2,879
Views
24
CrossRef citations to date
0
Altmetric
Review

Trial watch: Naked and vectored DNA-based anticancer vaccines

, , , , , , , , , , , , & show all
Article: e1026531 | Received 27 Feb 2015, Accepted 27 Feb 2015, Published online: 21 May 2015

References

  • Aranda F, Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: peptide vaccines in cancer therapy. Oncoimmunology 2013; 2:e26621; PMID:24498550; http://dx.doi.org/10.4161/onci.26621
  • Ueno H, Schmitt N, Klechevsky E, Pedroza-Gonzalez A, Matsui T, Zurawski G, Oh S, Fay J, Pascual V, Banchereau J, Palucka K. Harnessing human dendritic cell subsets for medicine. Immunol Rev 2010; 234:199-212; PMID:20193020; http://dx.doi.org/10.1111/j.0105-2896.2009.00884.x
  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013; 39:38-48; PMID:23890062; http://dx.doi.org/10.1016/j.immuni.2013.07.004
  • Palucka K, Banchereau J. SnapShot: cancer vaccines. Cell 2014; 157:516-e1; PMID:24725415; http://dx.doi.org/10.1016/j.cell.2014.03.044
  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Herve Fridman W, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2014; 3:e28185; PMID:24800178; http://dx.doi.org/10.4161/onci.28185
  • Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman WH, et al. Trial watch: dendritic cell-based anticancer therapy. Oncoimmunology 2014; 3: e963424; http://dx.doi.org/10.4161/21624011.2014.963424
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev 2011; 239:62-84; PMID:21198665; http://dx.doi.org/10.1111/j.1600-065X.2010.00980.x
  • Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al. Classification of current anticancer immunotherapies. Oncotarget 2014; 5:12472-508; PMID:25537519
  • Senovilla L, Vacchelli E, Garcia P, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: DNA vaccines for cancer therapy. Oncoimmunology 2013; 2:e23803; PMID:23734328; http://dx.doi.org/10.4161/onci.23803
  • Haniffa M, Collin M, Ginhoux F. Identification of human tissue cross-presenting dendritic cells: A new target for cancer vaccines. Oncoimmunology 2013; 2:e23140; PMID:23802067; http://dx.doi.org/10.4161/onci.23140
  • Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Sci 2013; 342:1432-3
  • Pardoll D. Immunotherapy: it takes a village. Science 2014; 344:149; PMID:24723594; http://dx.doi.org/10.1126/science.344.6180.149-a
  • Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5:296-306; PMID:15803149; http://dx.doi.org/10.1038/nri1592
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265-77; PMID:22437871; http://dx.doi.org/10.1038/nrc3258
  • Coosemans A, Vergote I, Van Gool SW. Dendritic cell-based immunotherapy in ovarian cancer. Oncoimmunology 2013; 2:e27059; PMID:24501688; http://dx.doi.org/10.4161/onci.27059
  • Aruga A. Vaccination of biliary tract cancer patients with four peptides derived from cancer-testis antigens. Oncoimmunology 2013; 2:e24882; PMID:24073370; http://dx.doi.org/10.4161/onci.24882
  • Ricupito A, Grioni M, Calcinotto A, Bellone M. Boosting anticancer vaccines: too much of a good thing? Oncoimmunology 2013; 2:e25032; PMID:24073378; http://dx.doi.org/10.4161/onci.25032
  • Hailemichael Y, Overwijk WW. Peptide-based anticancer vaccines: the making and unmaking of a T-cell graveyard. Oncoimmunology 2013; 2:e24743; PMID:24073366; http://dx.doi.org/10.4161/onci.24743
  • Bijker MS, Melief CJ, Offringa R, van der Burg SH. Design and development of synthetic peptide vaccines: past, present and future. Expert Rev Vaccines 2007; 6:591-603; PMID:17669012; http://dx.doi.org/10.1586/14760584.6.4.591
  • Yaddanapudi K, Mitchell RA, Eaton JW. Cancer vaccines: looking to the future. Oncoimmunology 2013; 2:e23403; PMID:23802081; http://dx.doi.org/10.4161/onci.23403
  • Valmori D, Souleimanian NE, Tosello V, Bhardwaj N, Adams S, O'Neill D, Pavlick A, Escalon JB, Cruz CM, Angiulli A, et al. Vaccination with NY-ESO-1 protein and CpG in Montanide induces integrated antibody/Th1 responses and CD8 T cells through cross-priming. Proc Natl Acad Sci U S A 2007; 104:8947-52; PMID:17517626; http://dx.doi.org/10.1073/pnas.0703395104
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8:108-20; PMID:18219306; http://dx.doi.org/10.1038/nrc2326
  • Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 2010:174378; PMID:20368780; http://dx.doi.org/10.1155/2010/174378
  • Stevenson FK, Ottensmeier CH, Rice J. DNA vaccines against cancer come of age. Curr Opin Immunol 2010; 22:264-70; PMID:20172703; http://dx.doi.org/10.1016/j.coi.2010.01.019
  • Teja Colluru V, Johnson LE, Olson BM, McNeel DG. Preclinical and clinical development of DNA vaccines for prostate cancer. Urol Oncol 2013
  • Russell SJ, Peng KW, Bell JC. Oncolytic virotherapy. Nat Biotechnol 2012; 30:658-70; PMID:22781695; http://dx.doi.org/10.1038/nbt.2287
  • Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE. Oncolytic viruses in cancer therapy. Cancer Lett 2007; 254:178-216; PMID:17383089; http://dx.doi.org/10.1016/j.canlet.2007.02.002
  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, Zitvogel L, et al. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology 2014; 3:e28694; PMID:25097804; http://dx.doi.org/10.4161/onci.28694
  • Collet G, Grillon C, Nadim M, Kieda C. Trojan horse at cellular level for tumor gene therapies. Gene 2013; 525:208-16; PMID:23542073; http://dx.doi.org/10.1016/j.gene.2013.03.057
