1,080
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Formylpeptide receptor 1 mediates the tumorigenicity of human hepatocellular carcinoma cells

, , , , , , , , , , , , & show all
Article: e1078055 | Received 20 Jan 2015, Accepted 22 Jul 2015, Published online: 26 Feb 2016

References

  • Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin 2011; 61:69-90; PMID:21296855; http://dx.doi.org/3322/caac.20107
  • Bishayee A. The inflammation and liver cancer. Adv Exp Med Biol 2014; 816:401-35; PMID:24818732; http://dx.doi.org/10.1007/978-3-0348-0837-8_16
  • Forner A, Llovet JM, Bruix J. Hepatocellular carcinoma. Lancet 2012; 379:1245-55; PMID:22353262; http://dx.doi.org/10.1016/S0140-6736(11)61347-0
  • Le YY, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends Immunol 2002; 23:541-8; PMID:12401407; http://dx.doi.org/10.1016/S1471-4906(02)02316-5
  • Le YY, Oppenheim JJ, Wang JM. Pleiotropic roles of formyl peptide receptors. Cytokine Growth F R 2001; 12:91-105; PMID:11312121; http://dx.doi.org/10.1016/S1359-6101(01)00003-X.
  • Liu MY, Chen KQ, Yoshimura T, Liu Y, Gong WH, Le YY, Gao JL, Zhao JH, Wang JM, Wang AM. Formylpeptide Receptors Mediate Rapid Neutrophil Mobilization to Accelerate Wound Healing. PloS one 2014; 9.; PMID:24603667; http://dx.doi.org/10.1371/journal.pone.0090613
  • Zhou Y, Bian XW, Le YY, Gong WH, Hu JY, Zhang X, Wang LH, Iribarren P, Salcedo R, Howard OMZ et al. Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J Natl Cancer I 2005; 97:823-35; PMID:15928303; http://dx.doi.org/10.1093/jnci/dji142
  • Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, Howard OM, Wang JM. Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res 2007; 67:5906-13; PMID:17575160; http://dx.doi.org/10.1158/0008-5472.CAN-07-0691
  • Lin Q, Fang D, Hou XW, Le YY, Fang JH, Wen F, Gong WH, Chen KQ, Wang JM, Su SB. HCV Peptide (C5A), an Amphipathic α-Helical Peptide of Hepatitis Virus C, Is an Activator of N-Formyl Peptide Receptor in Human Phagocytes. J Immunol 2011; 186:2087-94; PMID:21228351; http://dx.doi.org/10.4049/jimmunol.1002340
  • Yang ZF, Poon RTP. Vascular changes in hepatocellular carcinoma. Anat Rec 2008; 291:721-34; PMID:18484619; http://dx.doi.org/10.1002/ar.20668
  • Gales D, Clark C, Manne U, Samuel T. The Chemokine CXCL8 in Carcinogenesis and Drug Response. ISRN Oncol 2013; 2013:859154; PMID:24224100; http://dx.doi.org/10.1155/2013/859154
  • Brat DJ, Bellail AC, Van Meir EG. The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro-Oncol 2005; 7:122-33; PMID:15831231; http://dx.doi.org/10.1215/S1152851704001061
  • Akiba J, Yano H, Ogasawara S, Higaki K, Kojiro M. Expression and function of interleukin-8 in human hepatocellular carcinoma. Int J Oncol 2001; 18:257-64; PMID:11172590
  • Tachibana Y, Nakamoto Y, Mukaida N, Kaneko S. Intrahepatic interleukin-8 production during disease progression of chronic hepatitis C. Cancer Lett 2007; 251:36-42; PMID:17240051; http://dx.doi.org/10.1016/j.canlet.2006.10.028
  • Liu Z, Yang L, Xu J, Zhang X, Wang B. Enhanced expression and clinical significance of chemokine receptor CXCR2 in hepatocellular carcinoma. J Surg Res 2011; 166:241-6; PMID:20018298; http://dx.doi.org/10.1016/j.jss.2009.07.014
  • Wang Y, Wang W, Wang L, Wang X, Xia J. Regulatory mechanisms of interleukin-8 production induced by tumour necrosis factor-α in human hepatocellular carcinoma cells. J Cell Mol Med 2012; 16:496-506; PMID:21545687; http://dx.doi.org/10.1111/j.1582-4934.2011.01337.x
  • Yao XH, Ping YF, Chen JH, Chen DL, Xu CP, Zheng J, Wang JM, Bian XW. Production of angiogenic factors by human glioblastoma cells following activation of the G-protein coupled formylpeptide receptor FPR. J Neurooncol 2008; 86:47-53; PMID:17611713; http://dx.doi.org/10.1007/s11060-007-9443-y
