1,234
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Developmental dyscalculia: the progress of cognitive modeling in the field of numerical cognition deficits for children

ORCID Icon, , &

References

  • Andersson, U., & Östergren, R. (2012). Number magnitude processing and basic cognitive functions in children with mathematical learning disabilities. Learning and Individual Differences, 22(6), 701–714. https://doi.org/10.1016/j.lindif.2012.05.004
  • Ashby, F. G., Turner, B. O., & Horvitz, J. C. (2010). Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences, 14(5), 208–215. https://doi.org/10.1016/j.tics.2010.02.001
  • Ashkenazi, S., & Henik, A. (2010). A disassociation between physical and mental number bisection in developmental dyscalculia. Neuropsychologia, 48(10), 2861–2868. https://doi.org/10.1016/j.neuropsychologia.2010.05.028
  • Ashkenazi, S., Mark-Zigdon, N., & Henik, A. (2013). Do subitizing deficits in developmental dyscalculia involve pattern recognition weakness? Developmental Science, 16(1), 35–46. https://doi.org/10.1111/j.1467-7687.2012.01190.x
  • Attout, L., & Majerus, S. (2015). Working memory deficits in developmental dyscalculia : The importance of serial order. Child Neuropsychology : A Journal on Normal and Abnormal Development in Childhood and Adolescence, 21(4), 432–450. https://doi.org/10.1080/09297049.2014.922170
  • Attout, L., & Majerus, S. (2018). Serial order working memory and numerical ordinal processing share common processes and predict arithmetic abilities. British Journal of Developmental Psychology, 36(2), 285–298. https://doi.org/10.1111/bjdp.12211
  • Barrouillet, P., & Lépine, R. (2005). Working memory and children’s use of retrieval to solve addition problems. Journal of Experimental Child Psychology, 91(3), 183–204. https://doi.org/10.1016/j.jecp.2005.03.002
  • Bugden, S., & Ansari, D. (2016). Probing the nature of deficits in the ‘approximate number system’ in children with persistent developmental dyscalculia. Developmental Science, 19(5), 817–833. https://doi.org/10.1111/desc.12324
  • Campbell, J. I. (1995). Mechanisms of simple addition and multiplication : A modified network-interference theory and simulation. Mathematical Cognition, 1(2), 121–164.
  • Campbell, J. I. (2005). Handbook of mathematical cognition. Psychology Press.
  • Cappelletti, M., Freeman, E. D., & Butterworth, B. L. (2011). Time processing in dyscalculia. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00364
  • Chan, W. W. L., Au, T. K., & Tang, J. (2013). Developmental dyscalculia and low numeracy in Chinese children. Research in Developmental Disabilities, 34(5), 1613–1622. https://doi.org/10.1016/j.ridd.2013.01.030
  • De Visscher, A., Szmalec, A., Van Der Linden, L., & Noël, M.-P. (2015). Serial-order learning impairment and hypersensitivity-to-interference in dyscalculia. Cognition, 144, 38–48. https://doi.org/10.1016/j.cognition.2015.07.007
  • De Visscher, A., Vogel, S. E., Reishofer, G., Hassler, E., Koschutnig, K., De Smedt, B., & Grabner, R. H. (2018). Interference and problem size effect in multiplication fact solving : Individual differences in brain activations and arithmetic performance. NeuroImage, 172, 718–727. https://doi.org/10.1016/j.neuroimage.2018.01.060
  • Decarli, G., Paris, E., Tencati, C., Nardelli, C., Vescovi, M., Surian, L., & Piazza, M. (2020). Impaired large numerosity estimation and intact subitizing in developmental dyscalculia. Plos One, 15(12), e0244578. https://doi.org/10.1371/journal.pone.0244578
  • Dehaene, S. (2001). Précis of the number sense. Mind and Language, 16(1), 16–36. https://doi.org/10.1111/1468-0017.00154
  • Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20(3–6), 487–506. https://doi.org/10.1080/02643290244000239
  • Desoete, A., Ceulemans, A., De Weerdt, F., & Pieters, S. (2012). Can we predict mathematical learning disabilities from symbolic and non-symbolic comparison tasks in kindergarten? Findings from a longitudinal study: Mathematical learning disabilities in kindergarten. British Journal of Educational Psychology, 82(1), 64–81. https://doi.org/10.1348/2044-8279.002002
  • Desoete, A., & Grégoire, J. (2006). Numerical competence in young children and in children with mathematics learning disabilities. Learning and Individual Differences, 16(4), 351–367. https://doi.org/10.1016/j.lindif.2006.12.006
  • Dormal, V., Andres, M., & Pesenti, M. (2012). Contribution of the right intraparietal sulcus to numerosity and length processing : An fMRI-guided TMS study. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 48(5), 623–629. https://doi.org/10.1016/j.cortex.2011.05.019
  • Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehéricy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199(1), 61–75. https://doi.org/10.1016/j.bbr.2008.11.012
  • Fayol, M., Perros, H., & Seron, X. (2004). Les représentations numériques : Caractéristiques, troubles, développement. SOLAL.
  • Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307–314. https://doi.org/10.1016/j.tics.2004.05.002
  • Ferreira, F., de, O., Wood, G., Pinheiro-Chagas, P., Lonnemann, J., Krinzinger, H., Willmes, K., & Haase, V. G. (2012). Explaining school mathematics performance from symbolic and nonsymbolic magnitude processing : Similarities and differences between typical and low-achieving children. Psychology & Neuroscience, 5(1), 37–046. https://doi.org/10.3922/j.psns.2012.1.06
  • Fias, W., & van Dijck, J.-P. (2016). The temporary nature of number-space interactions. Canadian Journal of Experimental Psychology = Revue canadienne de psychologie experimentale, 70(1), 33–40. https://doi.org/10.1037/cep0000071
  • Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009). Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, 47, S102. https://doi.org/10.1016/S1053-8119(09)70884-5
  • Geary, D. C. (2004). Mathematics and Learning Disabilities. Journal of Learning Disabilities, 37(1), 4–15. https://doi.org/10.1177/00222194040370010201
  • Geary, D. C., Brown, S. C., & Samaranayake, V. A. (1991). Cognitive addition : A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27(5), 787–797. https://doi.org/10.1037/0012-1649.27.5.787
  • Gebuis, T., & Reynvoet, B. (2012). The role of visual information in numerosity estimation. PLoS One, 7(5), e37426. https://doi.org/10.1371/journal.pone.0037426
  • Gilmore, C., Cragg, L., Hogan, G., & Inglis, M. (2016). Congruency effects in dot comparison tasks : Convex hull is more important than dot area. Journal of Cognitive Psychology (Hove, England), 28(8), 923–931. https://doi.org/10.1080/20445911.2016.1221828
  • Goffin, C., & Ansari, D. (2016). Beyond magnitude : Judging ordinality of symbolic number is unrelated to magnitude comparison and independently relates to individual differences in arithmetic. Cognition, 150, 68–76. https://doi.org/10.1016/j.cognition.2016.01.018
  • Guelfi, J.-D. (2004). Mini DSM-IV-TR : Critères diagnostiques. Elsevier Masson.
  • Gunderson, E. A., Ramirez, G., Beilock, S. L., & Levine, S. C. (2012). The relation between spatial skill and early number knowledge : The role of the linear number line. Developmental Psychology, 48(5), 1229–1241. https://doi.org/10.1037/a0027433
  • Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults . Developmental Psychology, 44(5), 1457–1465. https://doi.org/10.1037/a0012682
  • Hawes, Z., Sokolowski, H. M., Ononye, C. B., & Ansari, D. (2019). Neural underpinnings of numerical and spatial cognition: An fMRI meta-analysis of brain regions associated with symbolic number, arithmetic, and mental rotation. Neuroscience and Biobehavioral Reviews, 103, 316–336. https://doi.org/10.1016/j.neubiorev.2019.05.007
  • Heilman, K. M., Maher, L. M., Greenwald, M. L., & Rothi, L. J. (1997). Conceptual apraxia from lateralized lesions. Neurology, 49(2), 457–464. https://doi.org/10.1212/wnl.49.2.457
  • Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews. Neuroscience, 6(6), 435–448. https://doi.org/10.1038/nrn1684
  • Jolles, D., Ashkenazi, S., Kochalka, J., Evans, T., Richardson, J., Rosenberg-Lee, M., Zhao, H., Supekar, K., Chen, T., & Menon, V. (2016). Parietal hyper-connectivity, aberrant brain organization, and circuit-based biomarkers in children with mathematical disabilities. Developmental Science, 19(4), 613–631. https://doi.org/10.1111/desc.12399
  • Jonides, J., & Nee, D. E. (2006). Brain mechanisms of proactive interference in working memory. Neuroscience, 139(1), 181–193. https://doi.org/10.1016/j.neuroscience.2005.06.042
  • Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., Gälli, M., Martin, E., & von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. NeuroImage, 57(3), 782–795. https://doi.org/10.1016/j.neuroimage.2011.01.070
  • Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children : A functional MRI study. Behavioral and Brain Functions: BBF, 2(1), 31. https://doi.org/10.1186/1744-9081-2-31
  • Kucian, K., & von Aster, M. (2015). Developmental dyscalculia. European Journal of Pediatrics, 174(1), 1–13. https://doi.org/10.1007/s00431-014-2455-7
  • Lafay, A. (2016). Déficits cognitifs numériques impliqués dans la dyscalculie développementale.