  • Khan AS, Broderick KE, Sardesai NY. Clinical development of intramuscular electroporation: providing a "boost" for DNA vaccines. Methods Mol Biol 2014; 1121:279-89; PMID:24510832; http://dx.doi.org/10.1007/978-1-4614-9632-8_25
  • Mohler VL, Heithoff DM, Mahan MJ, Hornitzky MA, Thomson PC, House JK. Development of a novel in-water vaccination protocol for DNA adenine methylase deficient Salmonella enterica serovar Typhimurium vaccine in adult sheep. Vaccine 2012; 30:1481-91; PMID:22214887; http://dx.doi.org/10.1016/j.vaccine.2011.12.079
  • Lewis GK. Live-attenuated Salmonella as a prototype vaccine vector for passenger immunogens in humans: are we there yet? Expert Rev Vaccines 2007; 6:431-40; PMID:17542757; http://dx.doi.org/10.1586/14760584.6.3.431
  • Bilusic M, Heery CR, Arlen PM, Rauckhorst M, Apelian D, Tsang KY, Tucker JA, Jochems C, Schlom J, Gulley JL, et al. Phase I trial of a recombinant yeast-CEA vaccine (GI-6207) in adults with metastatic CEA-expressing carcinoma. Cancer Immunol Immunother 2014; 63:225-34; PMID:24327292; http://dx.doi.org/10.1007/s00262-013-1505-8
  • Bernstein MB, Chakraborty M, Wansley EK, Guo Z, Franzusoff A, Mostbock S, Tucker JA, Jochems C, Schlom J, Gulley JL, et al. Recombinant Saccharomyces cerevisiae (yeast-CEA) as a potent activator of murine dendritic cells. Vaccine 2008; 26:509-21; PMID:18155327; http://dx.doi.org/10.1016/j.vaccine.2007.11.033
  • Bolhassani A, Muller M, Roohvand F, Motevalli F, Agi E, Shokri M, Rad MM, Hosseinzadeh S. Whole recombinant Pichia pastoris expressing HPV16 L1 antigen is superior in inducing protection against tumor growth as compared to killed transgenic Leishmania. Hum Vaccin Immunother 2014; 10:3499-508; PMID:25668661; http://dx.doi.org/10.4161/21645515.2014.979606
  • Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J 2011; 17:359-71; PMID:21952287; http://dx.doi.org/10.1097/PPO.0b013e3182325e63
  • Cawood R, Hills T, Wong SL, Alamoudi AA, Beadle S, Fisher KD, Seymour LW. Recombinant viral vaccines for cancer. Trends Mol Med 2012; 18:564-74; PMID:22917663; http://dx.doi.org/10.1016/j.molmed.2012.07.007
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, Lim A, Osborne CS, Pawliuk R, Morillon E, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302:415-9; PMID:14564000; http://dx.doi.org/10.1126/science.1088547
  • Majhen D, Calderon H, Chandra N, Fajardo CA, Rajan A, Alemany R, Custers J. Adenovirus-based vaccines for fighting infectious diseases and cancer: progress in the field. Hum Gene Ther 2014; 25(4):301-17; PMID:24580050
  • Pasetti MF, Levine MM, Sztein MB. Animal models paving the way for clinical trials of attenuated Salmonella enterica serovar Typhi live oral vaccines and live vectors. Vaccine 2003; 21:401-18; PMID:12531639; http://dx.doi.org/10.1016/S0264-410X(02)00472-3
  • Niethammer AG, Lubenau H, Mikus G, Knebel P, Hohmann N, Leowardi C, Beckhove P, Akhisaroglu M, Ge Y, Springer M, et al. Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-Receptor 2 in patients with stage IV and locally advanced pancreatic cancer. BMC Cancer 2012; 12:361; PMID:22906006; http://dx.doi.org/10.1186/1471-2407-12-361
  • Lin CW, Lee JY, Tsao YP, Shen CP, Lai HC, Chen SL. Oral vaccination with recombinant Listeria monocytogenes expressing human papillomavirus type 16 E7 can cause tumor growth in mice to regress. Int J Cancer 2002; 102:629-37; PMID:12448006; http://dx.doi.org/10.1002/ijc.10759
  • Hamilton DH, Litzinger MT, Jales A, Huang B, Fernando RI, Hodge JW, Ardiani A, Apelian D, Schlom J, Palena C. Immunological targeting of tumor cells undergoing an epithelial-mesenchymal transition via a recombinant brachyury-yeast vaccine. Oncotarget 2013; 4:1777-90; PMID:24125763
  • Tanaka A, Jensen JD, Prado R, Riemann H, Shellman YG, Norris DA, Chin L, Yee C, Fujita M. Whole recombinant yeast vaccine induces antitumor immunity and improves survival in a genetically engineered mouse model of melanoma. Gene Ther 2011; 18:827-34; PMID:21390072; http://dx.doi.org/10.1038/gt.2011.28
  • Zhang T, Sun L, Xin Y, Ma L, Zhang Y, Wang X, Xu K, Ren C, Zhang C, Chen Z, et al. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin. BMC Biotechnol 2012; 12:97; PMID:23253888; http://dx.doi.org/10.1186/1472-6750-12-97
  • Kugelberg E. Dendritic cells: TLR agonists trigger rapid metabolic changes. Nat Rev Immunol 2014; 14:209; PMID:24662378; http://dx.doi.org/10.1038/nri3652
  • Orr MT, Beebe EA, Hudson TE, Moon JJ, Fox CB, Reed SG, Coler RN. A dual TLR agonist adjuvant enhances the immunogenicity and protective efficacy of the tuberculosis vaccine antigen ID93. PLoS One 2014; 9:e83884; PMID:24404140; http://dx.doi.org/10.1371/journal.pone.0083884
  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2:e25238; PMID:24083080; http://dx.doi.org/10.4161/onci.25238
  • Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L, Kroemer G, et al. Trial Watch: Toll-like receptor agonists in oncological indications. Oncoimmunology 2014; 3:e29179; PMID:25083332; http://dx.doi.org/10.4161/onci.29179
  • Weeratna RD, Makinen SR, McCluskie MJ, Davis HL. TLR agonists as vaccine adjuvants: comparison of CpG ODN and Resiquimod (R-848). Vaccine 2005; 23:5263-70; PMID:16081189; http://dx.doi.org/10.1016/j.vaccine.2005.06.024
  • Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 2009; 27:5450-9; PMID:19622402; http://dx.doi.org/10.1016/j.vaccine.2009.07.005
  • Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 2006; 40:86-97; PMID:16997717; http://dx.doi.org/10.1016/j.ymeth.2006.05.022
