1,807
Views
2
CrossRef citations to date
0
Altmetric
Research Paper

A chromatin accessibility landscape during early adipogenesis of human adipose-derived stem cells

, , , & ORCID Icon
Pages 239-249 | Received 10 Oct 2021, Accepted 04 Apr 2022, Published online: 17 Apr 2022

References

  • Gonzalez-Muniesa P, Martinez-Gonzalez MA, Hu FB, et al. Obesity. Nat Rev Dis Primers. 2017;3:17034.
  • Sánchez-Muñoz F, El Hafidi M, Buelna-Chontal M, et al. Adipogenesis: a necessary but harmful strategy. Int J Mol Sci. 2019.
  • Nyberg ST, Batty GD, Pentti J, et al. Obesity and loss of disease-free years owing to major non-communicable diseases: a multicohort study. The Lancet. 2018;3:e490–e7.
  • Hammarstedt A, Gogg S, Hedjazifar S, et al. Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev. 2018;98:1911–1941.
  • Ghaben AL, Scherer PE. Adipogenesis and metabolic health. Nat Rev Mol Cell Biol. 2019;20:242–258.
  • Naaz A, Holsberger DR, Iwamoto GA, et al. Loss of cyclin‐dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J Off Publ Fed Am Soc Exp Biol. 2004;18:1925–1927.
  • Mota de Sa P, Richard AJ, Hang H, et al. Transcriptional regulation of adipogenesis. Compr Physiol. 2017;7:635–674.
  • Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas. 2019;156:1–9.
  • Klemm SL, Shipony Z, Greenleaf WJ. Chromatin accessibility and the regulatory epigenome. Nat Rev Genet. 2019;20:207–220.
  • Siersbaek R, Rabiee A, Nielsen R, et al. Transcription factor cooperativity in early adipogenic hotspots and super-enhancers. Cell Rep. 2014;7:1443–1455.
  • Siersbæk R, Nielsen R, John S, et al. Extensive chromatin remodelling and establishment of transcription factor ‘hotspots’ during early adipogenesis. The EMBO J. 2011;30:1459–1472.
  • Lefterova MI, Haakonsson AK, Lazar MA, et al. PPARγ and the global map of adipogenesis and beyond. Metab. 2014;25:293–302.
  • Shashikant T, Ettensohn CA. Genome-wide analysis of chromatin accessibility using ATAC-seq. Methods Cell Biol. 2019;151:219–235.
  • Buenrostro JD, Wu B, Chang HY, et al. ATAC‐seq: a method for assaying chromatin accessibility genome‐wide. Curr Protoc Mol Biol. 2015;109:21.9. 1-.9. 9.
  • Li S, Xue T, He F, et al. A time-resolved proteomic analysis of transcription factors regulating adipogenesis of human adipose derived stem cells. Biochem Biophys Res Commun. 2019;511:855–861.
  • Orchard P, Kyono Y, Hensley J, et al. Quantification, dynamic visualization, and validation of bias in ATAC-seq data with ataqv. Cell Syst. 2020;10:298–306. e4.
  • Liu C, Wang M, Wei X, et al. An ATAC-seq atlas of chromatin accessibility in mouse tissues. Sci Data. 2019;6:1–10.
  • Yan F, Powell DR, Curtis DJ, et al. From reads to insight: a hitchhiker’s guide to ATAC-seq data analysis. Genome Biol. 2020;21:1–16.
  • Chawla A, Nagy C, Turecki G. Chromatin profiling techniques: exploring the chromatin environment and its contributions to complex traits. Int J Mol Sci. 2021;22:7612.
  • Tan L, Xing D, Chang C-H, et al. Three-dimensional genome structures of single diploid human cells. Sci (New York, N.Y.). 2018;361:924–928.
  • Troll CJ, Kapp J, Rao V, et al. A ligation-based single-stranded library preparation method to analyze cell-free DNA and synthetic oligos. BMC Genomics. 2019;20:1–14.
  • Wang J, Dai W, Wu L, et al. SALP, a new single-stranded DNA library preparation method especially useful for the high-throughput characterization of chromatin openness states. Am J Clin Dermatol. 2018;19:1–12.
  • Ma S, Zhang Y. Profiling chromatin regulatory landscape: insights into the development of ChIP-seq and ATAC-seq. Mol Biomed. 2020;1:1–13.
  • Meléndez-Ramírez C, Cuevas-Diaz Duran R, Barrios-García T, et al. Dynamic landscape of chromatin accessibility and transcriptomic changes during differentiation of human embryonic stem cells into dopaminergic neurons. Sci Rep. 2021;11:1–18.
  • Barnett KR, Decato BE, Scott TJ, et al. ATAC-Me captures prolonged DNA methylation of dynamic chromatin accessibility loci during cell fate transitions. Mol Cell. 2020;77:1350–64. e6.
  • McLean CY, Bristor D, Hiller M, et al. GREAT improves functional interpretation of cis-regulatory regions. Nat Biotechnol. 2010;28:495–501.
  • Pálfy M, Schulze G, Valen E, et al. Chromatin accessibility established by pou5f3, sox19b and nanog primes genes for activity during zebrafish genome activation. PLoS Genet. 2020;16:e1008546.
  • Tsompana M, Mj B. Chromatin accessibility: a window into the genome. Epigenet Chromatin. 2014;7:1–16.
  • Moseti D, Regassa A, W-k K. Molecular regulation of adipogenesis and potential anti-adipogenic bioactive molecules. Int J Mol Sci. 2016;17:124.
  • A Mcgregor R, S Choi M. microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med. 2011;11:304–316.
  • Navre M, Ringold GM. A growth factor-repressible gene associated with protein kinase C-mediated inhibition of adipocyte differentiation. J Cell Biol. 1988;107:279–286.
