3,681
Views
3
CrossRef citations to date
0
Altmetric
Research Paper

Regulatory network of metformin on adipogenesis determined by combining high-throughput sequencing and GEO database

, , , , , , , , , , , & show all
Pages 56-68 | Received 30 Sep 2021, Accepted 29 Nov 2021, Published online: 03 Jan 2022

References

  • Xu Z, You W, Liu J, et al. Elucidating the regulatory role of melatonin in brown, white, and beige adipocytes. Adv Nutr. 2020;11(2):447–460.
  • Champigny O, Ricquier D, Blondel O, et al. Beta 3-adrenergic receptor stimulation restores message and expression of brown-fat mitochondrial uncoupling protein in adult dogs. Proc Natl Acad Sci U S A. 1991;88(23):10774–10777.
  • Yao X, Shan S, Zhang Y, et al. Recent progress in the study of brown adipose tissue. Cell Biosci. 2011;1(1):35.
  • Haider N, Larose L. Harnessing adipogenesis to prevent obesity. Adipocyte. 2019;8(1):98–104.
  • Furukawa S, Fujita T, Shimabukuro M, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–1761.
  • Trayhurn P, Wood I. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92(3):347–355.
  • Dunn C, Peters D. Metformin. A review of its pharmacological properties and therapeutic use in non-insulin-dependent diabetes mellitus. Drugs. 1995;49(5):721–749.
  • Paneni F, Lüscher T. Cardiovascular protection in the treatment of Type 2 diabetes: a review of clinical trial results across drug classes. Am J Med. 2017;130(6):S18–S29.
  • Sanchez-Rangel E, Inzucchi S. Metformin: clinical use in type 2 diabetes. Diabetologia. 2017;60(9):1586–1593.
  • Pernicova I, Korbonits M. Metformin–mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology. 2014;10(3):143–156.
  • Moreno-Navarrete J, Ortega F, Rodríguez-Hermosa J, et al. OCT1 Expression in adipocytes could contribute to increased metformin action in obese subjects. Diabetes. 2011;60(1):168–176.
  • Kim B, Han S, Lee H, et al. Metformin enhances the anti-adipogenic effects of atorvastatin via modulation of STAT3 and TGF-β/Smad3 signaling. Biochem Biophys Res Commun. 2015;456(1):173–178.
  • Chen S, Brooks R, Houskeeper J, et al. Metformin suppresses adipogenesis through both AMP-activated protein kinase (AMPK)-dependent and AMPK-independent mechanisms. Mol Cell Endocrinol. 2017;440:57–68.
  • Jaganjac M, Almuraikhy S, Al-Khelaifi F, et al. Combined metformin and insulin treatment reverses metabolically impaired omental adipogenesis and accumulation of 4-hydroxynonenal in obese diabetic patients. Redox Biol. 2017;12:483–490.
  • Chava S, Chennakesavulu S, Gayatri B, et al. A novel phosphorylation by AMP-activated kinase regulates RUNX2 from ubiquitination in osteogenesis over adipogenesis. Cell Death Dis. 2018;9(7):754.
  • Chen D, Wang Y, Wu K, et al. Dual effects of metformin on adipogenic differentiation of 3T3-L1 Preadipocyte in AMPK-dependent and independent manners. Int J Mol Sci. 2018;19(6).
  • Su M, Sun L, Li W, et al. Metformin alleviates hyperuricaemia-induced serum FFA elevation and insulin resistance by inhibiting adipocyte hypertrophy and reversing suppressed white adipose tissue beiging. Clin sci. 2020;134(12):1537–1553.
  • Auger C, Knuth C, Abdullahi A, et al. Metformin prevents the pathological browning of subcutaneous white adipose tissue. Mol Metab. 2019;29:12–23.
  • Grycel S, Markowski A, Hady H, et al. Metformin treatment affects adipocytokine secretion and lipid composition in adipose tissues of diet-induced insulin-resistant rats. Nutrition. 2019;63-64:126–133.
  • Han K, Bose S, Wang J, et al. In vivo therapeutic effect of combination treatment with metformin and Scutellaria baicalensis on maintaining bile acid homeostasis. PloS One. 2017;12(9):e0182467.
  • van Stee M, de Graaf A, Groen A. Actions of metformin and statins on lipid and glucose metabolism and possible benefit of combination therapy. Cardiovasc Diabetol. 2018;17(1):94.
  • Cruciani S, Garroni G, Balzano F, et al. Tuning adipogenic differentiation in ADSCs by metformin and Vitamin D: involvement of miRNAs. Int J Mol Sci. 2020;21(17):6181.