  • Hallermalm K, Johansson S, Brave A, Ek M, Engstrom G, Boberg A, Gudmundsdotter L, Blomberg P, Mellstedt H, Stout R, et al. Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer. Scand J Immunol 2007; 66:43-51; PMID:17587345; http://dx.doi.org/10.1111/j.1365-3083.2007.01945.x
  • Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dorken B, Norley S, Lipp M, Walther W, Pezzutto A, et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2012; 1:1537-45; PMID:23264900; http://dx.doi.org/10.4161/onci.22563
  • van den Berg JH, Nujien B, Beijnen JH, Vincent A, van Tinteren H, Kluge J, Woerdeman LA, Hennink WE, Storm G, Schumacher TN, et al. Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 2009; 20:181-9; PMID:19301471; http://dx.doi.org/10.1089/hum.2008.073
  • van den Berg JH, Oosterhuis K, Schumacher TN, Haanen JB, Bins AD. Intradermal vaccination by DNA tattooing. Methods Mol Biol 2014; 1143:131-40; PMID:24715286; http://dx.doi.org/10.1007/978-1-4939-0410-5_9
  • Murakami T, Sunada Y. Plasmid DNA gene therapy by electroporation: principles and recent advances. Curr Gene Ther 2011; 11:447-56; PMID:22023474; http://dx.doi.org/10.2174/156652311798192860
  • Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. J Immunol 2005; 174:6292-8; PMID:15879128; http://dx.doi.org/10.4049/jimmunol.174.10.6292
  • Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, Otten GR, Ulmer JB, Donnelly JJ, Ott G, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165:2850-8; PMID:10946318; http://dx.doi.org/10.4049/jimmunol.165.5.2850
  • Galluzzi L, Kepp O, Kroemer G. Immunogenic cell death in radiation therapy. Oncoimmunology 2013; 2:e26536; PMID:24404424; http://dx.doi.org/10.4161/onci.26536
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2013; 31:51-72; PMID:23157435; http://dx.doi.org/10.1146/annurev-immunol-032712-100008
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780-8; PMID:23175281; http://dx.doi.org/10.1038/nrm3479
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, Zitvogel L, Kroemer G, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111-34; PMID:23170259; http://dx.doi.org/10.4161/onci.21494
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557-76; PMID:23264902; http://dx.doi.org/10.4161/onci.22428
  • Olson BM, McNeel DG. Antigen loss and tumor-mediated immunosuppression facilitate tumor recurrence. Expert Rev Vaccines 2012; 11:1315-7; PMID:23249231; http://dx.doi.org/10.1586/erv.12.107
  • Monjazeb AM, Zamora AE, Grossenbacher SK, Mirsoian A, Sckisel GD, Murphy WJ. Immunoediting and antigen loss: overcoming the achilles heel of immunotherapy with antigen non-specific therapies. Front Oncol 2013; 3:197; PMID:23898464; http://dx.doi.org/10.3389/fonc.2013.00197
  • Maletzki C, Stier S, Linnebacher M. Microsatellite instability in hematological malignancies: Hypermutation vs. immune control-who is challenging who? Oncoimmunology 2013; 2:e25419; PMID:24167765; http://dx.doi.org/10.4161/onci.25419
  • Spiotto MT, Rowley DA, Schreiber H. Bystander elimination of antigen loss variants in established tumors. Nat Med 2004; 10:294-8; PMID:14981514; http://dx.doi.org/10.1038/nm999
  • Wang Y, Yang J, Li Z, Yang S. Evolution of the strategies for screening and identifying human tumor antigens. Curr Protein Pept Sci 2014; 15:819-27; PMID:25345657; http://dx.doi.org/10.2174/1389203715666141027100331
  • Gilboa E. The makings of a tumor rejection antigen. Immunity 1999; 11:263-70; PMID:10514004; http://dx.doi.org/10.1016/S1074-7613(00)80101-6
  • Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001; 7:297-303; PMID:11231627; http://dx.doi.org/10.1038/85438
  • Trajanoski Z, Maccalli C, Mennonna D, Casorati G, Parmiani G, Dellabona P. Somatically mutated tumor antigens in the quest for a more efficacious patient-oriented immunotherapy of cancer. Cancer Immunol Immunother 2014; PMID:25164877
  • Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Translating tumor antigens into cancer vaccines. Clin Vaccine Immunol 2011; 18:23-34; PMID:21048000; http://dx.doi.org/10.1128/CVI.00286-10
  • Kaluza KM, Kottke T, Diaz RM, Rommelfanger D, Thompson J, Vile R. Adoptive transfer of cytotoxic T lymphocytes targeting two different antigens limits antigen loss and tumor escape. Hum Gene Ther 2012; 23:1054-64; PMID:22734672; http://dx.doi.org/10.1089/hum.2012.030
  • Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M. Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2013; 2:e27010; PMID:24498547; http://dx.doi.org/10.4161/onci.27010
  • Dao T, Liu C, Scheinberg DA. Approaching untargetable tumor-associated antigens with antibodies. Oncoimmunology 2013; 2:e24678; PMID:24073363; http://dx.doi.org/10.4161/onci.24678
  • Scanlon CS, D'Silva NJ. Personalized medicine for cancer therapy: lessons learned from tumor-associated antigens. Oncoimmunology 2013; 2:e23433; PMID:23734304; http://dx.doi.org/10.4161/onci.23433
  • Senovilla L, Aranda F, Galluzzi L, Kroemer G. Impact of myeloid cells on the efficacy of anticancer chemotherapy. Curr Opin Immunol 2014; 30C:24-31; http://dx.doi.org/10.1016/j.coi.2014.05.009
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, Sautès-Fridman C, Ma Y, Tartour E, Zitvogel L, et al. Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323-43; PMID:23243596; http://dx.doi.org/10.4161/onci.22009
  • Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9:162-74; PMID:19197294; http://dx.doi.org/10.1038/nri2506
