3,188
Views
35
CrossRef citations to date
0
Altmetric
Review

Current tools for predicting cancer-specific T cell immunity

, , &
Article: e1177691 | Received 14 Mar 2016, Accepted 06 Apr 2016, Published online: 29 Jun 2016

References

  • Castle JC, Kreiter S, Diekmann J, Lower M, van de Roemer N, de Graaf J, Selmi A, Diken M, Boegel S, Paret C et al. Exploiting the mutanome for tumor vaccination. Can Res 2012; 72:1081-91; PMID:22237626; http://dx.doi.org/10.1158/0008-5472.CAN-11-3722
  • Gubin MM, Artyomov MN, Mardis ER, Schreiber RD. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest 2015; 125:3413-21; PMID:26258412; http://dx.doi.org/10.1172/JCI80008
  • Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348:69-74; PMID:25838375; http://dx.doi.org/10.1126/science.aaa4971
  • van Buuren MM, Calis JJ, Schumacher TN. High sensitivity of cancer exome-based CD8 T cell neo-antigen identification. Oncoimmunology 2014; 3:e28836; PMID:25083320; http://dx.doi.org/10.4161/onci.28836
  • Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, van Rooij N, Linnemann C, van Buuren MM, Urbanus JH et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology 2012; 1:409-18; PMID:22754759; http://dx.doi.org/10.4161/onci.18851
  • Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348:62-8; PMID:25838374; http://dx.doi.org/10.1126/science.aaa4967
  • Tran E, Turcotte S, Gros A, Robbins PF, Lu YC, Dudley ME, Wunderlich JR, Somerville RP, Hogan K, Hinrichs CS, Parkhurst MR et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science 2014; 344:641-5; PMID:24812403; http://dx.doi.org/10.1126/science.1251102
  • Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS et al. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348:124-8; PMID:25765070; http://dx.doi.org/10.1126/science.aaa1348
  • Gubin MM, Zhang X, Schuster H, Caron E, Ward JP, Noguchi T, Ivanova Y, Hundal J, Arthur CD, Krebber WJ et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014; 515:577-81; PMID:25428507; http://dx.doi.org/10.1038/nature13988
  • Linnemann C, van Buuren MM, Bies L, Verdegaal EM, Schotte R, Calis JJ, Behjati S, Velds A, Hilkmann H, Atmioui DE et al. High-throughput epitope discovery reveals frequent recognition of neo-antigens by CD4+ T cells in human melanoma. Nat Med 2015; 21:81-5; PMID:25531942; http://dx.doi.org/10.1038/nm.3773
  • Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348:69-74; PMID:25838375; http://dx.doi.org/10.1126/science.aaa4971
  • Matsushita H, Vesely MD, Koboldt DC, Rickert CG, Uppaluri R, Magrini VJ, Arthur CD, White JM, Chen YS, Shea LK et al. Cancer exome analysis reveals a T-cell-dependent mechanism of cancer immunoediting. Nature 2012; 482:400-4; PMID:22318521; http://dx.doi.org/10.1038/nature10755
  • Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, Parkhurst MR, Ankri C, Prickett TD, Crystal JS et al. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest 2015; 125:3981-91; PMID:26389673; http://dx.doi.org/10.1172/JCI82416
  • Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015; 160:48-61; PMID:25594174; http://dx.doi.org/10.1016/j.cell.2014.12.033
  • Tan MP, Gerry AB, Brewer JE, Melchiori L, Bridgeman JS, Bennett AD, Pumphrey NJ, Jakobsen BK, Price DA, Ladell K et al. T cell receptor binding affinity governs the functional profile of cancer-specific CD8+ T cells. Clin Exp Immunol 2015; 180:255-70; PMID:25496365; http://dx.doi.org/10.1111/cei.12570
  • Obenaus M, Leitão C, Leisegang M, Chen X, Gavvovidis I, van der Bruggen P, Uckert W, Schendel DJ, Blankenstein T. Identification of human T-cell receptors with optimal affinity to cancer antigens using antigen-negative humanized mice. Nat Biotechnol 2015; 33:402-7; PMID:25774714; http://dx.doi.org/10.1038/nbt.3147
  • Kreiter S, Vormehr M, van de Roemer N, Diken M, Löwer M, Diekmann J, Boegel S, Schrörs B, Vascotto F, Castle JC et al. Mutant MHC class II epitopes drive therapeutic immune responses to cancer. Nature 2015; 520:692-6; PMID:25901682; http://dx.doi.org/10.1038/nature14426
