282
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Mechanisms of automaticity and anticipatory control in fluid intelligence

ORCID Icon

References

  • Archibald, C. J., Wei, X., Scott, J. N., Wallace, C. J., Zhang, Y., Metz, L. M., & Mitchell, J. R. (2004). Posterior fossa lesion volume and slowed information processing in multiple sclerosis. Brain, 127(7), 1526–1534. doi:10.1093/brain/awh167
  • Arnott, S. R., & Alain, C. (2011). The auditory dorsal pathway: Orienting vision. Neuroscience & Biobehavioral Reviews, 35(10), 2162–2173. doi:10.1016/j.neubiorev.2011.04.005
  • Ashby, F. G., & Crossley, M. J. (2012). Automaticity and multiple memory systems. Wiley Interdisciplinary Reviews: Cognitive Science, 3(3), 363–376. doi:10.1002/wcs.1172
  • Baddeley, A. (2012). Working memory: theories, models, and controversies, Annual Review of Psychology, 63, 1–29. doi:10.1146/annurev-psych-120710-100422
  • Bargh, J. A. (2014). Our unconscious mind. Scientific American, 310(1), 30–37. doi:10.1038/scientificamerican0114-30
  • Barsalou, L. W. (2008). Grounded cognition, Annual Review of Psychology, 59, 617–645. doi:10.1146/annurev.psych.59.103006.093639
  • Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (2005). The Iowa gambling task and the somatic marker hypothesis: Some questions and answers. Trends in Cognitive Sciences, 9(4), 159–162; discussion 162–154. doi:10.1016/j.tics.2005.02.002
  • Brown, R. M., Zatorre, R. J., & Penhune, V. B. (2015). Expert music performance: Cognitive, neural, and developmental bases, Progress in Brain Research, 217, 57–86. doi:10.1016/bs.pbr.2014.11.021
  • Caligiore, D., Pezzulo, G., Miall, R. C., & Baldassarre, G. (2013). The contribution of brain sub-cortical loops in the expression and acquisition of action understanding abilities. Neuroscience & Biobehavioral Reviews, 37(10 Pt 2), 2504–2515. doi:10.1016/j.neubiorev.2013.07.016
  • Castellanos, F. X., & Proal, E. (2012). Large-scale brain systems in ADHD: Beyond the prefrontal-striatal model. Trends in Cognitive Sciences, 16(1), 17–26. doi:10.1016/j.tics.2011.11.007
  • Cattell, R. B. (1963). Theory of fluid and crystallized intelligence: A critical experiment. Journal of Educational Psychology, 54(1), 1–22.
  • Cattell, R. B. (1987). Intelligence: Its structure, growth, and action. Amsterdam, New York: North-Holland.
  • Celnik, P. (2015). Understanding and modulating motor learning with cerebellar stimulation. Cerebellum, 14(2), 171–174. doi:10.1007/s12311-014-0607-y
  • Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S. (2013). Multi-task connectivity reveals flexible hubs for adaptive task control. Nature Neuroscience, 16(9), 1348–1355. doi:10.1038/nn.3470
  • Colom, R., Karama, S., Jung, R. E., & Haier, R. J. (2010). Human intelligence and brain networks. Dialogues in Clinical Neuroscience, 12(4), 489–501.
  • Corbetta, M., Patel, G., & Shulman, G. L. (2008). The reorienting system of the human brain: from environment to theory of mind. Neuron, 58(3), 306–324. doi:10.1016/j.neuron.2008.04.017
  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. doi:10.1038/nrn755
  • Cromwell, H. C., & Panksepp, J. (2011). Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term ‘cognition’ and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neuroscience & Biobehavioral Reviews, 35(9), 2026–2035. doi:10.1016/j.neubiorev.2011.02.008
  • D’Ambrosio, R., Wenzel, J., Schwartzkroin, P. A., McKhann, G. M. 2nd, & Janigro, D. (1998). Functional specialization and topographic segregation of hippocampal astrocytes. Journal of Neuroscience, 18(12), 4425–4438.