  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12:253-68; PMID:22437938; http://dx.doi.org/10.1038/nri3175
  • Gajewski TF. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res 2007; 13:5256-61; PMID:17875753; http://dx.doi.org/10.1158/1078-0432.CCR-07-0892
  • Fallarino F, Grohmann U, Hwang KW, Orabona C, Vacca C, Bianchi R, Belladonna ML, Fioretti MC, Alegre ML, Puccetti P. Modulation of tryptophan catabolism by regulatory T cells. Nat Immunol 2003; 4:1206-12; PMID:14578884; http://dx.doi.org/10.1038/ni1003
  • Wang RF. Regulatory T cells and innate immune regulation in tumor immunity. Springer Semin Immunopathol 2006; 28:17-23; PMID:16838179; http://dx.doi.org/10.1007/s00281-006-0022-7
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565-70; PMID:21436444; http://dx.doi.org/10.1126/science.1203486
  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3:991-8; PMID:12407406; http://dx.doi.org/10.1038/ni1102-991
  • Fioretti D, Iurescia S, Rinaldi M. Recent advances in design of immunogenic and effective naked DNA vaccines against cancer. Recent Pat Anticancer Drug Discov 2014; 9:66-82; PMID:23444943
  • Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, Bowen R, Bunning ML. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 2001; 75:4040-7; PMID:11287553; http://dx.doi.org/10.1128/JVI.75.9.4040-4047.2001
  • Anderson ED, Mourich DV, Leong JA. Gene expression in rainbow trout (Oncorhynchus mykiss) following intramuscular injection of DNA. Mol Mar Biol Biotechnol 1996; 5:105-13; PMID:8680523
  • Anderson ED, Mourich DV, Fahrenkrug SC, LaPatra S, Shepherd J, Leong JA. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol Mar Biol Biotechnol 1996; 5:114-22; PMID:8680524
  • Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, Wulderk M, Jeffers Y, Sadelain M, Hohenhaus AE, et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 2003; 9:1284-90; PMID:12684396
  • USDA licenses DNA vaccine for treatment of melanoma in dogs. J Am Vet Med Assoc 2010; 236:495; PMID:20187810; http://dx.doi.org/10.2460/javma.236.5.488
  • Bloy N, Pol J, Manic G, Vitale I, Eggermont A, Galon J, Cremer I, Erbs P, Limacher JM, Preville X, et al. Trial watch: padioimmunotherapy for oncological indications. Oncoimmunology 2014; 3:e28694. in press; PMID:25097804
  • Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: tumor-targeting monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27048; PMID:24605265; http://dx.doi.org/10.4161/onci.27048
  • Compte M, Alvarez-Cienfuegos A, Nunez-Prado N, Sainz-Pastor N, Blanco-Toribio A, Pescador N, Sanz L, Alvarez-Vallina L. Functional comparison of single-chain and two-chain anti-CD3-based bispecific antibodies in gene immunotherapy applications. Oncoimmunology 2014; 3:e28810; PMID:25057445; http://dx.doi.org/10.4161/onci.28810
  • Kass ES, Greiner JW, Kantor JA, Tsang KY, Guadagni F, Chen Z, Clark B, De Pascalis R, Schlom J, Van Waes C. Carcinoembryonic antigen as a target for specific antitumor immunotherapy of head and neck cancer. Cancer Res 2002; 62:5049-57; PMID:12208760
  • Wang D, Rayani S, Marshall JL. Carcinoembryonic antigen as a vaccine target. Expert Rev Vaccines 2008; 7:987-93; PMID:18767948; http://dx.doi.org/10.1586/14760584.7.7.987
  • Mizejewski GJ. Biological role of alpha-fetoprotein in cancer: prospects for anticancer therapy. Expert Rev Anticancer Ther 2002; 2:709-35; PMID:12503217; http://dx.doi.org/10.1586/14737140.2.6.709
  • Zhao L, Mou DC, Leng XS, Peng JR, Wang WX, Huang L, Li S, Zhu JY. Expression of cancer-testis antigens in hepatocellular carcinoma. World J Gastroenterol 2004; 10:2034-8; PMID:15237429
  • Llovet JM, Pena CE, Lathia CD, Shan M, Meinhardt G, Bruix J; SHARP Investigators Study Group. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res 2012; 18:2290-300; PMID:22374331; http://dx.doi.org/10.1158/1078-0432.CCR-11-2175
  • Farinati F, Marino D, De Giorgio M, Baldan A, Cantarini M, Cursaro C, Rapaccini G, Del Poggio P, Di Nolfo MA, Benvegnù L, et al. Diagnostic and prognostic role of alpha-fetoprotein in hepatocellular carcinoma: both or neither? Am J Gastroenterol 2006; 101:524-32; PMID:16542289; http://dx.doi.org/10.1111/j.1572-0241.2006.00443.x
  • Butterfield LH, Economou JS, Gamblin TC, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med 2014; 12:86; PMID:24708667; http://dx.doi.org/10.1186/1479-5876-12-86
  • Tiriveedhi V, Fleming TP, Goedegebuure PS, Naughton M, Ma C, Lockhart C, Gao F, Gillanders WE, Mohanakumar T. Mammaglobin-A cDNA vaccination of breast cancer patients induces antigen-specific cytotoxic CD4+ICOShi T cells. Breast Cancer Res Treat 2013; 138:109-18; PMID:22678162; http://dx.doi.org/10.1007/s10549-012-2110-9
  • Watson MA, Dintzis S, Darrow CM, Voss LE, DiPersio J, Jensen R, Fleming TP. Mammaglobin expression in primary, metastatic, and occult breast cancer. Cancer Res 1999; 59:3028-31; PMID:10397237
  • Watson MA, Fleming TP. Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res 1996; 56:860-5; PMID:8631025
  • Zehentner BK, Carter D. Mammaglobin: a candidate diagnostic marker for breast cancer. Clin Biochem 2004; 37:249-57; PMID:15003725; http://dx.doi.org/10.1016/j.clinbiochem.2003.11.005
  • Tiriveedhi V, Tucker N, Herndon J, Li L, Sturmoski M, Ellis M, MaC, Naughton M, Lockhart AC, Gao F, et al. Safety and preliminary evidence of biologic efficacy of a mammaglobin-a DNA vaccine in patients with stable metastatic breast cancer. Clin Cancer Res 2014; 20:5964-75; PMID:25451106; http://dx.doi.org/10.1158/1078-0432.CCR-14-0059
