1,546
Views
3
CrossRef citations to date
0
Altmetric
Research Article

The common pathophysiologic threads between Asian Indian diabetic’s ‘Thin Fat Phenotype’ and partial lipodystrophy: the peripheral adipose tissue transcriptomic evidences

, , , &
Pages 253-263 | Received 02 Nov 2019, Accepted 14 May 2020, Published online: 03 Jun 2020

  • Sniderman AD, Bhopal R, Prabhakaran D, et al. Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int J Epidemiol. 2007 Jan;36(1):220–225.
  • Misra A, Anoop S, Gulati S, et al. Body fat patterning, hepatic fat and pancreatic volume of non-obese Asian Indians with Type 2 DIABETES in North India: a case-control study. PLoS One. 2015;10(10):1–12.
  • Akinci B, Meral R, Oral EA. Phenotypic and genetic characteristics of lipodystrophy: pathophysiology, metabolic abnormalities, and comorbidities. Curr Diab Rep. 2018 Aug;18(12).
  • Mann JP, Savage DB. What lipodystrophies teach us about the metabolic syndrome. J Clin Investig. 2019 May;129(10):4009–4021.
  • Tabassum R, Chauhan G, Dwivedi OP, et al. Genome-wide association study for Type 2 diabetes in Indians identifies a new susceptibility locus at 2q21. Diabetes. 2012 Mar;62(3):977–986.
  • Jain P, Vig S, Datta M, et al. Systems biology approach reveals genome to phenome correlation in type 2 diabetes. PLoS ONE. 2013 Jul;8(1):e53522.
  • Mathur S, Tiwari P, Gupta S, et al. Genetics of lipodystrophy: can it help in understanding the pathophysiology of metabolic syndrome? Biomolecules. 2018 Jun;8(3):47.
  • Saxena A, Tiwari P, Wahi N, et al. Transcriptome profiling reveals association of peripheral adipose tissue pathology with type-2 diabetes in Asian Indians. Adipocyte. 2019 Feb;8(1):125–136.
  • Tiwari P, Saxena A, Gupta N, et al. Systems genomics of thigh adipose tissue from Asian Indian Type-2 diabetics revealed distinct protein interaction hubs. Front Genet. 2019 Aug;9.
  • Wu J, Gentry R gcrma: background adjustment using sequence information. R package version 2.44.0. 2016.
  • Gentleman R, Carey V, Huber W, et al. genefilter: methods for filtering genes from high-throughput experiments. R package version 1.54.2. 2016.
  • Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):7.
  • Wang Z, Monteiro CD, Jagodnik KM, et al. Extraction and analysis of signatures from the gene expression omnibus by the crowd. Nat Commun. 2016; 7(12846).
  • Pinero J, Queralt-Rosinach N, Bravo A, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database. 2015;2015:bav028-bav028.
  • Soul J, Dunn SL, Hardingham TE, et al. PhenomeScape: a cytoscape app to identify differentially regulated sub-networks using known disease associations. Bioinformatics. 2016 Dec 15;32(24):3847–3849.
  • Chin CH, Chen SH, Wu HH, et al. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC systems biology. 2014; 8 Suppl 4:S11
  • Wang J, Vasaikar S, Shi Z, et al. WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit. Nucleic Acids Res. 2017;45(W1):W130-W137.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinf. 2008;9(1). DOI:10.1186/1471-2105-9-559
  • Lan H, Rabaglia ME, Stoehr JP, et al. Gene expression profiles of nondiabetic and diabetic obese mice suggest a role of hepatic lipogenic capacity in diabetes susceptibility. Diabetes. 2003 Mar;52(3):688–700.
  • Kale A, Mane D, Shukla D Expression of transforming growth factor βand its correlation with lipodystrophy in oral submucous fibrosis: an immunohistochemical study. Medicina Oral PatologíaOralyCirugiaBucal. 2013
  • Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Investig. 1997;100(11):2697–2713.
  • Yadav H, Quijano C, Kamaraju AK, Chen W, et al. Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metab. 2011;14(1):67–79.
  • Herder C, Zierer A, Koenig W, et al. Transforming growth factor-beta1 and incident type 2 diabetes: results from the MONICA/KORA case-cohort study, 1984-2002. Diabetes Care. 2009;32(10):1921–1923.
  • Singh R, Artaza JN, Taylor WE, et al. Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with β-Catenin and T-cell factor 4 May bypass canonical Wnt signaling to down-regulate adipogenic transcription factors. endocrinology. 2006;147(1):141–154.
  • Herrero L, Shapiro H, Nayer A, et al. Inflammation and adipose tissue macrophages in lipodystrophic mice. Proc Nat Acad Sci. 2009;107(1):240–245.
  • Mantzoros CS. Leptin in relation to the lipodystrophy-associated metabolic syndrome. Diabetes Metab J. 2012;36(3):181.
  • Shida D, Kitayama J, Mori K, et al. Transactivation of epidermal growth factor receptor is involved in leptin-induced activation of janus-activated kinase 2 and extracellular signal–regulated kinase 1/2 in human gastric cancer cells. Cancer Res. 2005;65(20):9159–9163.
  • Rogers C, Moukdar F, McGee MA, et al. EGF receptor (ERBB1) abundance in adipose tissue is reduced in insulin-resistant and Type 2 diabetic women. J Clin Endocrinol Metab. 2012;97(3):E329-E340.
  • Bays HE, González-Campoy JM, Henry RR, et al. Is adiposopathy (sick fat) an endocrine disease? Int J Clin Pract. 2008 Apr;62(10):1474–1483.