2,002
Views
34
CrossRef citations to date
0
Altmetric
Original Research

ADAM10 new selective inhibitors reduce NKG2D ligand release sensitizing Hodgkin lymphoma cells to NKG2D-mediated killing

, , , , , , , , & show all
Article: e1123367 | Received 07 Aug 2015, Accepted 18 Nov 2015, Published online: 11 May 2016

References

  • Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M, Foidart JM, Noel A, Cataldo D. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie 2008; 90:369-79; PMID:17920749; http://dx.doi.org/10.1016/j.biochi.2007.08.008
  • Saftig P, Reiss K. The “A Disintegrin And Metalloproteases” ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol 2011; 90:527-35; PMID:21194787; http://dx.doi.org/10.1016/j.ejcb.2010.11.005
  • Duffy MJ, Mullooly M, O'Donovan N, Sukor S, Crown J, Pierce A, McGowan PM. The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics 2011; 8:9-13; PMID:21906355; http://dx.doi.org/10.1186/1559-0275-8-9
  • Blobel CP. ADAMs: key components in EGFR signalling and development. Nature Rev Cancer 2005; 6:32-43; PMID:15688065; http://dx.doi.org/10.1038/nrm1548
  • Duffy MJ, McKiernan E, O'Donovan N, McGowan P. Role of ADAMs in cancer formation and progression. Clin Cancer Res 2007; 13:2335-43; PMID:17438092; http://dx.doi.org/10.1158/1078-0432.CCR-06-2092
  • Murphy G. The ADAMs: Signalling scissors in the tumor microenvironment. Nature Rev Cancer 2008; 8:929-41; PMID:19005493; http://dx.doi.org/10.1038/nrc2459.
  • Waldhauer I, Steinle A. Proteolytic release of soluble UL16-binding protein 2 from tumor cells. Cancer Res 2006; 66(5):2520-26; PMID:16510567; http://dx.doi.org/10.1158/0008-5472.CAN-05-2520
  • Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, Ludwig A, Stevanovic S, Rammensee HG, Steinle A. Tumor-associated MICA is shed by ADAM proteases. Cancer Res 2008; 68(15):6368-76; PMID:18676862; http://dx.doi.org/10.1158/0008-5472.CAN-07-6768
  • Nausch N, Cerwenka A. NKG2D ligands in tumor immunity. Oncogene 2008; 27:5944-58; PMID:18836475; http://dx.doi.org/10.1038/onc.2008.272
  • Champsaur M, Lanier LL. Effect of NKG2D ligand expression on host immune responses. Immunol Rev 2010; 235:267-85; PMID:20536569; http://dx.doi.org/10.1111/j.0105-2896.2010.00893.x
  • Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 2003; 102:1389-96; PMID:12714493; http://dx.doi.org/10.1182/blood-2003-01-0019
  • Hayday AC. γδT cells and the lymphoid stress-surveillance response. Immunity 2009; 31:184-96; PMID:19699170; http://dx.doi.org/10.1016/j.immuni.2009.08.006
  • Poggi A, Venturino C, Catellani S, Clavio M, Miglino M, Gobbi M, Steinle A, Ghia P, Stella S, Caligaris-Cappio F et al. Vδ1 T lymphocytes from B-CLL patients recognize ULBP3 expressed on leukemic B cells and up-regulated by trans-retinoic acid. Cancer Res 2004; 64:9172-9; PMID:15604289; http://dx.doi.org/10.1158/0008-5472.CAN-04-2417
  • Poggi A, Catellani S, Garuti A, Pierri I, Gobbi M, Zocchi MR. Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by ATRA acid or VPA. Leukemia 2009; 23:641-8; PMID:19151770; http://dx.doi.org/10.1038/leu.2008.354
  • Catellani S, Poggi A, Bruzzone A, Dadati P, Ravetti JL, Gobbi M, Zocchi MR. Expansion of Vdelta1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas ex pressing UL-16-binding proteins. Blood 2007; 109:2078-85; PMID:16973957; http://dx.doi.org/10.1182/blood-2006-06-028985
  • Zocchi MR, Catellani S, Canevali P, Tavella S, Garuti A, Villaggio B, Zunino A, Gobbi M, Fraternali-Orcioni G, Kunkl A et al. High ERp5/ADAM10 expression in lymph node microenvironment and impaired NKG2D-ligands recognition in Hodgkin lymphomas. Blood 2012; 119:1479-89; PMID:22167753; http://dx.doi.org/10.1182/blood-2011-07-370841
  • Groh V, Wu J, Yee C, Spies T. Tumor-derived soluble MIC ligands impair expression of NKG2D and T cell activation. Nature 2002; 419:734-8; PMID:12384702; http://dx.doi.org/10.1038/nature01112
  • Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR, Dranoff G. MIC-A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 2008; 105:1285-90; PMID:18202175; http://dx.doi.org/10.1073/pnas.0711293105
  • Nückel H, Switala M, Sellmann L, Horn PA, Dürig J, Dührsen U, Küppers R, Grosse-Wilde H, Rebmann V. The prognostic significance of soluble NKG2D ligands in B-cell chronic lymphocytic leukemia. Leukemia 2010; 24:1152-59; PMID:20428196; http://dx.doi.org/10.1038/leu.2010.74
