48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Number sense deficits in children with developmental dyscalculia, dyslexia, co-occurring disorder and their typically developing peers

References

  • Albayrak, M., & Yazıcı, N. (2023). Pre-school teacher candidates’ use of mathematical concepts in daily life. Psycho-Educational Research Reviews, 12(1), 34–49. https://doi.org/10.52963/PERR_Biruni_V12.N1.03
  • Attila, K., Marta, F., & Bert, R. (2023). The approximate number system cannot be the leading factor in the acquisition of the first symbolic numbers. Cognitive Development, 65, 101285. https://doi.org/10.1016/j.cogdev.2022.101285
  • Bloechle, J., Huber, J. F., Klein, E., Bahnmueller, J., Rennig, J., Moeller, K., & Huber, S. (2018). Spatial arrangement and set size influence the coding of non-symbolic quantities in the intraparietal sulcus. Frontiers in Human Neuroscience, 12, 54. https://doi.org/10.3389/fnhum.2018.00054
  • Brankaer, C., Ghesquière, P., & De Smedt, B. (2014). Children’s mapping between non-symbolic and symbolic numerical magnitudes and its association with timed and untimed tests of mathematics achievement. PLOS One, 9(4), e93565. https://doi.org/10.1371/journal.pone.0093565
  • Bugden, S., & Ansari, D. (2016). Probing the nature of deficits in the 'approximate number system’ in children with persistent developmental dyscalculia. Developmental Science, 19(5), 817–833. https://doi.org/10.1111/desc.2016.19.issue-5
  • Burr, D., & Ross, J. (2008). A visual sense of number. Current Biology, 18(6), 425–428. https://doi.org/10.1016/j.cub.2008.02.052
  • Butterworth, B. (2010). Foundational numerical capacities and the origins of dyscalculia. Trends in Cognitive Sciences, 14(12), 534–541. https://doi.org/10.1016/j.tics.2010.09.007
  • Butterworth, B., Varma, S., and Laurillard, D. (2011). Dyscalculia: from brain to education. Science 332, 1049–1053. https://doi.org/10.1126/science.1201536
  • Büyükkıdık, S. (2023). Influential factors on mathematical literacy of Turkish students: An educational data mining study using PISA 2015 data. Psycho-Educational Research Reviews, 12(2), 505–521. https://doi.org/10.52963/PERR_Biruni_V12.N2.10
  • Coolen, I. E. J. I., Riggs, K. J., Bugler, M., & Castronovo, J. (2022). The approximate number system and mathematics achievement: it’s complicated. A thorough investigation of different ANS measures and executive functions in mathematics achievement in children. Journal of Cognitive Psychology, 34(6), 796–818. https://doi.org/10.1080/20445911.2022.2044338
  • Czajko, S., Vignaud, A., & Eger, E. (2024). Human brain representations of internally generated outcomes of approximate calculation revealed by ultra-high-field brain imaging. Nature Communications, 15(1), 572. https://doi.org/10.1038/s41467-024-44810-5
  • De Smedt, B., Noël, M. P., Gilmore, C., & Ansari, D. (2013). How do symbolic and non-symbolic numerical magnitude processing skills relate to individual differences in children’s mathematical skills? A review of evidence from brain and behavior. Trends in Neuroscience & Education, 2(2), 48–55.
