.
  • Kaufman, L., Lord, M. W., Reese, T. W., & Volkmann, J. (1949). The discrimination of visual number. The American Journal of Psychology, 62, 498–525. doi:10.2307/1418556
  • Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: An investigation of the conceptual sources of the verbal counting principles. Cognition, 105, 395–438. doi:10.1016/j.cognition.2006.10.005
  • Libertus, M. E., & Brannon, E. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13(6), 900–906. doi:10.1111/j.1467-7687.2009.00948.x
  • Lourenco, S., & Bonny, J. (2016). Representations of numerical and non-numerical magnitude both contribute to mathematical competence in children. Developmental Science. doi:10.1111/desc.12418
  • Lourenco, S., Bonny, J., Fernandez, E., & Rao, S. (2012). Nonsymbolic number and cumulative area represenations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737–18742. doi:10.1073/pnas.1207212109
  • Matute, E., Rosselli, M., Ardila, A., & Ostrosky, F. (2007). Evaluación neuropsicológica infantil [Neuropsychological Assessment of Children]. México: Manual Moderno.
  • Matute, E., Rosselli, M., & Beltrán-Navarro, B. (in press). Evaluación neuropsicológica infantil-preescolar [Neuropsychological Assessment of Children-Preschool]. D.F., México: Manual Moderno.
  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PloS ONE, 6(9), 1–8.
  • McCauley, R., & Swisher, L. (1984). Psychometric review of language and articulation tests for preschool children. Journal of Speech and Hearing Disorders, 49, 34–42. doi:10.1044/jshd.4901.34
  • McLeod, S., & Verdon, S. (2014). A review of 30 speech assessments in 19 language other than English. American Journal of Speech-Language Pathology, 23, 708–723. doi:10.1044/2014_ajslp-13-0066
  • Melhuish, E., Sylva, K., Sammons, P., Siraj-Blatchford, I., Taggart, B., Phan, M. B., & Malin, A. (2008). Preeschool influences on mathematics achievement. Science, 321, 1161–1162. doi:10.1126/science.1158808
  • Negen, J., & Sarnecka, B. W. (2012). Number-concept acquisition and general vocabulary development. Child Development, 83(6), 2019–2027. doi:10.1111/j.1467-8624.2012.01815.x
  • Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental psychology, 49(6), 1103.
  • Odic, D., Pietroski, P., Hunter, T., Lidz, J., & Halberda, J. (2012). Young children’s understanding more and discrimination of number and surface area. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 451–461. doi:10.1037/a0028874
  • Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Science, 14(12), 542–551. doi:10.1016/j.tics.2010.09.008
  • Romano, E., Babchishin, L., Pagani, L. S., & Kohen, D. (2010). School readiness and later achievement: Replication and extension using a nationwide Canadian survey. Developmental Psychology, 46(5), 995–1007. doi:10.1037/a0018880
  • Rosselli, M., Ardila, A., Matute, E., & Inozemtseva, O. (2009). Gender differences and cognitive correlates of mathematical skills in school-aged children. Child Neuropsychology, 15(3), 216–231. doi:10.1080/09297040802195205
  • Sarnecka, B. W., & Lee, M. (2009). Levels of number knowledge during early childhood. Journal of Experimental Child Psychology, 103, 325–337. doi:10.1016/j.jecp.2009.02.007
  • Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14, 280–291. doi:10.1111/j.1467-7687.2010.00976.x
  • Schrank, F. A., McGrew, K. S., & Mather, N. (2015). Woodcock-Johnson IV Tests of Early Cognitive and Academic Development. Rolling Meadows, IL: Riverside.
  • Shinskey, J. L., Chan, C. H., Coleman, R., Moxom, L., & Yamamoto, E. (2009). Preschoolers’ nonsymbolic arithmetic with large sets: Is addition more accurate than subtraction?. Journal of Experimental Child Psychology, 103, 409–420. doi:10.1016/j.jecp.2009.01.012
  • Shusterman, A., Slusser, E., Halberda, J., & Odic, D. (2016). Acquisition of the cardinal principle coincides with improvement in approximate number system acuity in preschoolers. PLOS ONE, 11(4), e0153072. doi:10.1371/journal.pone.0153072
  • Siegler, R. (2009). Improving the numerical understanding of children from low-income families. Child Development Perspectives, 3(2), 118–124. doi:10.1111/j.1750-8606.2009.00090.x
  • Slaughter, V., Itakura, S., Kutsuki, A., & Siegal, M. (2011). Learning to count begins in infancy: Evidence from 18 month old’s visual preferences. Proceedings of the Royal Society B, 278, 2979–2984. doi:10.1098/rspb.2010.2602
  • Starkey, P., & Cooper, R. G. (1995). The development of subitizing in young children. British Journal of Developmental Psychology, 13(4), 399–420. doi:10.1111/j.2044-835x.1995.tb00688.x
  • Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116–18120.
  • Wang, Z., Soden, B., Deater-Deckard, K., Lukowski, S., Schenker, V. J., Willcutt, E. G., … Petrill, S. A. (2015). Development in reading and math in children from different SES backgrounds: The moderating role of child temperament. Developmental Science. doi:10.1111/desc.12380
  • Wechsler, D. (2009). Wechsler Individual Achievement Test (3rd ed.). San Antonio, TX: Pearson.
  • Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock Johnson Tests of Achievement (WJ III). Itasca, IL: Riverside.
  • Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193. doi:10.1016/0010-0277(90)90003-3
  • Wynn, K. (1992). Children’s acquisition of number words and the counting system. Cognitive Psychology, 24, 220–251. doi:10.1016/0010-0285(92)90008-p

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.