  • Lafay, A., Saint-Pierre, M.-C., & Macoir, J. (2015). Revue narrative de littérature relative aux troubles cognitifs numériques impliqués dans la dyscalculie développementale : Déficit du sens du nombre ou déficit de l’accès aux représentations numériques mentales? Canadian Psychology/Psychologie canadienne, 56(1), 96–107. https://doi.org/10.1037/a0037264
  • Lafay, A., St-Pierre, M.-C., & Macoir, J. (2017). The Mental Number Line in Dyscalculia : Impaired Number Sense or Access From Symbolic Numbers? Journal of Learning Disabilities, 50(6), 672–683. https://doi.org/10.1177/0022219416640783
  • Lafay, A., St-Pierre, M.-C., & Macoir, J. (2019). Impairment of non-symbolic number processing in children with mathematical learning disability. Journal of Numerical Cognition, 5(1), 86–104. https://doi.org/10.5964/jnc.v5i1.177
  • Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8-9-year-old students. Cognition, 93(2), 99–125. https://doi.org/10.1016/j.cognition.2003.11.004
  • Landerl, K., & Kölle, C. (2009). Typical and atypical development of basic numerical skills in elementary school. Journal of Experimental Child Psychology, 103(4), 546–565. https://doi.org/10.1016/j.jecp.2008.12.006
  • Leibovich, T., & Henik, A. (2013). Magnitude processing in non-symbolic stimuli. Frontiers in Psychology, 4, 375. https://doi.org/10.3389/fpsyg.2013.00375
  • Leibovich, T., Katzin, N., Harel, M., & Henik, A. (2017). From “sense of number” to “sense of magnitude”: The role of continuous magnitudes in numerical cognition. Behavioral and Brain Sciences, 40, 1–62. https://doi.org/10.1017/S0140525X16000960
  • Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18737–18742. https://doi.org/10.1073/pnas.1207212109
  • Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers’ precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749. https://doi.org/10.1371/journal.pone.0023749
  • Mazzocco, M. M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia): Impaired numerical acuity contributes to MLD. Child Development, 82(4), 1224–1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x
  • McCaskey, U., von Aster, M., Maurer, U., Martin, E., O’Gorman Tuura, R., & Kucian, K. (2017). Longitudinal brain development of numerical skills in typically developing children and children with developmental dyscalculia. Frontiers in Human Neuroscience, 11, 629. https://doi.org/10.3389/fnhum.2017.00629
  • McCaskey, U., von Aster, M., O’Gorman, R., & Kucian, K. (2020). Persistent differences in brain structure in developmental dyscalculia: A longitudinal morphometry study. Frontiers in Human Neuroscience, 14, 272. https://doi.org/10.3389/fnhum.2020.00272
  • Mejias, S., Mussolin, C., Rousselle, L., Grégoire, J., & Noël, M.-P. (2012). Numerical and nonnumerical estimation in children with and without mathematical learning disabilities. Child Neuropsychology : A Journal on Normal and Abnormal Development in Childhood and Adolescence, 18(6), 550–575. https://doi.org/10.1080/09297049.2011.625355
  • Michels, L., O’Gorman, R., & Kucian, K. (2018). Functional hyperconnectivity vanishes in children with developmental dyscalculia after numerical intervention. Developmental Cognitive Neuroscience, 30, 291–303. https://doi.org/10.1016/j.dcn.2017.03.005
  • Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K., & Nuerk, H.-C. (2009). Basic number processing deficits in developmental dyscalculia: Evidence from eye tracking. Cognitive Development, 24(4), 371–386. https://doi.org/10.1016/j.cogdev.2009.09.007
  • Morsanyi, K., van Bers, B. M. C. W., O’Connor, P. A., & McCormack, T. (2018). Developmental dyscalculia is characterized by order processing deficits: Evidence from numerical and non-numerical ordering tasks. Developmental Neuropsychology, 43(7), 595–621. https://doi.org/10.1080/87565641.2018.1502294
  • Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M.-C., & Noël, M.-P. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22(5), 860–874. https://doi.org/10.1162/jocn.2009.21237
  • Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Developmental change in the acuity of approximate number and area representations. Developmental Psychology, 49(6), 1103–1112. https://doi.org/10.1037/a0029472
  • Ogawa, A., Yamazaki, Y., Ueno, K., Cheng, K., & Iriki, A. (2010). Neural correlates of species-typical illogical cognitive bias in human inference. Journal of Cognitive Neuroscience, 22(9), 2120–2130. https://doi.org/10.1162/jocn.2009.21330
  • Piaget, J. (2013). Child’s conception of number: Selected works (Vol. 2). Routledge.