  • Decarli, G., Sella, F., Lanfranchi, S., Gerotto, G., Gerola, S., Cossu, G., & Zorzi, M. (2023). Severe developmental dyscalculia is characterized by core deficits in both symbolic and nonsymbolic number sense. Psychological Science, 34(1), 8–21. https://doi.org/10.1177/09567976221097947
  • Dehaene, S., & Cohen, L. (1997). Cerebral pathways for calculation: Double dissociation between rote verbal and quantitative knowledge of arithmetic. Cortex, 33(2), 219–250. https://doi.org/10.1016/S0010-9452(08)70002-9
  • Devine, A., Soltész, F., Nobes, A., Goswami, U., & Szűcs, D. (2013). Gender differences in developmental dyscalculia depend on diagnostic criteria. Learning and Instruction, 27, 31–39. https://doi.org/10.1016/j.learninstruc.2013.02.004
  • Dietrich, J. F., Huber, S., & Nuerk, H. C. (2015). Methodological aspects to be considered when measuring the approximate number system (ANS) – A research review. Frontiers in Psychology, 6, 295. https://doi.org/10.3389/fpsyg.2015.00295
  • Eissa, M. A., & Mostafa, A. A. (2013). The effects of differentiated instruction by integrating multiple intelligences and learning styles on solving problems, achievement in, and attitudes towards math in six graders with learning disabilities in cooperative groups. Psycho-Educational Research Reviews, 2(2), 31–43. https://www.perrjournal.com/index.php/perrjournal/article/view/379
  • Eissa, M., & Alsayed, A. (2012). The Raven’s colored progressive matrices test: A normative data for gifted students in Egypt aged 10–17. Psycho-Educational Research Reviews, 1(1), 86–92. Retrieved from https://www.perrjournal.com/index.php/perrjournal/article/view/403
  • ElAdl, A. M. (2020). Effectiveness of a brain-based learning theory in developing mathematical skills and scientific thinking among students with learning disabilities in Oman. Psycho-Educational Research Reviews, 9(2), 67–74. https://www.perrjournal.com/index.php/perrjournal/article/view/132
  • ElAdl, A., & Eissa, M. (2019). Effect of a brain-based learning program on working memory and academic motivation among tenth grade Omanis students. Psycho-Educational Research Reviews, 8(1), 42–50. https://www.perrjournal.com/index.php/perrjournal/article/view/191
  • Fias, W., Menon, V., & Szucs, D. (2013). Multiple components of developmental dyscalculia. Trends in Neuroscience and Education, 2(2), 43–47. https://doi.org/10.1016/j.tine.2013.06.006
  • Filiz, T., & Güneş, G. (2022). A study of developing an achievement test for identifying primary school students at risk of mathematics learning disability. Psycho-Educational Research Reviews, 11(2), 354–371. https://doi.org/10.52963/PERR_Biruni_V11.N2.22
  • Fulya, T., & Altun, A. (2022). The effects of instructional environments and cognitive abilities on abstraction performance. Psycho-Educational Research Reviews, 11(3), 656–674. https://doi.org/10.52963/PERR_Biruni_V11.N3.18
  • Geary, D. C. (2004). Mathematics and learning disabilities. Journal of Learning Disabilities, 37(1), 4–15. https://doi.org/10.1177/00222194040370010201
  • Geary, D. C. (2011). Consequences, characteristics, and causes of mathematical learning disabilities and persistent low achievement in mathematics. Journal of Developmental and Behavioral Pediatrics, 32(3), 250–263. https://doi.org/10.1097/DBP.0b013e318209edef
  • Geary, D. C. (2013). Early foundations for mathematics learning and their relations to learning disabilities. Current Directions in Psychological Science, 22(1), 23–27. https://doi.org/10.1177/0963721412469398
  • Geary, D. C., Hoard, M. K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78(4), 1343–1359. https://doi.org/10.1111/j.1467-8624.2007.01069.x
  • Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., Simms, V., & Inglis, M. (2013). Individual differences in inhibitory control, not nonverbal number acuity, Correlate with Mathematics Achievement. PLOS One, 8(6), e67374. https://doi.org/10.1371/journal.pone.0067374
  • Goffin, C. (2019). How does the brain represent digits? Investigating the neural correlates of symbolic number representation using fMRI-Adaptation [Electronic Thesis and Dissertation Repository]. University of Western Ontario. https://ir.lib.uwo.ca/etd/6613
  • Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with Maths achievement. Nature, 455(7213), 665–668. https://doi.org/10.1038/nature07246