  • D’Angelo, E., Koekkoek, S. K., Lombardo, P., Solinas, S., Ros, E., Garrido, J., … De Zeeuw, C. I. (2009). Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience, 162(3), 805–815. doi:10.1016/j.neuroscience.2009.01.048
  • Dolan, R. J., & Dayan, P. (2013). Goals and habits in the brain. Neuron, 80(2), 312–325. doi:10.1016/j.neuron.2013.09.007
  • Doll, B., & Frank, M. J. (2009). The basal ganglia in reward and decision making: computational models and empirical studies. In J.-C. Dreher & L. Tremblay (Eds.), Handbook of reward and decision making (pp. 399–425). Oxford, UK: Academic Press.
  • Doya, K. (2000). Complementary roles of basal ganglia and cerebellum in learning and motor control. Current Opinion in Neurobiology, 10(6), 732–739.
  • Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41(3), 252–262. doi:10.1016/s0028-3932(02)00158-6
  • Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proceedings of the National Academy of Sciences U S A, 99(2), 1017–1022. doi:10.1073/pnas.022615199
  • Frank, M. J., O’Reilly, R. C., & Curran, T. (2006). When memory fails, intuition reigns: Midazolam enhances implicit inference in humans. Psychological Science, 17(8), 700–707. doi:10.1111/j.1467-9280.2006.01769.x
  • Frank, M. J., Santamaria, A., O’Reilly, R. C., & Willcutt, E. (2007). Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology, 32(7), 1583–1599. doi:10.1038/sj.npp.1301278
  • Frank, M. J., Seeberger, L. C., & O’Reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306(5703), 1940–1943. doi:10.1126/science.1102941
  • Fuster, J. M., & Bressler, S. L. (2012). Cognit activation: A mechanism enabling temporal integration in working memory. Trends in Cognitive Sciences, 16(4), 207–218. doi:10.1016/j.tics.2012.03.005
  • Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J. J., & Celnik, P. (2011). Dissociating the roles of the cerebellum and motor cortex during adaptive learning: The motor cortex retains what the cerebellum learns. Cerebral Cortex, 21(8), 1761–1770. doi:10.1093/cercor/bhq246
  • Glickstein, M., & Yeo, C. (1990). The cerebellum and motor learning. Journal of Cognitive Neuroscience, 2(2), 69–80. doi:10.1162/jocn.1990.2.2.69
  • Goldberg, E., Podell, K., & Lovell, M. (1994). Lateralization of frontal lobe functions and cognitive novelty. The Journal of Neuropsychiatry and Clinical Neurosciences, 6(4), 371–378. doi:10.1176/jnp.6.4.371
  • Graybiel, A. M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70(1–2), 119–136. doi:10.1006/nlme.1998.3843
  • Griffiths, K. R., Morris, R. W., & Balleine, B. W. (2014). Translational studies of goal-directed action as a framework for classifying deficits across psychiatric disorders, Frontiers in Systems Neuroscience, 8, 1–16. doi:10.3389/fnsys.2014.00101
  • Grimaldi, G., Argyropoulos, G. P., Boehringer, A., Celnik, P., Edwards, M. J., Ferrucci, R., … Ziemann, U. (2014). Non-invasive cerebellar stimulation – A consensus paper. Cerebellum, 13(1), 121–138. doi:10.1007/s12311-013-0514-7
  • Grunewaldt, K. H., Fjortoft, T., Bjuland, K. J., Brubakk, A. M., Eikenes, L., Haberg, A. K., … Skranes, J. (2014). Follow-up at age 10 years in ELBW children – Functional outcome, brain morphology and results from motor assessments in infancy. Early Human Development, 90(10), 571–578. doi:10.1016/j.earlhumdev.2014.07.005
  • Haber, S. N. (2011). Neuroanatomy of reward: A view from the ventral striatum. In J. Gottfried (Ed.), Neurobiology of Sensation and Reward (pp. 235–262). Boca Raton, FL: CRC Press.