  • Cunha AC, Weigle B, Kiessling A, Bachmann M, Rieber EP. Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett 2006; 236:229-38; PMID:16046056; http://dx.doi.org/10.1016/j.canlet.2005.05.021
  • Dale W. Prostate cancer: PSA testing in older men–are we following the guidelines? Nat Rev Urol 2012; 9:357-8; PMID:22641163; http://dx.doi.org/10.1038/nrurol.2012.115
  • Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 1999; 59:5800-7; PMID:10582702
  • Hodge JW, Rad AN, Grosenbach DW, Sabzevari H, Yafal AG, Gritz L, Schlom J. Enhanced activation of T cells by dendritic cells engineered to hyperexpress a triad of costimulatory molecules. J Natl Cancer Inst 2000; 92:1228-39; PMID:10922408; http://dx.doi.org/10.1093/jnci/92.15.1228
  • Hodge JW, Poole DJ, Aarts WM, Gomez Yafal A, Gritz L, Schlom J. Modified vaccinia virus ankara recombinants are as potent as vaccinia recombinants in diversified prime and boost vaccine regimens to elicit therapeutic antitumor responses. Cancer Res 2003; 63:7942-9; PMID:14633725
  • Kim JW, Gulley JL. Poxviral vectors for cancer immunotherapy. Expert Opin Biol Ther 2012; 12:463-78; PMID:22413824; http://dx.doi.org/10.1517/14712598.2012.668516
  • Simmons SJ, Tjoa BA, Rogers M, Elgamal A, Kenny GM, Ragde H, Troychak MJ, Boynton AL, Murphy GP. GM-CSF as a systemic adjuvant in a phase II prostate cancer vaccine trial. Prostate 1999; 39:291-7; PMID:10344219; http://dx.doi.org/10.1002/(SICI)1097-0045(19990601)39:4%3c291::AID-PROS10%3e3.0.CO;2-9
  • Arellano M, Lonial S. Clinical uses of GM-CSF, a critical appraisal and update. Biologics 2008; 2:13-27; PMID:19707424
  • Thorne SH. The role of GM-CSF in enhancing immunotherapy of cancer. Immunotherapy 2013; 5:817-9; PMID:23902549; http://dx.doi.org/10.2217/imt.13.65
  • DiPaola RS, Chen YH, Bubley GJ, Stein MN, Hahn NM, Carducci MA, Lattime EC, Gulley JL, Arlen PM, Butterfield LH, et al. A National Multicenter Phase 2 Study of Prostate-specific Antigen (PSA) Pox Virus Vaccine with Sequential Androgen ablation therapy in patients with PSA progression: ECOG 9802. Eur Urol 2014; pii: S0302-2838(14):01265-2; PMID:25533418
  • Madan RA, Heery CR, Gulley JL. Poxviral-based vaccine elicits immunologic responses in prostate cancer patients. Oncoimmunology 2014; 3:e28611; PMID:25097802; http://dx.doi.org/10.4161/onci.28611
  • DiPaola RS, Plante M, Kaufman H, Petrylak DP, Israeli R, Lattime E, Manson K, Schuetz T. A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer. J Transl Med 2006; 4:1; PMID:16390546; http://dx.doi.org/10.1186/1479-5876-4-1
  • Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, et al. Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 2010; 28:1099-105; PMID:20100959; http://dx.doi.org/10.1200/JCO.2009.25.0597
  • May KF, Jr., Gulley JL, Drake CG, Dranoff G, Kantoff PW. Prostate cancer immunotherapy. Clin Cancer Res 2011; 17:5233-8; PMID:21700764; http://dx.doi.org/10.1158/1078-0432.CCR-10-3402
  • Schweizer MT, Drake CG. Immunotherapy for prostate cancer: recent developments and future challenges. Cancer Metastasis Rev 2014; 33(2-3):641-55; PMID:24477411
  • De Giovanni C, Nicoletti G, Quaglino E, Landuzzi L, Palladini A, Ianzano ML, Dall'Ora M, Grosso V, Ranieri D, Laranga R, et al. Vaccines against human HER2 prevent mammary carcinoma in mice transgenic for human HER2. Breast Cancer Res 2014; 16:R10; PMID:24451168; http://dx.doi.org/10.1186/bcr3602
  • Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, Gianni L, Baselga J, Bell R, Jackisch C, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 2005; 353:1659-72; PMID:16236737; http://dx.doi.org/10.1056/NEJMoa052306
  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE, Jr., Davidson NE, Tan-Chiu E, Martino S, Paik S, Kaufman PA, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 2005; 353:1673-84; PMID:16236738; http://dx.doi.org/10.1056/NEJMoa052122
  • Spicer J, Harries M, Ellis P. Adjuvant trastuzumab for HER2-positive breast cancer. Lancet 2005; 366:634; PMID:16112298; http://dx.doi.org/10.1016/S0140-6736(05)67134-6
  • Disis ML, Coveler AL, Higgins D, Fintak P, Waisman JR, Reichow J, Slota M, Childs J, Dang Y, Salazar LG. A phase I trial of the safety and immunogenicity of a DNA-based vaccine encoding the HER2/neu (HER2) intracellular domain in subjects with HER2+ breast cancer. ASCO Meeting Abstracts 2014; 32:616
  • Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W, et al. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med 2013; 19:465-72; PMID:23455713; http://dx.doi.org/10.1038/nm.3105
  • Patel PM, Durrant LG, Ottensmeier C, Mulatero C, Lorigan P, Plummer R, Cunnell M, Metheringham R, Brentville V, Machado L, et al. Phase I trial of ImmunoBody in melanoma patients. ASCO Meeting Abstracts 2014; 32:3061
  • Durrant LG, Pudney VA, Spendlove I. Using monoclonal antibodies to stimulate antitumor cellular immunity. Expert Rev Vaccines 2011; 10:1093-106; PMID:21806402; http://dx.doi.org/10.1586/erv.11.33
  • Abdel-Wahab Z, DeMatos P, Hester D, Dong XD, Seigler HF. Human dendritic cells, pulsed with either melanoma tumor cell lysates or the gp100 peptide(280-288), induce pairs of T-cell cultures with similar phenotype and lytic activity. Cell Immunol 1998; 186:63-74; PMID:9637766; http://dx.doi.org/10.1006/cimm.1998.1298
  • Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K, Carroll MW, Liu C, Moss B, Rosenberg SA, Restifo NP, et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of "self"-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 1998; 188:277-86; PMID:9670040; http://dx.doi.org/10.1084/jem.188.2.277
  • Di Pucchio T, Pilla L, Capone I, Ferrantini M, Montefiore E, Urbani F, Patuzzo R, Pennacchioli E, Santinami M, Cova A, et al. Immunization of stage IV melanoma patients with Melan-A/MART-1 and gp100 peptides plus IFN-alpha results in the activation of specific CD8(+) T cells and monocyte/dendritic cell precursors. Cancer Res 2006; 66:4943-51; PMID:16651452; http://dx.doi.org/10.1158/0008-5472.CAN-05-3396
  • Tuting T, Steitz J, Bruck J, Gambotto A, Steinbrink K, DeLeo AB, Robbins P, Knop J, Enk AH. Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J Gene Med 1999; 1:400-6; PMID:10753065; http://dx.doi.org/10.1002/(SICI)1521-2254(199911/12)1:6%3c400::AID-JGM68%3e3.0.CO;2-D
  • Mahnke K, Qian Y, Fondel S, Brueck J, Becker C, Enk AH. Targeting of antigens to activated dendritic cells in vivo cures metastatic melanoma in mice. Cancer Res 2005; 65:7007-12; PMID:16061687; http://dx.doi.org/10.1158/0008-5472.CAN-05-0938
  • Singh H, Heery CR, Marte JL, Farsaci B, Madan RA, O'Sullivan Coyne GH, Palena C, Rodell TC, Schlom J, Gulley JL. A phase I study of a yeast-based therapeutic cancer vaccine, GI-6301, targeting brachyury in patients with metastatic carcinoma. ASCO Meeting Abstracts 2014; 32:e14026
  • Sarkar D, Shields B, Davies ML, Muller J, Wakeman JA. Brachyury confers cancer stem cell characteristics on colorectal cancer cells. Int J Cancer 2012; 130:328-37; PMID:21365650; http://dx.doi.org/10.1002/ijc.26029
  • Palena C, Polev DE, Tsang KY, Fernando RI, Litzinger M, Krukovskaya LL, Baranova AV, Kozlov AP, Schlom J. The human T-box mesodermal transcription factor Brachyury is a candidate target for T-cell-mediated cancer immunotherapy. Clin Cancer Res 2007; 13:2471-8; PMID:17438107; http://dx.doi.org/10.1158/1078-0432.CCR-06-2353
  • Pires MM, Aaronson SA. Brachyury: a new player in promoting breast cancer aggressiveness. J Natl Cancer Inst 2014; 106:pii: dju094; PMID:24815862; http://dx.doi.org/10.1093/jnci/dju094
  • Thoma C. Prostate cancer: Brachyury–a biomarker for progression and prognosis? Nat Rev Urol 2014; 11:485; PMID:25069730; http://dx.doi.org/10.1038/nrurol.2014.184
  • Tucker JA, Jochems C, Boyerinas B, Fallon J, Greiner JW, Palena C, Rodell TC, Schlom J, Tsang KY. Identification and characterization of a cytotoxic T-lymphocyte agonist epitope of brachyury, a transcription factor involved in epithelial to mesenchymal transition and metastasis. Cancer Immunol Immunother 2014; 63:1307-17; PMID:25186612; http://dx.doi.org/10.1007/s00262-014-1603-2
  • Almajhdi FN, Senger T, Amer HM, Gissmann L, Ohlschlager P. Design of a highly effective therapeutic HPV16 E6/E7-specific DNA vaccine: optimization by different ways of sequence rearrangements (shuffling). PLoS One 2014; 9:e113461; PMID:25422946; http://dx.doi.org/10.1371/journal.pone.0113461
  • Cecil DL, Holt GE, Park KH, Gad E, Rastetter L, Childs J, Higgins D, DisisML. Elimination of IL-10-inducing T-helper epitopes from an IGFBP-2 vaccine ensures potent antitumor activity. Cancer Res 2014; 74:2710-8; PMID:24778415; http://dx.doi.org/10.1158/0008-5472.CAN-13-3286
  • Gan L, Jia R, Zhou L, Guo J, Fan M. Fusion of CTLA-4 with HPV16 E7 and E6 enhanced the potency of therapeutic HPV DNA vaccine. PLoS One 2014; 9:e108892; PMID:25265018; http://dx.doi.org/10.1371/journal.pone.0108892
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology 2014; 3:e27297; PMID:24701370; http://dx.doi.org/10.4161/onci.27297
  • Vacchelli E, Eggermont A, Galon J, Sautes-Fridman C, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2:e22789; PMID:23482847; http://dx.doi.org/10.4161/onci.22789
  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711-23; PMID:20525992; http://dx.doi.org/10.1056/NEJMoa1003466
  • Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med 2011; 364:2517-26; PMID:21639810; http://dx.doi.org/10.1056/NEJMoa1104621
  • Zhang L, Wang Y, Xiao Y, Wang Y, Dong J, Gao K, Gao Y, Wang X, Zhang W, Xu Y, et al. Enhancement of antitumor immunity using a DNA-based replicon vaccine derived from Semliki Forest virus. PLoS One 2014; 9:e90551; PMID:24608380; http://dx.doi.org/10.1371/journal.pone.0090551
  • Bertino P, Urschitz J, Hoffmann FW, You BR, Rose AH, Park WH, Moisyadi S, Hoffmann PR. Vaccination with a piggyBac plasmid with transgene integration potential leads to sustained antigen expression and CD8(+) T cell responses. Vaccine 2014; 32:1670-7; PMID:24513010; http://dx.doi.org/10.1016/j.vaccine.2014.01.063
  • Yang Y, Hou J, Lin Z, Zhuo H, Chen D, Zhang X, Chen Y, Sun B. Attenuated Listeria monocytogenes as a cancer vaccine vector for the delivery of CD24, a biomarker for hepatic cancer stem cells. Cell Mol Immunol 2014; 11:184-96; PMID:24488178; http://dx.doi.org/10.1038/cmi.2013.64
  • Rangel-Colmenero BR, Gomez-Gutierrez JG, Villatoro-Hernandez J, Zavala-Flores LM, Quistian-Martinez D, Rojas-Martinez A, Arce-Mendoza AY, Guzmán-López S, Montes-de-Oca-Luna R, Saucedo-Cárdenas O. Enhancement of Ad-CRT/E7-mediated antitumor effect by preimmunization with L. lactis expressing HPV-16 E7. Viral Immunol 2014; 27:463-7; PMID:25216057; http://dx.doi.org/10.1089/vim.2014.0055