  • Andersen RS, Andersen SR, Hjortsø MD, Lyngaa R, Idorn M, Køllgård TM, Met O, Thor Straten P, Hadrup SR. High frequency of T cells specific for cryptic epitopes in melanoma patients. Oncoimmunology 2013; 2:e25374; PMID:24073381; http://dx.doi.org/10.4161/onci.25374
  • Berkers CR, de Jong A, Schuurman KG, Linnemann C, Meiring HD, Janssen L, Neefjes JJ, Schumacher TN, Rodenko B, Ovaa H. Definition of proteasomal peptide splicing rules for high-efficiency spliced peptide presentation by MHC class I molecules. J Immunol 2015; 195:4085-95; PMID:26401003; http://dx.doi.org/10.4049/jimmunol.1402455
  • Dalet A, Robbins PF, Stroobant V, Vigneron N, Li YF, El-Gamil M, Hanada K, Yang JC, Rosenberg SA, Van den Eynde BJ. An antigenic peptide produced by reverse splicing and double asparagine deamidation. Proc Natl Acad Sci U S A 2011; 108:E323-31; PMID:21670269; http://dx.doi.org/10.1073/pnas.1101892108
  • Leone P, Shin EC, Perosa F, Vacca A, Dammacco F, Racanelli V. MHC class I antigen processing and presenting machinery: organization, function, and defects in tumor cells. J Natl Cancer Inst 2013; 105:1172-87; PMID:23852952; http://dx.doi.org/10.1093/jnci/djt184
  • Newell EW. Higher throughput methods of identifying T cell epitopes for studying outcomes of altered antigen processing and presentation. Front Immunol 2013; 4:430; PMID:24367368; http://dx.doi.org/10.3389/fimmu.2013.00430
  • Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015; 348:803-8; PMID:25837513; http://dx.doi.org/10.1126/science.aaa3828
  • Kreiter S, Castle JC, Türeci O, Sahin U. Targeting the tumor mutanome for personalized vaccination therapy. Oncoimmunology 2012; 1:768-9; PMID:22934277; http://dx.doi.org/10.4161/onci.19727
  • Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, Cheung TK, Fritsche J, Weinschenk T et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014; 515:572-6; PMID:25428506; http://dx.doi.org/10.1038/nature14001
  • McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016; 35:1463-9; PMID:26940869; http://dx.doi.org/10.1126/science.aaf1490
  • Sims D, Sudbery I, Ilott NE, Heger A, Ponting CP. Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet 2014; 15:121-32; PMID:24434847; http://dx.doi.org/10.1038/nrg3642
  • Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015; 348:803-8; PMID:25837513; http://dx.doi.org/10.1126/science.aaa3828
  • Shukla SA, Rooney MS, Rajasagi M, Tiao G, Dixon PM, Lawrence MS, Stevens J, Lane WJ, Dellagatta JL, Steelman S et al. Comprehensive analysis of cancer-associated somatic mutations in class I HLA genes. Nat Biotechnol 2015; 33:1152-58; PMID:26372948; http://dx.doi.org/10.1038/nbt.3344
  • Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stevanović S. SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 1999; 50:213-9; PMID:10602881; http://dx.doi.org/10.1007/s002510050595
  • Nielsen M, Lundegaard C, Worning P, Lauemøller SL, Lamberth K, Buus S, Brunak S, Lund O. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci 2003; 12:1007-17; PMID:12717023; http://dx.doi.org/10.1110/ps.0239403
  • Lundegaard C, Lamberth K, Harndahl M, Buus S, Lund O, Nielsen M. NetMHC-3.0: accurate web accessible predictions of human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res 2008; 36:W509-12; PMID:18463140; http://dx.doi.org/10.1093/nar/gkn202
  • Nielsen M, Lund O. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 2009; 10:296; PMID:19765293; http://dx.doi.org/10.1186/1471-2105-10-296
  • Dönnes P, Elofsson, A. Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 2002; 3:25; PMID:12225620; http://dx.doi.org/10.1186/1471-2105-3-25
  • Mamitsuka H. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models. Proteins 1998; 33:460-74; PMID:9849933; http://dx.doi.org/10.1002/(SICI)1097-0134(19981201)33 :4<460::AID-PROT2>3.0.CO;2-M
  • Andreatta M. Nielsen M. Gapped sequence alignment using artificial neural networks: application to the MHC class I system. Bioinformatics 2015; PMID:26515819; http://dx.doi.org/10.1093/bioinformatics/btv639
  • Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, Wheeler DK, Gabbard JL, Hix D, Sette A et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res 2015; 43:D405-12; PMID:25300482; http://dx.doi.org/10.1093/nar/gku938
  • Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, Røder G, Peters B, Sette A, Lund O et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2007; 2:e796; PMID:17726526; http://dx.doi.org/10.1371/journal.pone.0000796
  • Antes I Siu SW, Lengauer T. DynaPred: a structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations. Bioinformatics 2006; 22, e16-24; PMID:16873467; http://dx.doi.org/10.1093/bioinformatics/btl216
  • Yanover C, Bradley P. Large-scale characterization of peptide-MHC binding landscapes with structural simulations. Proc Natl Acad Sci U S A 2011; 108:6981-6; PMID:21478437; http://dx.doi.org/10.1073/pnas.1018165108
  • Harndahl M, Rasmussen M, Roder G, Dalgaard Pedersen I, Sørensen M, Nielsen M, Buus S. Peptide-MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity. Eur J Immunol 2012; 42:1405-16; PMID:22678897; http://dx.doi.org/10.1002/eji.201141774
  • Nielsen M, Lundegaard C, Lund O, Keşmir C. The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage. Immunogenetics 2005; 57:33-41; PMID:15744535; http://dx.doi.org/10.1007/s00251-005-0781-7
  • Larsen MV, Lundegaard C, Lamberth K, Buus S, Brunak S, Lund O, Nielsen M. An integrative approach to CTL epitope prediction: a combined algorithm integrating MHC class I binding, TAP transport efficiency, and proteasomal cleavage predictions. Eur J Immunol 2005; 35:2295-303; PMID:15997466; http://dx.doi.org/10.1002/eji.200425811
  • Nielsen M, Lund O, Buus S, Lundegaard C. MHC class II epitope predictive algorithms. Immunology 2010; 130:319-28; PMID:20408898; http://dx.doi.org/10.1111/j.1365-2567.2010.03268.x
  • Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics 2015; 67:641-50; PMID:26416257; http://dx.doi.org/10.1007/s00251-015-0873-y
  • Singh, H, Raghava, GP. ProPred: prediction of HLA-DR binding sites. Bioinformatics 2001; 17:1236-37; PMID:11751237; http://dx.doi.org/10.1093/bioinformatics/17.12.1236
  • Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004; 56:405-19; PMID:15349703; http://dx.doi.org/10.1007/s00251-004-0709-7
  • Backert L, Kohlbacher O. Immunoinformatics and epitope prediction in the age of genomic medicine. Genome Med 2015; 119:1-12; PMID:26589500; http://dx.doi.org/10.1186/s13073-015-0245-0
  • Fridman A, Finnefrock AC, Peruzzi D, Pak I, La Monica N, Bagchi A, Casimiro DR, Ciliberto G, Aurisicchio L. An efficient T-cell epitope discovery strategy using in silico prediction and the iTopia assay platform. Oncoimmunology 2012; 1:1258-270; PMID:23243589; http://dx.doi.org/10.4161/onci.21355
  • Hadrup SR, Toebes M, Rodenko B, Bakker AH, Egan DA, Ovaa H, Schumacher TN. High-throughput T-cell epitope discovery through MHC peptide exchange. Methods Mol Biol. 2009; 524:383-405; PMID:19377960; http://dx.doi.org/10.1007/978-1-59745-450-6_28
  • Rodenko B, Toebes M, Hadrup SR, van Esch WJ, Molenaar AM, Schumacher TN, Ovaa H. Generation of peptide-MHC class I complexes through UV-mediated ligand exchange. Nat Protoc 2006; 1:1120-32; PMID:17406393; http://dx.doi.org/10.1038/nprot.2006.121
  • Andersen RS, Thrue CA, Junker N, Lyngaa R, Donia M, Ellebæk E, Svane IM, Schumacher TN, Thor Straten P, Hadrup SR. Dissection of T-cell antigen specificity in human melanoma. Cancer Res 2012; 72:1642-50; PMID:22311675; http://dx.doi.org/10.1158/0008-5472.CAN-11-2614
  • Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, Castermans E, Thor Straten P, Blank C, Haanen JB et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods 2009; 6:520-6; PMID:19543285; http://dx.doi.org/10.1038/nmeth.1345
  • Hansen AM, Rasmussen M, Svitek N, Harndahl M, Golde WT, Barlow J, Nene V, Buus S, Nielsen M. Characterization of binding specificities of bovine leucocyte class I molecules: impacts for rational epitope discovery. Immunogenetics 2014; 66:705-18; PMID:25186069; http://dx.doi.org/10.1007/s00251-014-0802-5
  • Harndahl M, Justesen S, Lamberth K, Røder G, Nielsen M, Buus S. Peptide binding to HLA class I molecules: homogenous, high-throughput screening, and affinity assays. J Biomol Screen 2009; 14:173-80; PMID:19196700; http://dx.doi.org/10.1177/1087057108329453