  • Cruciani S, Garroni G, Pala R, et al. Metformin and Vitamin D modulate inflammation and autophagy during adipose-derived stem cell differentiation. Int J Mol Sci. 2021;22(13):6686.
  • Ohira M, Endo K, Saiki A, et al. Atorvastatin and pitavastatin enhance lipoprotein lipase production in L6 skeletal muscle cells through activation of adenosine monophosphate-activated protein kinase. Metabolism. 2012;61(10):1452–1460.
  • Jiang S, Wang Z, Riethoven J, et al. Conjugated linoleic acid activates AMP-activated protein kinase and reduces adiposity more effectively when used with metformin in mice. J Nutr. 2009;139(12):2244–2251.
  • Nam M, Lee W, Bae E, et al. Compound C inhibits clonal expansion of preadipocytes by increasing p21 level irrespectively of AMPK inhibition. Arch Biochem Biophys. 2008;479(1):74–81.
  • Zhang S, Wang L, Li S, et al. Identification of potential key genes associated with adipogenesis through integrated analysis of five mouse transcriptome datasets. Int J Mol Sci. 2018;19(11):3557.
  • Song Y, Zhang J, Wang H, et al. A novel immune-related genes signature after bariatric surgery is histologically associated with non-alcoholic fatty liver disease. Adipocyte. 2021;10(1):424–434.
  • Dong Z, Lei X, Kujawa S, et al. Identification of core gene in obese type 2 diabetes patients using bioinformatics analysis. Adipocyte. 2021;10(1):310–321.
  • Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45(D1):D353–D361.
  • Liu Y, Jin J, Chen Y, et al. Integrative analyses of biomarkers and pathways for adipose tissue after bariatric surgery. Adipocyte. 2020;9(1):384–400.
  • Hocking S, Samocha-Bonet D, Milner K, et al. Adiposity and insulin resistance in humans: the role of the different tissue and cellular lipid depots. Endocr Rev. 2013;34(4):463–500.
  • Ying W, Fu W, Lee Y, et al. The role of macrophages in obesity-associated islet inflammation and β-cell abnormalities. Nature reviews. Nature Reviews. Endocrinology. 2020;16(2):81–90.
  • Vecchié A, Dallegri F, Carbone F, et al. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur J Intern Med. 2018;48:6–17.
  • Koenen M, Hill M, Cohen P, et al. Obesity, adipose tissue and vascular dysfunction. Circ Res. 2021;128(7):951–968.
  • Mikkelsen T, Xu Z, Zhang X, et al. Comparative epigenomic analysis of murine and human adipogenesis. Cell. 2010;143(1):156–169.
  • Romero M, Sabaté-Pérez A, Francis V, et al. TP53INP2 regulates adiposity by activating β-catenin through autophagy-dependent sequestration of GSK3β. Nat Cell Biol. 2018;20(4):443–454.
  • Duteil D, Metzger E, Willmann D, et al. LSD1 promotes oxidative metabolism of white adipose tissue. Nat Commun. 2014;5(1):4093.
  • Siersbæk R, Madsen J, Javierre B, et al. Dynamic rewiring of promoter-anchored chromatin loops during adipocyte differentiation. Mol Cell. 2017;66(3):420–435.e5.
  • Al Adhami H, Evano B, Le Digarcher A, et al. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation. Genome Res. 2015;25(3):353–367.
  • Kou Y, Liu Q, Liu W, et al. LIGHT/TNFSF14 signaling attenuates beige fat biogenesis. The FASEB Journal. 2019;33(2):1595–1604.
  • Sun W, Yu Z, Yang S, et al. A transcriptomic analysis reveals novel patterns of gene expression during 3T3-L1 adipocyte differentiation. Front Mol Biosci. 2020;7:564339.
  • Hertzel A, Bernlohr D. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab. 2000;11(5):175–180.
  • Abumrad N, El-maghrabi M, Amri E, et al. Cloning of a rat adipocyte membrane protein implicated in binding or transport of long-chain fatty acids that is induced during preadipocyte differentiation. Homology with human CD36. J Biol Chem. 1993;268(24):17665–17668.
  • Kumar A, Xiao Y, Laipis P, et al. Glucose deprivation enhances targeting of GLUT1 to lipid rafts in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab. 2004;286(4):E568–76.
  • Kim D, Langmead B, Salzberg S. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–360.
  • Liao Y, Smyth G, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–930.