  • Hikosaka, O., Kim, H. F., Yasuda, M., & Yamamoto, S. (2014). Basal ganglia circuits for reward value-guided behavior, Annual Review of Neuroscience, 37, 289–306. doi:10.1146/annurev-neuro-071013-013924
  • Houk, J. (2005). Agents of the mind. Biological Cybernetics, 92(6), 427–437. doi:10.1007/s00422-005-0569-8
  • Houk, J., Bastianen, C., Fansler, D., Fishbach, A., Fraser, D., Reber, P. J., … Simo, L. S. (2007). Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1573–1583. doi:10.1098/rstb.2007.2063
  • Imamizu, H. (2010). Prediction of sensorimotor feedback from the efference copy of motor commands: A review of behavioral and functional neuroimaging studies. Japanese Psychological Research, 52(2), 107–120. doi:10.1111/j.1468-5884.2010.00428.x
  • Ito, M. (1993). Movement and thought: identical control mechanisms by the cerebellum. Trends in Neurosciences, 16(11), 448–450; discussion 453–444. doi:10.1016/0166-2236(93)90073-u
  • Ito, M. (2005). Bases and implications of learning in the cerebellum – Adaptive control and internal model mechanism, Progress in Brain Research, 148, 95–109. doi:10.1016/S0079-6123(04)48009-1
  • Ito, M. (2008). Control of mental activities by internal models in the cerebellum. Nature Reviews Neuroscience, 9(4), 304–313. doi:10.1038/nrn2332
  • Ito, M. (2011). The cerebellum: Brain for an implicit self. Upper Saddle River, NJ: FT Press.
  • Ito, M. (2012). The cerebellum: Brain for an implicit self. Upper Saddle River, NJ: FT Press.
  • Ito, M., Heilman, K. M., & Rothi, L. G. (2003). Apraxia. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (4th ed., pp. 215–235). Oxford, UK: Oxford University Press.
  • Jacob, S. N., & Nieder, A. (2014). Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli. Neuron, 83(1), 226–237. doi:10.1016/j.neuron.2014.05.009
  • Jin, X., & Costa, R. M. (2015). Shaping action sequences in basal ganglia circuits, Current Opinion in Neurobiology, 33, 188–196. doi:10.1016/j.conb.2015.06.011
  • Jin, X., Tecuapetla, F., & Costa, R. M. (2014). Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nature Neuroscience, 17(3), 423–430. doi:10.1038/nn.3632
  • Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. Journal of Behavioral and Brain Science, 30(2), 135–154; discussion 154–187. doi:10.1017/S0140525X07001185
  • Kaldy, Z., & Leslie, A. M. (2003). Identification of objects in 9 month old infants: Integrating “what” and “where” information. Developmental Science, 6(3), 360–373. doi:10.1111/1467-7687.00290
  • Kaufmann, C., Beucke, J. C., Preusse, F., Endrass, T., Schlagenhauf, F., Heinz, A., … Kathmann, N. (2013). Medial prefrontal brain activation to anticipated reward and loss in obsessive-compulsive disorder, NeuroImage: Clinical, 2, 212–220. doi:10.1016/j.nicl.2013.01.005
  • Kinsbourne, M., & Jordan, J. S. (2009). Embodied anticipation: A neurodevelopmental interpretation. Discourse Processes, 46(2–3), 103–126. doi:10.1080/01638530902728942
  • Kolb, B., & Whishaw, I. Q. (2009). Fundamentals of human neuropsychology (6th ed.). New York, NY: Worth Publishers.
  • Koustenis, E., Hernáiz Driever, P., de Sonneville, L., & Rueckriegel, S. M. (2016). Executive function deficits in pediatric cerebellar tumor survivors. European Journal of Paediatric Neurology, 20(1), 25–37. doi:10.1016/j.ejpn.2015.11.001
  • Koziol, L. F. (2014). The myth of executive functioning: Missing elements in conceptualization, evaluation, and assessment. New York, NY: Springer.
  • Koziol, L. F., Barker, L. A., Hrin, S., & Joyce, A. W. (2014). Large-scale brain systems and subcortical relationships: Practical applications. Applied Neuropsychology: Child, 3(4), 264–273. doi:10.1080/21622965.2014.946809
  • Koziol, L. F., Barker, L. A., Joyce, A. W., & Hrin, S. (2014a). Large-scale brain systems and subcortical relationships: The vertically organized brain. Applied Neuropsychology: Child, 3(4), 253–263. doi:10.1080/21622965.2014.946804
  • Koziol, L. F., Barker, L. A., Joyce, A. W., & Hrin, S. (2014b). Structure and function of large-scale brain systems. Applied Neuropsychology: Child, 3(4), 236–244. doi:10.1080/21622965.2014.946797
  • Koziol, L. F., & Budding, D. E. (2009). Subcortical structures and cognition: Implications for neuropsychological assessment. New York, NY: Springer.
  • Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., … Yamazaki, T. (2014). Consensus paper: The cerebellum’s role in movement and cognition. Cerebellum, 13(1), 151–177. doi:10.1007/s12311-013-0511-x
  • Koziol, L. F., Budding, D. E., & Chidekel, D. (2010). Adaptation, expertise, and giftedness: Towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum, 9(4), 499–529. doi:10.1007/s12311-010-0192-7
  • Larson, M. J., South, M., Krauskopf, E., Clawson, A., & Crowley, M. J. (2011). Feedback and reward processing in high-functioning autism. Psychiatry Research, 187(1–2), 198–203. doi:10.1016/j.psychres.2010.11.006
  • Li, C., & Tian, L. (2014). Association between resting-state coactivation in the parieto-frontal network and intelligence during late childhood and adolescence. American Journal of Neuroradiology, 35(6), 1150–1156. doi:10.3174/ajnr.A3850
  • Limperopoulos, C., Chilingaryan, G., Sullivan, N., Guizard, N., Robertson, R. L., & du Plessis, A. J. (2014). Injury to the premature cerebellum: Outcome is related to remote cortical development. Cerebral Cortex, 24(3), 728–736. doi:10.1093/cercor/bhs354
  • Marien, P., & Manto, M. (Eds.). (2016). The linguistic cerebellum. Boston, MA: Elsevier.
  • Mars, R. B. (2011). Neural basis of motivational and cognitive control. Cambridge, MA: MIT Press.
  • Menon, V. (2011). Large-scale brain networks and psychopathology: A unifying triple network model. Trends in Cognitive Sciences, 15(10), 483–506. doi:10.1016/j.tics.2011.08.003
  • Menon, V. (2013). Developmental pathways to functional brain networks: emerging principles. Trends in Cognitive Sciences, 17(12), 627–640. doi:10.1016/j.tics.2013.09.015
  • Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597–613. doi:10.1002/ana.410280502
  • Middleton, F. A. (2003). Fundamental and clinical evidence for basal ganglia influences on cognition. In M.-A. Bédard (Ed.), Mental and behavioral dysfunction in movement disorders (pp. 13–33). Totowa, NJ: Humana Press.
  • Middleton, F. A., & Strick, P. L. (1994). Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science, 266(5184), 458–461. doi:10.1126/science.7939688
  • Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: Motor and cognitive circuits. Brain Research Reviews, 31(2–3), 236–250. doi:10.1016/s0165-0173(99)00040-5
  • Miller, G. A. (1956). The magical number seven plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81–97. doi:10.1037/h0043158
  • Mink, J. W. (2003). The Basal Ganglia and involuntary movements: Impaired inhibition of competing motor patterns, Archives of Neurology, 60, 1365–1368. doi:10.1001/archneur.60.10.1365
  • Molinari, M., Chiricozzi, F. R., Clausi, S., Tedesco, A. M., De Lisa M., & Leggio, M. G. (2008). Cerebellum and detection of sequences, from perception to cognition. Cerebellum, 7(4), 611–615. doi:10.1007/s12311-008-0060-x
  • Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. Journal of Neuroscience, 16(5), 1936–1947.
  • Morie, K. P., De Sanctis P., Garavan, H., & Foxe, J. J. (2014). Executive dysfunction and reward dysregulation: A high-density electrical mapping study in cocaine abusers, Neuropharmacology, 85, 397–407. doi:10.1016/j.neuropharm.2014.05.016
  • Nakanishi, S., Hikida, T., & Yawata, S. (2014). Distinct dopaminergic control of the direct and indirect pathways in reward-based and avoidance learning behaviors, Neuroscience, 282, 49–59. doi:10.1016/j.neuroscience.2014.04.026
  • Njiokiktjien, C. (2010). Developmental dyspraxias: Assessment and differential diagnosis. In D. Riva & C. Njiokiktjien (Eds.), Brain lesion localization and developmental functions (pp. 157–186). Montrouge, France: John Libbey Eurotext.
  • O’Reilly, R. C., Munakata, Y., Frank, M. J., & Hazy, T. E. (2012). Computational cognitive neuroscience: Wiki Book, Boulder, CO.