  • Le Y, Hu J, Gong W, Shen W, Li B, Dunlop NM, Halverson DO, Blair DG, Wang JM. Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol 2000; 111:102-8; PMID:11063827; http://dx.doi.org/10.1016/S0165-5728(00)00373-8
  • Yang Y, Liu Y, Yao X, Ping Y, Jiang T, Liu Q, Xu S, Huang J, Mou H, Gong W et al. Annexin 1 released by necrotic human glioblastoma cells stimulates tumor cell growth through the formyl peptide receptor 1. Am J Pathol 2011; 179:1504-12; PMID:21782780; http://dx.doi.org/10.1016/j.ajpath.2011.05.059
  • Fu H, Karlsson J, Bylund J, Movitz C, Karlsson A, Dahlgren C. Ligand recognition and activation of formyl peptide receptors in neutrophils. J Leukoc Biol 2006; 79:247-56; PMID:16365159; http://dx.doi.org/10.1189/jlb.0905498
  • Ye RD, Boulay F, Wang JM, Dahlgren C, Gerard C, Parmentier M, Serhan CN, Murphy PM. International Union of Basic and Clinical Pharmacology. LXXIII. Nomenclature for the formyl peptide receptor (FPR) family. Pharmacol Rev 2009; 61:119-61; PMID:19498085; http://dx.doi.org/10.1124/pr.109.001578
  • Kim SD, Kim JM, Jo SH, Lee HY, Lee SY, Shim JW, Seo SK, Yun J, Bae YS. Functional expression of formyl peptide receptor family in human NK cells. J Immunol 2009; 183:5511-7; PMID:19843937; http://dx.doi.org/10.4049/jimmunol.0802986
  • Liu X, Ma B, Malik AB, Tang H, Yang T, Sun B, Wang G, Minshall RD, Li Y, Zhao Y et al. Bidirectional regulation of neutrophil migration by mitogen-activated protein kinases. Nat Immunol 2012; 13:457-64; PMID:22447027; http://dx.doi.org/10.1038/ni.2258
  • Rane MJ, Carrithers SL, Arthur JM, Klein JB, McLeish KR. Formyl peptide receptors are coupled to multiple mitogen-activated protein kinase cascades by distinct signal transduction pathways: role in activation of reduced nicotinamide adenine dinucleotide oxidase. J Immunol 1997; 159:5070-8; PMID:9366435
  • Crouser ED, Shao G, Julian MW, Macre JE, Shadel GS, Tridandapani S, Huang Q, Wewers MD. Monocyte activation by necrotic cells is promoted by mitochondrial proteins and formyl peptide receptors. Crit Care Med 2009; 37:2000-9; PMID:19384205; http://dx.doi.org/10.1097/CCM.0b013e3181a001ae
  • Wang R, Zhang XW, Wang GQ, Chen XC, Tian L, Yang HS, Hu M, Peng F, Yang JL, He QM et al. Systemic inhibition of tumor growth by soluble Flk-1 gene therapy combined with cisplatin. Cancer Gene Ther 2006; 13:940-7; PMID:16799469; http://dx.doi.org/10.1038/sj.cgt.7700958
  • Vakkila J, Lotze MT. Inflammation and necrosis promote tumour growth. Nat Rev Immunol 2004; 4:641-8; PMID:15286730; http://dx.doi.org/10.1038/nri1415
  • Maeda S, Kamata H, Luo JL, Leffert H, Karin M. IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 2005; 121:977-90; PMID:15989949; http://dx.doi.org/10.1016/j.cell.2005.04.014
  • Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med 1982; 155:264-75; PMID:6274994; http://dx.doi.org/10.1084/jem.155.1.264
  • Le Y, Gong W, Li B, Dunlop NM, Shen W, Su SB, Ye RD, Wang JM. Utilization of two seven-transmembrane, G protein-coupled receptors, formyl peptide receptor-like 1 and formyl peptide receptor, by the synthetic hexapeptide WKYMVm for human phagocyte activation. J Immunol 1999; 163:6777-84; PMID:10586077
  • Huang J, Chen K, Gong W, Dunlop NM, Wang JM. G-protein coupled chemoattractant receptors and cancer. Front Biosci 2008; 13:3352-63; PMID:18508437; http://dx.doi.org/10.2741/2930
  • Huang J, Chen K, Chen J, Gong W, Dunlop NM, Howard OM, Gao Y, Bian XW, Wang JM. The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells. Br J Cancer 2010; 102:1052-60; PMID:20197768; http://dx.doi.org/10.1038/sj.bjc.6605591
  • Huang J, Chen K, Huang J, Gong W, Dunlop NM, Howard OM, Bian X, Gao Y, Wang JM. Regulation of the leucocyte chemoattractant receptor FPR in glioblastoma cells by cell differentiation. Carcinogenesis 2009; 30:348-55; PMID:19037090; http://dx.doi.org/10.1093/carcin/bgn266