  • He, L. X., Zhou, K., Zhou, T. G., He, S., & Chen, L. (2015). Topology defined units in numerosity perception. Proceedings of the National Academy of Sciences of the United States of America, 112(41), E5647–E5655. https://doi.org/10.1073/pnas.1512408112
  • Holloway, I., & Ansari, D. (2010). Developmental specialization in the right intraparietal sulcus for the abstract representation of numerical magnitude. Journal of Cognitive Neuroscience, 22(11), 2627–2637. https://doi.org/10.1162/jocn.2009.21399
  • Inglis, M., & Gilmore, C. (2014). Indexing the approximate number system. Acta Psychologica, 145, 147–155. https://doi.org/10.1016/j.actpsy.2013.11.009
  • John, A., Henz, D., & Schöllhorn, W. (2017). Effects of NeuroBike cycling on EEG brain activity and mathematical performance: An intervention study. Psycho-Educational Research Reviews, 6(1), 67–80. https://www.perrjournal.com/index.php/perrjournal/article/view/286
  • Kader, F., & Eissa, M. (2016). The effectiveness of story mapping on reading comprehension skills of children with ADHD. Psycho-Educational Research Reviews, 5(1), 3–9. https://www.perrjournal.com/index.php/perrjournal/article/view/312
  • Kaufmann, L., & Aster, M. V (2012). The diagnosis and management of dyscalculia. Deutsches Arzteblatt International, 109(45), 767–777; quiz 778. https://doi.org/10.3238/arztebl.2012.0767
  • Kaufmann, L., Vogel, S. E., Wood, G., Kremser, C., Schocke, M., Zimmerhackl, L. B., & Koten, J. W. (2008). A developmental fMRI study of nonsymbolic numerical and spatial processing. Cortex, 44(4), 376–385. https://doi.org/10.1016/j.cortex.2007.08.003
  • Khalik, A. S. (2014). The effect of metacognitive strategy training on student mathematical problem solving process and contemplative thinking skills in primary school children with learning disabilities. Psycho-Educational Research Reviews, 3(2), 3–11. https://www.perrjournal.com/index.php/perrjournal/article/view/353
  • Kroesbergen, E. H., Huijsmans, M. D. E., & Friso-van den Bos, I. (2023). A meta-analysis on the differences in mathematical and cognitive skills between individuals with and without mathematical learning disabilities. Review of Educational Research, 93(5), 718–755. https://doi.org/10.3102/00346543221132773
  • Lamb, S., Krieger, F., & Kuhn, J.-T. (2023). Delayed development of basic numerical skills in children with developmental dyscalculia. Frontiers in Psychology, 14, 1187785. https://doi.org/10.3389/fpsyg.2023.1187785
  • Landerl, K., & Moll, K. (2010). Comorbidity of learning disorders: Prevalence and familial transmission. Journal of Child Psychology and Psychiatry, 51(3), 287–294. https://doi.org/10.1111/j.1469-7610.2009.02164.x
  • Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: Two learning disorders with different cognitive profiles. Journal of Experimental Child Psychology, 103(3), 309–324. https://doi.org/10.1016/j.jecp.2009.03.006
  • Li, D., Zhang, X., & Zhang, L. (2023). What skills could distinguish developmental dyscalculia and typically developing children: Evidence from a 2-year longitudinal screening. Journal of Learning Disabilities, 56(4), 257–277. https://doi.org/10.1177/00222194221099674
  • Lv, J., Mao, H., Zeng, L., Wang, X., Zhou, X., & Mou, Y. (2023). The developmental relationship between nonsymbolic and symbolic fraction abilities. Journal of Experimental Child Psychology, 232, 105666. https://doi.org/10.1016/j.jecp.2023.105666
  • Mazzocco, M. M., Feigenson, L., and Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82, 1224–1237. https://doi.org/10.1111/j.1467-8624.2011.01608.x
  • Moural Ali, E. (2015). The Effectiveness of a Self Regulated Learning- Based Training Program on Improving Cognitive and Metacognitive EFL Reading Comprehension of 9th Graders with Reading Disabilities. Psycho-Educational Research Reviews, 4(3), 49–59. Retrieved from https://perrjournal.com/index.php/perrjournal/article/view/323
  • Özbek, G., & Uyumaz, G. (2020). The impact of dialogic teaching on academic success and anxiety regarding mathematics courses. Psycho-Educational Research Reviews, 9(2), 22–38. https://www.perrjournal.com/index.php/perrjournal/article/view/129
  • Pedemonte, B., Pereira, C. W., Borghesani, V., Ebbert, M., Allen, I. E., Pinheiro-Chagas, P., De Leon, J., Miller, Z., Tee, B. L., & Gorno-Tempini, M. L. (2024). Profiles of mathematical deficits in children with dyslexia. NPJ Science of Learning, 9(1), 7. https://doi.org/10.1038/s41539-024-00217-x
