1,603
Views
2
CrossRef citations to date
0
Altmetric
Brief Report

Curated gene expression dataset of differentiating 3T3-L1 adipocytes under pharmacological and genetic perturbations

ORCID Icon, & ORCID Icon
Pages 600-608 | Received 01 May 2020, Accepted 22 Sep 2020, Published online: 04 Oct 2020

References

  • Green H, Kehinde O. An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell. 1975;5(1):19–27.
  • Glenn KC, Shieh JJ, Laird DM. Characterization of 3T3-L1 storage lipid metabolism: effect of somatotropin and insulin on specific pathways. Endocrinology. 1992;131:1115–1124.
  • Thomson MJ, Williams MG, Frost SC. Development of insulin resistance in 3T3-L1 adipocytes. J Biol Chem. 1997;272:7759–7764.
  • Sarjeant K, Stephens JM. Adipogenesis. Cold Spring Harb Perspect Biol. 2012;4(9):a008417.
  • Füllgrabe J, Ghislat G, Cho D-H, et al. Transcriptional regulation of mammalian autophagy at a glance. J Cell Sci. 2016;129:3059–3066.
  • Edgar R. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30:207–210.
  • Leinonen R, Sugawara H, Shumway M. on behalf of the international nucleotide sequence database collaboration. The sequence read archive. Nucleic Acids Res. 2011;39:D19–D21.
  • Huang H, Jörgensen C, Stvilia B. Genomics data curation roles, skills and perception of data quality. Lib Inf Sci Res. 2015;37:10–20.
  • Ahmed M, Kim DR. Modelling the gene expression and the DNA-binding in the 3T3-L1 differentiating adipocytes. Adipocyte. 2019;8:401–411.
  • Davis S, Meltzer PS. GEOquery: A bridge between the gene expression omnibus (GEO) and BioConductor. Bioinformatics. 2007;23(14):1846–1847.
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2017. [access date 2020 September 25]. Available from: https://www.r-project.org/
  • Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015;12:115–121.
  • Smyth GK. limma: linear models for microarray data. In: Carey GR, Huber VJ, Irizarry W, et al., editors. Bioinformatics and computational biology solutions using R and bioconductor. New York: Springer; 2005. p. 397–420.
  • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–127.
  • Leek JT, Johnson WE, Parker HS, et al. sva: surrogate variable analysis. R Package. 2019. DOI:10.18129/B9.bioc.sva.
  • Schupp M, Cristancho AG, Lefterova MI, et al. Re-expression of GATA2 cooperates with peroxisome proliferator-activated receptor-gamma depletion to revert the adipocyte phenotype. J Biol Chem. 2009;284:9458–9464.
  • Hamza MS, Pott S, Vega VB, et al. De-novo identification of PPARgamma/RXR binding sites and direct targets during adipogenesis. PLoS One. 2009;4:e4907.
  • Fang S, Yu L, Mei H, et al. Cisplatin promotes mesenchymal-like characteristics in osteosarcoma through snail. Oncol Lett. 2016;12:5007–5014.
  • Carlson M org.Mm.eg.db: genome wide annotation for human. R package; 2019. doi:10.18129/B9.bioc.org.Mm.eg.db
  • Carlson M GO.db: a set of annotation maps describing the entire gene ontology. R package version 3.2.2. R package; 2015. Available from: https://bioconductor.org/packages/release/data/annotation/html/GO.db.html
  • Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Nat Acad Sci. 2005;102:15545–15550.
  • Yu G, Wang L-G, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16:284–287.
  • Mikkelsen TS, Xu Z, Zhang X, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell. 2010;143:156–169.
  • Halama A, Horsch M, Kastenmüller G, et al. Metabolic switch during adipogenesis: from branched chain amino acid catabolism to lipid synthesis. Arch Biochem Biophys. 2016;589:93–107.
  • Cheung KJ, Tzameli I, Pissios P, et al. Xanthine oxidoreductase is a regulator of adipogenesis and PPARgamma activity. Cell Metab. 2007;5:115–128.
  • Smith NC, Swaminathan V, Pallegar NK, et al. CD24 is required for regulating gene expression, but not glucose uptake, during adipogenesis. Adipocyte. 2018;7:248–260.
  • Griffin MJ, Zhou Y, Kang S, et al. Early B-cell factor-1 (EBF1) is a key regulator of metabolic and inflammatory signaling pathways in mature adipocytes. J Biol Chem. 2013;288:35925–35939.
  • Inagaki T, Iwasaki S, Matsumura Y, et al. The FBXL10/KDM2B scaffolding protein associates with novel polycomb repressive complex-1 to regulate adipogenesis. J Biol Chem. 2015;290:4163–4177.
  • Zhang M, Zhang Y. The demethylase activity of FTO (fat mass and obesity associated protein) is required for preadipocyte differentiation. PloS One. 2015;10:e0133788.
  • Ma X, Yang P, Kaplan WH, et al. ISL1 regulates peroxisome proliferator-activated receptor activation and early adipogenesis via bone morphogenetic protein 4-dependent and -independent mechanisms. Mol Cell Biol. 2014;34:3607–3617.
  • Gao Y, Koppen A, Rakhshandehroo M, et al. Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat Commun. 2013;4:2656.
  • Hanzu FA, Musri MM, Sánchez-Herrero A, et al. Histone demethylase KDM1A represses inflammatory gene expression in preadipocytes. Obesity. 2013;21:616–625.