  • Tahamtan A, Ghaemi A, Gorji A, Kalhor HR, Sajadian A, Tabarraei A, Moradi A, Atyabi F, Kelishadi M. Antitumor effect of therapeutic HPV DNA vaccines with chitosan-based nanodelivery systems. J Biomed Sci 2014; 21:69; PMID:25077570; http://dx.doi.org/10.1186/s12929-014-0069-z
  • Toke ER, Lorincz O, Csiszovszki Z, Somogyi E, Felfoldi G, Molnar L, Szipőcs R, Kolonics A, Malissen B, Lori F, et al. Exploitation of Langerhans cells for in vivo DNA vaccine delivery into the lymph nodes. Gene Ther 2014; 21:566-74; PMID:24694539; http://dx.doi.org/10.1038/gt.2014.29
  • Li J, Valentin A, Ng S, Beach RK, Alicea C, Bergamaschi C, Felber BK, Pavlakis GN. Differential effects of IL-15 on the generation, maintenance and cytotoxic potential of adaptive cellular responses induced by DNA vaccination. Vaccine 2015; 33:1188-96; PMID:25559187; http://dx.doi.org/10.1016/j.vaccine.2014.12.046
  • Brenner C, Galluzzi L, Kepp O, Kroemer G. Decoding cell death signals in liver inflammation. J Hepatol 2013; 59:583-94; PMID:23567086; http://dx.doi.org/10.1016/j.jhep.2013.03.033
  • Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer 2012; 12:860-75; PMID:23151605; http://dx.doi.org/10.1038/nrc3380
  • Wei F, Yang D, Tewary P, Li Y, Li S, Chen X, Howard OM, Bustin M, Oppenheim JJ. The Alarmin HMGN1 contributes to antitumor immunity and is a potent immunoadjuvant. Cancer Res 2014; 74:5989-98; PMID:25205103; http://dx.doi.org/10.1158/0008-5472.CAN-13-2042
  • Villarreal DO, Wise MC, Walters JN, Reuschel EL, Choi MJ, Obeng-Adjei N, Yan J, Morrow MP, Weiner DB. Alarmin IL-33 acts as an immunoadjuvant to enhance antigen-specific tumor immunity. Cancer Res 2014; 74:1789-800; PMID:24448242; http://dx.doi.org/10.1158/0008-5472.CAN-13-2729
  • Soong RS, Song L, Trieu J, Lee SY, He L, Tsai YC, Wu TC, Hung CF. Direct T cell activation via CD40 ligand generates high avidity CD8+ T cells capable of breaking immunological tolerance for the control of tumors. PLoS One 2014; 9:e93162; PMID:24664420; http://dx.doi.org/10.1371/journal.pone.0093162
  • Soong RS, Song L, Trieu J, Knoff J, He L, Tsai YC, Huh W, Chang YN, Cheng WF, Roden RB, et al. Toll-like receptor agonist imiquimod facilitates antigen-specific CD8+ T-cell accumulation in the genital tract leading to tumor control through IFNgamma. Clin Cancer Res 2014; 20:5456-67; PMID:24893628; http://dx.doi.org/10.1158/1078-0432.CCR-14-0344
  • Semeraro M, Galluzzi L. Novel insights into the mechanism of action of lenalidomide. Oncoimmunology 2014; 3:e28386; PMID:25340011; http://dx.doi.org/10.4161/onci.28386
  • Semeraro M, Vacchelli E, Eggermont A, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: lenalidomide-based immunochemotherapy. Oncoimmunology 2013; 2:e26494; PMID:24482747; http://dx.doi.org/10.4161/onci.26494
  • Sakamaki I, Kwak LW, Cha SC, Yi Q, Lerman B, Chen J, Surapaneni S, Bateman S, Qin H. Lenalidomide enhances the protective effect of a therapeutic vaccine and reverses immune suppression in mice bearing established lymphomas. Leukemia 2014; 28:329-37; PMID:23765229; http://dx.doi.org/10.1038/leu.2013.177
  • Li SQ, Lin J, Qi CY, Fu SJ, Xiao WK, Peng BG, Liang LJ. GPC3 DNA vaccine elicits potent cellular antitumor immunity against HCC in mice. Hepatogastroenterology 2014; 61:278-84; PMID:24901124
  • Yan J, Tingey C, Lyde R, Gorham TC, Choo DK, Muthumani A, Myles D, Weiner LP, Kraynyak KA, Reuschel EL, et al. Novel and enhanced anti-melanoma DNA vaccine targeting the tyrosinase protein inhibits myeloid-derived suppressor cells and tumor growth in a syngeneic prophylactic and therapeutic murine model. Cancer Gene Ther 2014; 21:507-17; PMID:25394503; http://dx.doi.org/10.1038/cgt.2014.56
  • Gabai V, Venanzi FM, Bagashova E, Rud O, Mariotti F, Vullo C, Catone G, Sherman MY, Concetti A, Chursov A, et al. Pilot study of p62 DNA vaccine in dogs with mammary tumors. Oncotarget 2014; 5:12803-10; PMID:25296974
  • Polakova I, Duskova M, Smahel M. Antitumor DNA vaccination against the Sox2 transcription factor. Int J Oncol 2014; 45:139-46; PMID:24789529
  • Facciponte JG, Ugel S, De Sanctis F, Li C, Wang L, Nair G, Sehgal S, Raj A, Matthaiou E, Coukos G, et al. Tumor endothelial marker 1-specific DNA vaccination targets tumor vasculature. J Clin Invest 2014; 124:1497-511; PMID:24642465; http://dx.doi.org/10.1172/JCI67382
  • Tan Z, Zhou J, Cheung AK, Yu Z, Cheung KW, Liang J, Wang H, Lee BK, Man K, Liu L, et al. Vaccine-elicited CD8+ T cells cure mesothelioma by overcoming tumor-induced immunosuppressive environment. Cancer Res 2014; 74:6010-21; PMID:25125656; http://dx.doi.org/10.1158/0008-5472.CAN-14-0473
  • Agosti JM, Goldie SJ. Introducing HPV vaccine in developing countries–key challenges and issues. N Engl J Med 2007; 356:1908-10; PMID:17494923; http://dx.doi.org/10.1056/NEJMp078053
  • Paavonen J, Naud P, Salmeron J, Wheeler CM, Chow SN, Apter D, Kitchener H, Castellsague X, Teixeira JC, Skinner SR, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet 2009; 374:301-14; PMID:19586656; http://dx.doi.org/10.1016/S0140-6736(09)61248-4
  • FUTURE II Study Group. Quadrivalent vaccine against human papillomavirus to prevent high-grade cervical lesions. N Engl J Med 2007; 356:1915-27; PMID:17494925; http://dx.doi.org/10.1056/NEJMoa061741