  • Zhou Y, Wang D, Li F, et al. Different roles of protein kinase C-βI and-δ in the regulation of adipocyte differentiation. Int J Biochem Cell Biol. 2006;38:2151–2163.
  • Lee S, Cho H-Y, Bui HTT, et al. The osteogenic or adipogenic lineage commitment of human mesenchymal stem cells is determined by protein kinase C delta. BMC Cell Biol. 2014;15:1–12.
  • Artemenko Y, Gagnon A, Aubin D, et al. Anti‐adipogenic effect of PDGF is reversed by PKC inhibition. J Cell Physiol. 2005;204:646–653.
  • Sun C, Sakashita H, Kim J, et al. Mosaic mutant analysis identifies PDGFRα/PDGFRβ as negative regulators of adipogenesis. Stem Cell. 2020;26:707–21. e5.
  • Haider N, Dusseault J, Larose L. Nck1 deficiency impairs adipogenesis by activation of PDGFRα in preadipocytes. ISci. 2018;6:22–37.
  • Virakul S, Dalm VA, Paridaens D, et al. Platelet-derived growth factor-BB enhances adipogenesis in orbital fibroblasts. Invest Ophthalmol Visual Sci. 2015;56:5457–5464.
  • Kawaguchi N, Toriyama K, Nicodemou-Lena E, et al. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci USA. 1998;95:1062–1066.
  • Herold C, Rennekampff HO, Engeli S. Apoptotic pathways in adipose tissue. Apoptosis Int J Program Cell Death. 2013;18:911–916.
  • Sorisky A, Magun R, Gagnon A. Adipose cell apoptosis: death in the energy depot. Int J Obesity Relat Metab Disord J Int Assoc Study Obesity. 2000;24:S3–S7.
  • Mraz M, Haluzik M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J Endocrinol. 2014;222:R113–R27.
  • Zhou H, F L. Regulation, communication, and functional roles of adipose tissue-resident CD4+ T cells in the control of metabolic homeostasis. Front Immunol. 2018;1961. DOI:10.3389/fimmu.2018.01961
  • Dinarello CA. Interleukin-1. Cytokine Growth Factor Rev. 1997;8:253–265.
  • Gorelik L, Flavell RA. Transforming growth factor-β in T-cell biology. Nat Rev Immunol. 2002;2:46–53.
  • Liao W, Lin J-X, Wang L, et al. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011;12:551–559.
  • Liu R, Nikolajczyk BS. Tissue immune cells fuel obesity-associated inflammation in adipose tissue and beyond. Front Immunol. 2019;10:1587.
  • Nyambuya TM, Dludla PV, Mxinwa V, et al. Obesity-induced inflammation and insulin resistance: a mini-review on T-cells. Metab Open. 2019;3:100015.
  • Vielma SA, Klein RL, Levingston CA, et al. Adipocytes as immune regulatory cells. Int Immunopharmacol. 2013;16:224–231.
  • Jiang N, Li Y, Shu T, et al. Cytokines and inflammation in adipogenesis: an updated review. Front Med. 2019;13:314–329.
  • Ioannidou A, Fisher RM, Hagberg CE. The multifaceted roles of the adipose tissue vasculature. Obesity Rev Off J Int Assoc Stud Obesity. 2021;23:e13403.
  • Harvey I, Boudreau A, Stephens JM. Adipose tissue in health and disease. Open Biol. 2020;10:200291.
  • Tran K-V, Gealekman O, Frontini A, et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab. 2012;15:222–229.
  • Lambert SA, Jolma A, Campitelli LF, et al. The human transcription factors. Cell. 2018;172:650–665.
  • Spiegelman B, Hu E, Kim J, et al. PPARγ and the control of adipogenesis. Biochimie. 1997;79:111–112.
  • Lee J-E, Ge K. Transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Cell Biosci. 2014;4:1–11.
  • Rose AB. Introns as gene regulators: a brick on the accelerator. Front Genet. 2019;9:672.
  • Haddad-Mashadrizeh A, Hemmat J, Aslamkhan M. Intronic regions of the human coagulation factor VIII gene harboring transcription factor binding sites with a strong bias towards the short-interspersed elements. Heliyon. 2020;6:e04727.
  • van Dijk TB, Caldenhoven E, Raaijmakers JA, et al. The role of transcription factor PU. I in the activity of the intronic enhancer of the eosinophil-derived neurotoxin (RNS2) gene. J Am Soc Hematol. 1998;91:2126–2132.
  • Cleynen I, Brants JR, Peeters K, et al. HMGA2 regulates transcription of the Imp2 gene via an intronic regulatory element in cooperation with nuclear factor-κB. Mol Cancer Res(MCR). 2007;5:363–372.
  • Farmer SR. Transcriptional control of adipocyte formation. Cell Metab. 2006;4:263–273.
  • Siersbæk R, Nielsen R, Mandrup S. PPARγ in adipocyte differentiation and metabolism–novel insights from genome-wide studies. FEBS Lett. 2010;584:3242–3249.
  • Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinf (Oxford, England). 2014;30:2114–2120.
  • Li H, Durbin R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinf (Oxford, England). 2009;25:1754–1760.
  • Zhang Y, Liu T, Meyer CA, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:1–9.
  • Ramírez F, Ryan DP, Grüning B, et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016;44:W160–W5.
  • Robinson JT, Thorvaldsdóttir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–26.
  • Yu G, Wang L-G, Q-y H. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinf (Oxford, England). 2015;31:2382–2383.
  • Heinz S, Benner C, Spann N, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–589.