  • Coulon S, Heindryckx F, Geerts A, Van Steenkiste C, Colle I, Van Vlierberghe H. Angiogenesis in chronic liver disease and its complications. Liver Int 2011; 31:146-62; PMID:21073649; http://dx.doi.org/10.1111/j.1478-3231.2010.02369.x
  • Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003; 362:1907-17; PMID:14667750; http://dx.doi.org/10.1016/S0140-6736(03)14964-1
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454:436-44; PMID:18650914; http://dx.doi.org/10.1038/nature07205
  • McCoy R, Haviland DL, Molmenti EP, Ziambaras T, Wetsel RA, Perlmutter DH. N-formylpeptide and complement C5a receptors are expressed in liver cells and mediate hepatic acute phase gene regulation. J Exp Med 1995; 182:207-17; PMID:7540650; http://dx.doi.org/10.1084/jem.182.1.207
  • Shields PL, Morland CM, Salmon M, Qin S, Hubscher SG, Adams DH. Chemokine and chemokine receptor interactions provide a mechanism for selective T cell recruitment to specific liver compartments within hepatitis C-infected liver. J Immunol 1999; 163:6236-43; PMID:10570316
  • Apolinario A, Majano PL, Alvarez-Perez E, Saez A, Lozano C, Vargas J, Garcia-Monzon C. Increased expression of T cell chemokines and their receptors in chronic hepatitis C: relationship with the histological activity of liver disease. Am J Gastroenterol 2002; 97:2861-70; PMID:12425561; http://dx.doi.org/10.1111/j.1572-0241.2002.07054.x
  • Moser B, Loetscher P. Lymphocyte traffic control by chemokines. Nat Immunol 2001; 2:123-8; PMID:11175804; http://dx.doi.org/10.1038/84219
  • Capece D, Fischietti M, Verzella D, Gaggiano A, Cicciarelli G, Tessitore A, Zazzeroni F, Alesse E. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int 2013; 2013:187204; PMID:23533994; http://dx.doi.org/10.1155/2013/187204
  • Koczulla R, von Degenfeld G, Kupatt C, Krotz F, Zahler S, Gloe T, Issbrucker K, Unterberger P, Zaiou M, Lebherz C et al. An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 2003; 111:1665-72; PMID:12782669; http://dx.doi.org/10.1172/JCI17545
  • Harimoto N, Shirabe K, Abe T, Kajiyama K, Nagaie T, Gion T, Kuroda Y, Maehara Y. Interleukin-8 producing hepatocellular carcinoma with pyrexia. HPB Surgery 2009; 2009:461492; PMID:19707535; http://dx.doi.org/10.1155/2009/461492
  • Haraguchi M, Komuta K, Akashi A, Matsuzaki S, Furui J, Kanematsu T. Elevated IL-8 levels in the drainage vein of resectable Dukes' C colorectal cancer indicate high risk for developing hepatic metastasis. Oncol Rep 2002; 9:159-65; PMID:11748475
  • Mukaida N, Mahe Y, Matsushima K. Cooperative interaction of nuclear factor-kappa B- and cis-regulatory enhancer binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem 1990; 265:21128-33; PMID:2250017
  • Wanninger J, Neumeier M, Weigert J, Bauer S, Weiss TS, Schaffler A, Krempl C, Bleyl C, Aslanidis C, Scholmerich J et al. Adiponectin-stimulated CXCL8 release in primary human hepatocytes is regulated by ERK1/ERK2, p38 MAPK, NF-kappaB, and STAT3 signaling pathways. Am J Physiol Gastrointest Liver Physiol 2009; 297:G611-8; PMID:19608729; http://dx.doi.org/10.1152/ajpgi.90644.2008
  • Yoshida S, Ono M, Shono T, Izumi H, Ishibashi T, Suzuki H, Kuwano M. Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor α-dependent angiogenesis. Mol Cell Biol 1997; 17:4015-23; PMID:9199336
  • Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411:375-9; PMID:11357145; http://dx.doi.org/10.1038/35077241
  • McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I, Waterhouse CC, Beck PL, Muruve DA, Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 2010; 330:362-6; PMID:20947763; http://dx.doi.org/10.1126/science.1195491
  • Zhu J, Wang O, Ruan L, Hou X, Cui Y, Wang JM, Le Y. The green tea polyphenol (-)-epigallocatechin-3-gallate inhibits leukocyte activation by bacterial formylpeptide through the receptor FPR. Int Immunopharmacol 2009; 9:1126-30; PMID:19426837; http://dx.doi.org/10.1016/j.intimp.2009.05.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.