  • King GD, Muhammad AK, Larocque D, Kelson KR, Xiong W, Liu C, Sanderson NS, Kroeger KM, Castro MG, Lowenstein PR. Combined Flt3L/TK gene therapy induces immunological surveillance which mediates an immune response against a surrogate brain tumor neoantigen. Mol Ther 2011; 19:1793-801; PMID:21505426; http://dx.doi.org/10.1038/mt.2011.77
  • Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, Darasse-Jèze G, Telerman SB, Breton G, Schreiber HA, et al. Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 2013; 19:730-8; PMID:23685841; http://dx.doi.org/10.1038/nm.3197
  • Kutzler MA, Weiner DB. Developing DNA vaccines that call to dendritic cells. J Clin Invest 2004; 114:1241-4; PMID:15520855; http://dx.doi.org/10.1172/JCI23467
  • Michaud DS, Langevin SM, Eliot M, Nelson HH, Pawlita M, McClean MD, Kelsey KT. High-risk HPV types and head and neck cancer. Int J Cancer 2014; 135:1653-61; PMID:24615247; http://dx.doi.org/10.1002/ijc.28811
  • Syrjanen S. The role of human papillomavirus infection in head and neck cancers. Ann Oncol 2010; 21 Suppl 7:vii243-5; PMID:20943622
  • Maciejczyk A, Szelachowska J, Ekiert M, Matkowski R, Halon A, Lage H, Surowiak P. Elevated nuclear YB1 expression is associated with poor survival of patients with early breast cancer. Anticancer Res 2012; 32:3177-84; PMID:22843890
  • Woolley AG, Algie M, Samuel W, Harfoot R, Wiles A, Hung NA, Tan PH, Hains P, Valova VA, Huschtscha L, et al. Prognostic association of YB-1 expression in breast cancers: a matter of antibody. PLoS One 2011; 6:e20603; PMID:21695211; http://dx.doi.org/10.1371/journal.pone.0020603
  • Dhodapkar KM, Gettinger SN, Das R, Zebroski H, Dhodapkar MV. SOX2-specific adaptive immunity and response to immunotherapy in non-small cell lung cancer. Oncoimmunology 2013; 2:e25205; PMID:24073380; http://dx.doi.org/10.4161/onci.25205
  • Leis O, Eguiara A, Lopez-Arribillaga E, Alberdi MJ, Hernandez-Garcia S, Elorriaga K, Pandiella A, Rezola R, Martin AG. Sox2 expression in breast tumours and activation in breast cancer stem cells. Oncogene 2012; 31:1354-65; PMID:21822303; http://dx.doi.org/10.1038/onc.2011.338
  • Vacchelli E, Aranda F, Obrist F, Eggermont A, Galon J, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory cytokines in cancer therapy. Oncoimmunology 2014; 3:e29030; PMID:25083328; http://dx.doi.org/10.4161/onci.29030
  • Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory cytokines. Oncoimmunology 2013; 2:e24850; PMID:24073369; http://dx.doi.org/10.4161/onci.24850
  • Kepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, Apetoh L, Aranda F, Barnaba V, Bloy N, Bracci L, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology 2014; 3: e955691; http://dx.doi.org/10.4161/21624011.2014.955691
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215-33; PMID:22301798; http://dx.doi.org/10.1038/nrd3626
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 2013; 39:74-88; PMID:23890065; http://dx.doi.org/10.1016/j.immuni.2013.06.014
  • Schiavoni G, Sistigu A, Valentini M, Mattei F, Sestili P, Spadaro F, Sanchez M, Lorenzi S, D'Urso MT, Belardelli F, et al. Cyclophosphamide synergizes with type I interferons through systemic dendritic cell reactivation and induction of immunogenic tumor apoptosis. Cancer Res 2011; 71:768-78; PMID:21156650; http://dx.doi.org/10.1158/0008-5472.CAN-10-2788
  • Young BA, Spencer JF, Ying B, Tollefson AE, Toth K, Wold WS. The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors. Cancer Gene Ther 2013; 20:521-30; PMID:23928731; http://dx.doi.org/10.1038/cgt.2013.49
  • Eriksson F, Totterman T, Maltais AK, Pisa P, Yachnin J. DNA vaccine coding for the rhesus prostate specific antigen delivered by intradermal electroporation in patients with relapsed prostate cancer. Vaccine 2013; 31:3843-8; PMID:23831327; http://dx.doi.org/10.1016/j.vaccine.2013.06.063
  • Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother 2010; 33:639-47; PMID:20551832; http://dx.doi.org/10.1097/CJI.0b013e3181dda23e
  • Lin AM, Hershberg RM, Small EJ. Immunotherapy for prostate cancer using prostatic acid phosphatase loaded antigen presenting cells. Urol Oncol 2006; 24:434-41; PMID:16962496; http://dx.doi.org/10.1016/j.urolonc.2005.08.010
  • Massari F, Maines F, Modena A, Brunelli M, Bria E, Artibani W, Martignoni G, Tortora G. Castration resistant prostate cancer (CRPC): state of the art, perspectives and new challenges. Anticancer Agents Med Chem 2013; 13:872-86; PMID:23272970; http://dx.doi.org/10.2174/18715206113139990077
  • Galluzzi L. New immunotherapeutic paradigms for castration-resistant prostate cancer. Oncoimmunology 2013; 2:e26084; http://dx.doi.org/10.4161/onci.26084
  • Lubaroff DM. Prostate cancer vaccines in clinical trials. Expert Rev Vaccines 2012; 11:857-68; PMID:22913261; http://dx.doi.org/10.1586/erv.12.54
  • Galluzzi L, Kroemer G, Eggermont A. Novel immune checkpoint blocker approved for the treatment of advanced melanoma. Oncoimmunology 2014; 3:e967147; http://dx.doi.org/10.4161/21624011.2014.967147
  • Vacchelli E, Aranda F, Eggermont A, Sautès-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology 2014; 3: e957994; http://dx.doi.org/10.4161/21624011.2014.957994
  • Vacchelli E, Prada N, Kepp O, Galluzzi L. Current trends of anticancer immunochemotherapy. Oncoimmunology 2013; 2:e25396; PMID:23894726; http://dx.doi.org/10.4161/onci.25396
  • Riedmann EM. News studies: combining PROSTVAC with conventional cancer therapy. Hum Vaccin Immunother 2012; 8:848-9; http://dx.doi.org/10.4161/hv.22583

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.