  • Peters, E. (2020). The approximate number system (ANS) and discriminating magnitudes. In Innumeracy in the wild: Misunderstanding and misusing numbers (1st ed.). Oxford Academic. https://doi.org/10.1093/oso/9780190861094.003.0011
  • Piazza, M., & Izard, V. (2009). How humans count: Numerosity and the parietal cortex. The Neuroscientist, 15(3), 261–273. https://doi.org/10.1177/1073858409333073
  • Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. https://doi.org/10.1016/j.cognition.2010.03.012
  • Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., and Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology 17, R1042–R1043. https://doi.org/10.1016/j.cub.2007.10.013
  • Reigosa-Crespo, V., Valdés-Sosa, M., Butterworth, B., Estévez, N., Rodríguez, M., Santos, E., Torres, P., Suárez, R., & Lage, A. (2012). Basic numerical capacities and prevalence of developmental dyscalculia: The Havana survey. Developmental Psychology, 48(1), 123–135. https://doi.org/10.1037/a0025356
  • Rousselle, L., & Noel, M.-P. (2007). Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. https://doi.org/10.1016/j.cognition.2006.01.005
  • Schwenk, C., Sasanguie, D., Kuhn, J. T., Kempe, S., Doebler, P., & Holling, H. (2017). (Non-)symbolic magnitude processing in children with mathematical difficulties: A meta-analysis. Research in Developmental Disabilities, 64, 152–167. https://doi.org/10.1016/j.ridd.2017.03.003
  • Shalev, R. S., Manor, O., & Gross-Tsur, V. (2005). Developmental dyscalculia: A prospective six- year follow-up. Developmental Medicine and Child Neurology, 47(2), 121–125. https://doi.org/10.1017/S0012162205000216
  • Shichel, I., & Goldfarb, L. (2022). The effect of proportion manipulation on the size-congruency and distance effects in the numerical Stroop task. Memory & Cognition, 50(7), 1578–1589. https://doi.org/10.3758/s13421-022-01292-4
  • Soares, N., Evans, T., & Patel, D. R. (2018). Specific learning disability in mathematics: a comprehensive review. Translational Pediatrics, 7(1), 48–62. https://doi.org/10.21037/tp.2017.08.03
  • Soltész, F., Szucs, D., & Szucs, L. (2010). Relationships between magnitude representation, counting and memory in 4- to 7- year-old children: A developmental study. Behavioral and Brain Functions, 6(1), 13. https://doi.org/10.1186/1744-9081-6-13
  • Swanson, H. L., & Beebe-Frankenberger, M. (2004). The relationship between working memory and mathematical problem solving in children at risk and not at risk for serious math difficulties. Journal of Educational Psychology, 96(3), 471–491. https://doi.org/10.1037/0022-0663.96.3.471
  • Szucs, D., Devine, A., Soltesz, F., Nobes, A., & Gabriel, F. (2013). Developmental dyscalculia is related to visuo-spatial memory and inhibition impairment. Cortex, 49(10), 2674–2688. https://doi.org/10.1016/j.cortex.2013.06.007
  • Tosto, M. G., Petrill, S. A., Halberda, J., Trzaskowski, M., Tikhomirova, T. N., Bogdanova, O. Y., Ly, R., Wilmer, J. B., Naiman, D. Q., Germine, L., Plomin, R., & Kovas, Y. (2014). Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence, 43(100), 35–46. https://doi.org/10.1016/j.intell.2013.12.007
  • Träff, U., Olsson, L., Östergren, R., & Skagerlund, K. (2016). Heterogeneity of developmental dyscalculia: Cases with different deficit profiles. Frontiers in Psychology, 7(7), 2000. https://doi.org/10.3389/fpsyg.2016.02000
  • Wang, H. C., Nickels, L., & Castles, A. (2015). Orthographic learning in developmental surface and phonological dyslexia. Cognitive Neuropsychology, 32(2), 58–79. https://doi.org/10.1080/02643294.2014.1003536
  • Wang, Y., Long, J., & Wang, P. (2024). The prevalence of mathematical difficulties among primary school children in Mainland China: a systematic review and meta-analysis. Frontiers in Public Health, 11, 1250337. https://doi.org/10.3389/fpubh.2023.1250337
  • Wilson, A. J., & Dehaene, S. (2007). Number sense and developmental dyscalculia. In D. Coch, G. Dawson, & K. W. Fischer (Eds.), Human behavior, learning, and the developing brain: Atypical development (pp. 212–238). Guilford Press.
  • Yurt, E. (2022). The mediating role of metacognitive strategies in the relationship between gender and mathematical reasoning performance. Psycho-Educational Research Reviews, 11(2), 98–120. https://doi.org/10.52963/PERR_Biruni_V11.N2.07

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.