  • Paul, E. J., & Ashby, F. G. (2013). A neurocomputational theory of how explicit learning bootstraps early procedural learning, Frontiers in Computational Neuroscience, 7, 177. doi:10.3389/fncom.2013.00177
  • Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behavioural Brain Research, 226(2), 579–591. doi:10.1016/j.bbr.2011.09.044
  • Pezzulo, G. (2011). Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind & Language, 26(1), 78–114. doi:10.1111/j.1468-0017.2010.01411.x
  • Pezzulo, G., & Cisek, P. (2016). Navigating the affordance landscape: Feedback control as a process model of behavior and cognition. Trends in Cognitive Sciences, 20(6), 414–424. doi:10.1016/j.tics.2016.03.013
  • Podell, K., Lovell, M., & Goldberg, E. (2001). Lateralization of frontal lobe functions (1st ed.). Washington, DC/London, UK: American Psychiatric Press.
  • Poore, M. A., & Barlow, S. M. (2009). Suck predicts neuromotor integrity and developmental outcomes. Perspectives on Speech Science and Orofacial Disorders, 19(1), 44–51. doi:10.1044/ssod19.1.44
  • Potts, G. F., Bloom, E. L., Evans, D. E., & Drobes, D. J. (2014). Neural reward and punishment sensitivity in cigarette smokers, Drug Alcohol Depend, 144, 245–253. doi:10.1016/j.drugalcdep.2014.09.773
  • Ramnani, N. (2006). The primate cortico-cerebellar system: Anatomy and function. Nature Reviews Neuroscience, 7(7), 511–522. doi:10.1038/nrn1953
  • Redgrave, P., Prescott, T. J., & Gurney, K. (1999). The basal ganglia: A vertebrate solution to the selection problem? Neuroscience, 89(4), 1009–1023.
  • Saling, L. L., & Phillips, J. G. (2007). Automatic behaviour: Efficient not mindless. Brain Research Bulletin, 73(1–3), 1–20. doi:10.1016/j.brainresbull.2007.02.009
  • Sandrone, S. (2012). The brain as a crystal ball: The predictive potential of default mode network, Frontiers in Human Neuroscience, 6, 261. doi:10.3389/fnhum.2012.00261
  • Schmahmann, J. D. (2013). Cerebellum. In D. B. Arciniegas C. A. Anderson & C. M. Filley (Eds.), Behavioral neurology & neuropsychiatry (pp. 32–46). Cambridge, NY: Cambridge University Press.
  • Schmahmann, J. D., & Pandya, D. N. (1997). The cerebrocerebellar system, International Review of Neurobiology, 41, 31–60. doi:10.1016/s0074-7742(08)60346-3
  • Schmahmann, J. D., & Sherman, J. C. (1997). The cerebellar cognitive affective syndrome, International Review of Neurobiology, 41, 433–440. doi:10.1016/s0074-7742(08)60363-3
  • Schroll, H., Vitay, J., & Hamker, F. H. (2012). Working memory and response selection: A computational account of interactions among cortico-basalganglio-thalamic loops, Neural Networks, 26, 59–74. doi:10.1016/j.neunet.2011.10.008
  • Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. doi:10.1126/science.275.5306.1593
  • Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neuroscience & Biobehavioral Reviews, 32(2), 265–278. doi:10.1016/j.neubiorev.2007.07.010
  • Seger, C. A. (2009). The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In H. J. Groenewegen P. Voorn H. W. Berensdse A. G. Mulder & A. R. Cools (Eds.), The basal ganglia IX: 58 (advances in behavioral biology) (pp. 25–39). Dordrecht, The Netherlands: Springer.
  • Shadmehr, R., Smith, M. A., & Krakauer, J. W. (2010). Error correction, sensory prediction, and adaptation in motor control, Annual Review of Neuroscience, 33, 89–108. doi:10.1146/annurev-neuro-060909-153135
  • Squire, L. R., & Dede, A. J. (2015). Conscious and unconscious memory systems. Cold Spring Harb Perspect Biol, 7(3), a021667. doi:10.1101/cshperspect.a021667
  • Sterelny, K. (2003). Thought in a hostile world: The evolution of human cognition. Malden, MA: Blackwell.