  • Zhou BB, Peyton M, He B, Liu C, Girard L, Caudler E, Lo Y, Baribaud F, Mikami I, Reguart N et al. Targeting ADAM-mediated ligand cleavage to inhibit HER3 and EGFR pathways in non-small cell lung cancer. Cancer Cell 2006; 10:39-50; PMID:16843264; http://dx.doi.org/10.1016/j.ccr.2006.05.024
  • Witters L, Scherle P, Friedman S, Fridman J, Caulder E, Newton R, Lipton A. Synergistic inhibition with a dual epidermal growth factor receptor/HER-2/neu tyrosine kinase inhibitor and a disintegrin and metallo proteiase inhibitor. Cancer Res 2008; 68:7082-89; PMID:18757423; http://dx.doi.org/10.1158/0008-5472.CAN-08-0739
  • Fridman JS, Scherle PA, Liu X, Caulder E, Hansbury M, Yang G, Wang Q, Lo Y, Zhou J, Yao W et al. Preclinical characterization of INCB7839, a potent and selective inhibitor of Erb ligand and HER2 receptor shedding: inhibition of ADAM10 and ADAM17 for the treatment of breast cancer. Breast Cancer Res Treat 2007; 106(Suppl1):S82.
  • Moss ML, Stoeck A, Yan W, Dempsey PJ. ADAM10 as a target for anti-cancer therapy. Curr Pharm Biotechnol 2008; 9:2-8; PMID:18289051; http://dx.doi.org/10.2174/138920108783497613
  • Theocharis AD, Gialeli C, Bouris P, Giannopoulou E, Skandalis SS, Aletras AJ, Iozzo RV, Karamanos NK. Cell-matrix interactions: focus on proteoglycan-proteinase interplay and pharmacological targeting in cancer. FEBS J 2014; 281:5023-42; PMID:25333340; http://dx.doi.org/10.1111/febs.12927
  • Nuti E, Casalini F, Santamaria S, Fabbi M, Carbotti G, Ferrini S, Marinelli L, La Pietra V, Novellino E, Camodeca C et al. Selective Arylsulfonamide Inhibitors of ADAM-17:Hit Optimization and Activity in Ovarian Cancer Cell. Models J Med Chem 2013; 56:8089-103; PMID:24044434; http://dx.doi.org/10.1021/jm4011753
  • Nuti E, Casalini F, Avramova SI, Santamaria S, Fabbi M, Ferrini S, Marinelli L, La Pietra V, Limongelli V, Novellino E et al. Potent arylsulfonamide inhibitors of tumor necrosis factor-α converting enzyme able to reduce activated leukocyte cell adhesion molecule shedding in cancer cell models. J Med Chem 2010; 53:2622-35; PMID:20180536; http://dx.doi.org/10.1021/jm901868z
  • Poggi A, Zancolli M, Boero S, Catellani S, Musso A, Zocchi MR. Differential survival of γδT cells, αβT cells and NK cells upon engagement of NKG2D by NKG2DL-expressing leukemic cells. Int J Cancer 2011; 129:387-96; PMID:20853320; http://dx.doi.org/10.1002/ijc.25682
  • Chitadze G, Lettau M, Bhat J, Wesch D, Steinle A, Fürst D, Mytilineos J, Kalthoff H, Janssen O, Oberg HH et al. Shedding of endogenous MHC class I-related chain molecules A and B from different human tumor entities: heterogeneous involvement of the “a disintegrin and metalloproteases” 10 and 17. Int J Cancer 2013; 133:1557-67; PMID:23526433; http://dx.doi.org/10.1002/ijc.28174
  • Hundhausen C, Misztela D, Berkhout TA, Broadway N, Saftig P, Reiss K, Hartmann D, Fahrenholz F, Postina R, Matthews V et al. The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 2003; 102:1186-95; PMID:12714508; http://dx.doi.org/10.1182/blood-2002-12-3775
  • Gober Hj, Kistowska M, Angman L, Jenö P, Mori L, De Libero G. Human T cell receptor gammadelta cells recognize endogenous mevalonate metabolites in tumor cells. J Exp Med 2003; 197:163-68; PMID:12538656; http://dx.doi.org/10.1084/jem.20021500
  • Bonneville M, O'Brien RL, Born, WK. Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10:467-78; PMID:20539306; http://dx.doi.org/10.1038/nri2781
  • Kunzman V, Bauer E, Feurle J, Weissinger F, Tony HP, Wilhelm M. Stimulation of T cells by aminobiphosphonates and induction of anti-plasma cell activity in multiple myeloma. Blood 2000; 96:384-92; PMID:10887096.
  • Musso A, Catellani S, Canevali P, Tavella S, Venè R, Boero S, Pierri I, Gobbi M, Kunkl A, Ravetti JL et al. Aminobisphosphonates prevent the inhibitory effects exerted by lymph node stromal cells on anti-tumor Vδ2 T lymphocytes in non-Hodgkin lymphomas. Haematologica 2014; 99:131-9; PMID:24162786; http://dx.doi.org/10.3324/haematol.2013.097311
  • Nakayama S, Yokote T, Tsuji M, Akioka T, Miyoshi T, Hirata Y, Hiraoka N, Iwaki N, Takayama A, Nishiwaki U et al. Expression of tumour necrosis factor-α and its receptors in Hodgkin lymphoma. Br J Haematol 2014; 167:574-7; PMID:25039986; http://dx.doi.org/10.1111/bjh.13015
  • Eichenauer DA, Simhadri VL, von Strandmann EP, Ludwig A, Matthews V, Reiners KS, von Tresckow B, Saftig P, Rose-John S, Engert A et al. ADAM10 inhibition of human CD30 shedding increases specificity of targeted immunotherapy in vitro. Cancer Res. 2007; 67:332-8; PMID:17210715; http://dx.doi.org/10.1158/0008-5472.CAN-06-2470