  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. https://doi.org/10.1016/j.cognition.2010.03.012
  • Piazza, M., Pica, P., Izard, V., Spelke, E. S., & Dehaene, S. (2013). Education enhances the acuity of the nonverbal approximate number system. Psychological Science, 24(6), 1037–1043. https://doi.org/10.1177/0956797612464057
  • Price, G. R., Mazzocco, M. M. M., & Ansari, D. (2013). Why mental arithmetic counts: Brain activation during single digit arithmetic predicts high school math scores. Journal of Neuroscience, 33(1), 156–163. https://doi.org/10.1523/JNEUROSCI.2936-12.2013
  • Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology : CB, 17(24), R1042–R1043. https://doi.org/10.1016/j.cub.2007.10.013
  • Rotzer, S., Kucian, K., Martin, E., Aster, M., von Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39(1), 417–422. https://doi.org/10.1016/j.neuroimage.2007.08.045
  • Rubinsten, O., Henik, A., Berger, A., & Shahar-Shalev, S. (2002). The development of internal representations of magnitude and their association with Arabic numerals. Journal of Experimental Child Psychology, 81(1), 74–92. https://doi.org/10.1006/jecp.2001.2645
  • Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14(2), 280–291. https://doi.org/10.1111/j.1467-7687.2010.00976.x
  • Schwenk, C., Sasanguie, D., Kuhn, J.-T., Kempe, S., Doebler, P., & Holling, H. (2017). (Non-) symbolic magnitude processing in children with mathematical difficulties : A meta-analysis. Research in Developmental Disabilities, 64, 152–167. https://doi.org/10.1016/j.ridd.2017.03.003
  • Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six-year follow-up. Developmental Medicine & Child Neurology, 47(2), 121–125. https://doi.org/10.1017/S0012162205000216
  • Skagerlund, K., & Träff, U. (2014). Development of magnitude processing in children with developmental dyscalculia: Space, time, and number. Frontiers in Psychology, 5, 675. https://doi.org/10.3389/fpsyg.2014.00675
  • Sokolowski, H. M., Fias, W., Mousa, A., & Ansari, D. (2017). Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans : A functional neuroimaging meta-analysis. NeuroImage, 146, 376–394. https://doi.org/10.1016/j.neuroimage.2016.10.028
  • Starkey, P., & Cooper, R. G. Jr, (1995). The development of subitizing in young children. British Journal of Developmental Psychology, 13(4), 399–420. https://doi.org/10.1111/j.2044-835X.1995.tb00688.x
  • Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 49(10), 2674–2688. https://doi.org/10.1016/j.cortex.2013.06.007
  • Ullman, M. T., & Pierpont, E. I. (2005). Specific language impairment is not specific to language : The procedural deficit hypothesis. Cortex, 41(3), 399–433. https://doi.org/10.1016/S0010-9452(08)70276-4
  • Von Aster, M. G., & Shalev, R. S. (2007). Number development and developmental dyscalculia. Developmental Medicine & Child Neurology, 49(11), 868–873. https://doi.org/10.1111/j.1469-8749.2007.00868.x
  • Voss, J. L., & Paller, K. A. (2010). Real-time neural signals of perceptual priming with unfamiliar geometric shapes. Journal of Neuroscience, 30(27), 9181–9188. https://doi.org/10.1523/JNEUROSCI.0403-10.2010
  • Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. https://doi.org/10.1016/j.tics.2003.09.002
  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. W. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–238). The Guilford Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.