  • Hino S, Sakamoto A, Nagaoka K, et al. FAD-dependent lysine-specific demethylase-1 regulates cellular energy expenditure. Nat Commun. 2012;3:758.
  • Firmin FF, Oger F, Gheeraert C, et al. The RBM14/CoAA-interacting, long intergenic non-coding RNA Paral1 regulates adipogenesis and coactivates the nuclear receptor PPARγ. Sci Rep. 2017;7:14087.
  • Matsumura Y, Nakaki R, Inagaki T, Yoshida A, Kano Y, Kimura H, et al. H3K4/H3K9me3 Bivalent Chromatin Domains Targeted by Lineage-Specific DNA Methylation Pauses Adipocyte Differentiation. Mol Cell. 2015;60: 584–596
  • Romero M, Sabaté-Pérez A, Francis VA, et al. TP53INP2 regulates adiposity by activating β-catenin through autophagy-dependent sequestration of GSK3β. Nat Cell Biol. 2018;20:443–454.
  • Chew SH, Okazaki Y, Nagai H, et al. Cancer-promoting role of adipocytes in asbestos-induced mesothelial carcinogenesis through dysregulated adipocytokine production. Carcinogenesis. 2014;35:164–172.
  • Jiang S, Wang Z, Riethoven -J-J, et al. Conjugated linoleic acid activates AMP-activated protein kinase and reduces adiposity more effectively when used with metformin in mice. J Nutr. 2009;139:2244–2251.
  • Jiang S, Chen H, Wang Z, et al. Activated AMPK and prostaglandins are involved in the response to conjugated linoleic acid and are sufficient to cause lipid reductions in adipocytes. J Nutr Biochem. 2011;22:656–664.
  • LaRosa PC, Riethoven -J-JM-JM, Chen H, et al. Trans-10, cis-12 conjugated linoleic acid activates the integrated stress response pathway in adipocytes. Physiol Genomics. 2007;31:544–553.
  • Wu -T-T-T, Chen -C-C-C, Lin J-T-T, et al. The anti-inflammatory function of adenine occurs through AMPK activation and its downstream transcriptional regulation in THP-1 cells. Biosci Biotechnol Biochem. 2019;84:2220–2229.
  • Deng Y, Xu J, Zhang X, et al. Berberine attenuates autophagy in adipocytes by targeting BECN1. Autophagy. 2014;10:1776–1786.
  • Hsiao A, Worrall DS, Olefsky JM, et al. Variance-modeled posterior inference of microarray data: detecting gene-expression changes in 3T3-L1 adipocytes. Bioinformatics. 2004;20:3108–3127.
  • Rong JX, Klein J-LD, Qiu Y, et al. Rosiglitazone induces mitochondrial biogenesis in differentiated murine 3T3-L1 and C3H/10T1/2 adipocytes. PPAR Res. 2011;2011:179454.
  • Yu C-Y-Y, Mayba O, Lee JV, et al. Genome-wide analysis of glucocorticoid receptor binding regions in adipocytes reveal gene network involved in triglyceride homeostasis. PLoS One. 2010;5:e15188.
  • Wang P, Renes J, Bouwman F, et al. Absence of an adipogenic effect of rosiglitazone on mature 3T3-L1 adipocytes: increase of lipid catabolism and reduction of adipokine expression. Diabetologia. 2007;50: 654–665.
  • Step SE, Lim H-W-W, Marinis JM, et al. Anti-diabetic rosiglitazone remodels the adipocyte transcriptome by redistributing transcription to PPARγ-driven enhancers. Genes Dev. 2014;28:1018–1028.
  • Kang S, Tsai LT, Zhou Y, et al. Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis. Nat Cell Biol. 2015;17:44–56.
  • Suzuki R, Tanaka M, Takanashi M, et al. Anthocyanidins-enriched bilberry extracts inhibit 3T3-L1 adipocyte differentiation via the insulin pathway. Nutr Metab. 2011;8:14.
  • Shaw B, Lambert S, Wong MHT, et al. Monounsaturated fatty acids trigger distinct transcriptional networks in differentiated 3T3-L1 preadipocytes. J Nutrigenetics Nutrigenomics. 2013;6:1–15.
  • Pereira-Fernandes A, Vanparys C, Vergauwen L, et al. Toxicogenomics in the 3T3-L1 cell line, a new approach for screening of obesogenic compounds. Toxicol Sci. 2014;140:352–363.
  • Roberts LD, Murray AJ, Menassa D, et al. The contrasting roles of PPARδ and PPARγ in regulating the metabolic switch between oxidation and storage of fats in white adipose tissue. Genome Biol. 2011;12:R75.
  • Puhl AC, Milton FA, Cvoro A, et al. Mechanisms of peroxisome proliferator activated receptor γ regulation by non-steroidal anti-inflammatory drugs. Nucl Recept Signal. 2015;13:e004.
  • Loonam CR, O’Dell SD, Sharp PA, et al. Microarray analysis reveals altered lipid and glucose metabolism genes in differentiated, ritonavir-treated 3T3-L1 adipocytes. Curr HIV Res. 2016;14:37–46.
  • Ralston JC, Badoud F, Cattrysse B, et al. Inhibition of stearoyl-CoA desaturase-1 in differentiating 3T3-L1 preadipocytes upregulates elongase 6 and downregulates genes affecting triacylglycerol synthesis. Int J Obesity. 2014;38:1449–1456.
  • Kablan A, Saunders RA, Szkudlarek-Mikho M, et al. Prieurianin causes weight loss in diet-induced obese mice and inhibits adipogenesis in cultured preadipocytes. J Diabetes Metab. 2010;1:1000101.
  • Walczak R, Tontonoz P. PPARadigms and PPARadoxes: expanding roles for PPARgamma in the control of lipid metabolism. J Lipid Res. 2002;43:177–186.
  • Barak Y, Nelson MC, Ong ES, et al. PPARγ is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4:585–595.