  • Stoodley, C. J. (2015). The cerebellum and neurodevelopmental disorders. Cerebellum, 15(1), 34–37. doi:10.1007/s12311-015-0715-3
  • Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of neuropsychological tests: administration, norms, and commentary (3rd ed.). Oxford, UK/New York, NY: Oxford University Press.
  • Strick, P. L., Dum, R. P., & Fiez, J. A. (2009). Cerebellum and nonmotor function, Annual Review of Neuroscience, 32, 413–434. doi:10.1146/annurev.neuro.31.060407.125606
  • Sumner, E., Pratt, M. L., & Hill, E. L. (2016). Examining the cognitive profile of children with developmental coordination disorder, Research in Developmental Disabilities, 56, 10–17. doi:10.1016/j.ridd.2016.05.012
  • Sweet, L. H., Paskavitz, J. F., O’Connor, M. J., Browndyke, J. N., Wellen, J. W., & Cohen, R. A. (2005). FMRI correlates of the WAIS-III symbol search subtest. Journal of the International Neuropsychological Society, 11(4), 471–476. doi:10.1017/s1355617705050575
  • Thach, W. T. (2014). Does the cerebellum initiate movement? Cerebellum, 13(1), 139–150. doi:10.1007/s12311-013-0506-7
  • Vakhtin, A. A., Ryman, S. G., Flores, R. A., & Jung, R. E. (2014). Functional brain networks contributing to the parieto-frontal integration theory of intelligence, Neuroimage, 103, 349–354. doi:10.1016/j.neuroimage.2014.09.055
  • Van Overwalle, F., Baetens, K., Marien, P., & Vandekerckhove, M. (2014). Social cognition and the cerebellum: A meta-analysis of over 350 fMRI studies, Neuroimage, 86, 554–572. doi:10.1016/j.neuroimage.2013.09.033
  • Van Overwalle, F., Baetens, K., Marien, P., & Vandekerckhove, M. (2015). Cerebellar areas dedicated to social cognition? A comparison of meta-analytic and connectivity results. Society for Neuroscience, 10(4), 337–344. doi:10.1080/17470919.2015.1005666
  • Van Overwalle, F., & Marien, P. (2016). Functional connectivity between the cerebrum and cerebellum in social cognition: A multi-study analysis. Neuroimage, 124(Pt A), 248–255. doi:10.1016/j.neuroimage.2015.09.001
  • Walton, M. E., Gan, J. O., & Phillips, P. E. M. (2011). The influence of dopamine in generating action from motivation. In R. B. Mars J. Sallet M. F. S. Rushworth & N. Yeung (Eds.), Neural basis of motivational and cognitive control (pp. 163–187). Cambridge, MA: MIT Press.
  • Waltz, J. A., Frank, M. J., Wiecki, T. V., & Gold, J. M. (2011). Altered probabilistic learning and response biases in schizophrenia: Behavioral evidence and neurocomputational modeling. Neuropsychology, 25(1), 86–97. doi:10.1037/a0020882
  • Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K., & Tanaka, K. (2011). The neural basis of intuitive best next-move generation in board game experts. Science, 331(6015), 341–346. doi:10.1126/science.1194732
  • Wang, D., Buckner, R. L., & Liu, H. (2014). Functional specialization in the human brain estimated by intrinsic hemispheric interaction. Journal of Neuroscience, 34(37), 12341–12352. doi:10.1523/JNEUROSCI.0787-14.2014
  • Wardak, C., Ramanoël, S., Guipponi, O., Boulinguez, P., & Ben Hamed, S. (2012). Proactive inhibitory control varies with task context. European Journal of Neuroscience, 36(11), 3568–3579. doi:10.1111/j.1460-9568.2012.08264.x
  • Weissman, D. H., Roberts, K. C., Visscher, K. M., & Woldorff, M. G. (2006). The neural bases of momentary lapses in attention. Nature Neuroscience, 9(7), 971–978. doi:10.1038/nn1727
  • Welsh, M. C., Pennington, B. F., & Groisser, D. B. (1991). A normative‐developmental study of executive function: A window on prefrontal function in children. Developmental Neuropsychology, 7(2), 131–149. doi:10.1080/87565649109540483
  • Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. doi:10.1152/jn.00338.2011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.