  • Pedersen LE, Rasmussen M, Harndahl M, Nielsen M, Buus S, Jungersen G. A combined prediction strategy increases identification of peptides bound with high affinity and stability to porcine MHC class I molecules SLA-1*04:01, SLA-2*04:01, and SLA-3*04:01. Immunogenetics 2015; 68:157-65; PMID:26572135; http://dx.doi.org/10.1007/s00251-015-0883-9
  • Lundegaard C, Lund O, Nielsen M. Prediction of epitopes using neural network based methods. J Immunol Methods 2011; 374:26-34; PMID:21047511; http://dx.doi.org/10.1016/j.jim.2010.10.011
  • Harndahl M, Rasmussen M, Roder G, Buus S. Real-time, high-throughput measurements of peptide-MHC-I dissociation using a scintillation proximity assay. J Immunol Methods 2011; 374:5-12; PMID:21044632; http://dx.doi.org/10.1016/j.jim.2010.10.012
  • Luft T, Rizkalla M, Tai TY, Chen Q, MacFarlan RI, Davis ID, Maraskovsky E, Cebon J. Exogenous peptides presented by transporter associated with antigen processing (TAP)-deficient and TAP-competent cells: intracellular loading and kinetics of presentation. J Immunol. 2001; 167:2529-37; PMID:11509592; http://dx.doi.org/10.4049/jimmunol.167.5.2529
  • Justesen S, Harndahl M, Lamberth K, Nielsen LL, Buus S. Functional recombinant MHC class II molecules and high-throughput peptide-binding assays. Immunome Res 2009; 5:2; PMID:19416502; http://dx.doi.org/10.1186/1745-7580-5-2
  • James EA, Moustakas AK, Bui J, Nouv R, Papadopoulos GK, Kwok WW. The binding of antigenic peptides to HLA-DR is influenced by interactions between pocket 6 and pocket 9. J Immunol 2009; 183:3249-58; PMID:19648278; http://dx.doi.org/10.4049/jimmunol.0802228
  • Yin L, Stern LJ. Measurement of peptide binding to MHC class II molecules by fluorescence polarization. Curr Protoc Immunol 2014;10 6:5.10; PMID:25081912; http://dx.doi.org/10.1002/0471142735.im0510s106
  • Gaseitsiwe S, Valentini D, Mahdavifar S, Reilly M, Ehrnst A, Maeurer M. Peptide microarray-based identification of Mycobacterium tuberculosis epitope binding to HLA-DRB1*0101, DRB1*1501, and DRB1*0401. Clin Vaccine Immunol 2010; 17:168-75; PMID:19864486; http://dx.doi.org/10.1128/CVI.00208-09
  • Legutki JB, Zhao ZG, Greving M, Woodbury N, Johnston SA, Stafford P. Scalable high-density peptide arrays for comprehensive health monitoring. Nat Commun 2014; 5:4785; PMID:25183057; http://dx.doi.org/10.1038/ncomms5785
  • Caron E, Kowalewski DJ, Chiek Koh C, Sturm T, Schuster H, Aebersold R. Analysis of major histocompatibility complex (MHC) Immunopeptidomes Using Mass Spectrometry. Mol Cell Proteomics 2015; 14:3105-17; PMID:26628741; http://dx.doi.org/10.1074/mcp.M115.052431
  • Bassani-Sternberg M, Pletscher-Frankild S, Jensen LJ, Mann M. Mass spectrometry of human leukocyte antigen class I peptidomes reveals strong effects of protein abundance and turnover on antigen presentation. Mol Cell Proteomics 2015; 14:658-73; PMID:25576301; http://dx.doi.org/10.1074/mcp.M114.042812
  • Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M, Schmid-Horch B, Salih HR, Kanz L, Rammensee HG et al. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 2015; 29:647-59; PMID:25092142; http://dx.doi.org/10.1038/leu.2014.233
  • Caron E, Vincent K, Fortier MH, Laverdure JP, Bramoulle A, Hardy MP, Voisin G, Roux PP, Lemieux S, Thibault P et al. The MHC I immunopeptidome conveys to the cell surface an integrative view of cellular regulation. Molecular systems biology 2011; 7:533; PMID:21952136; http://dx.doi.org/10.1038/msb.2011.68
  • Granados DP, Sriranganadane D, Daouda T, Zieger A, Laumont CM, Caron-Lizott O, Boucher G, Hardy MP, Gendron P, Côté C et al. Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat Commun 2014; 5:3600; PMID:24714562; http://dx.doi.org/10.1038/ncomms4600
  • Granados DP, Yahyaoui W, Laumont CM, Daouda T, Muratore-Schroeder TL, Cote C, Laverdure JP, Lemieux S, Thibault P, Perreault C. MHC I-associated peptides preferentially derive from transcripts bearing miRNA response elements. Blood 2012; 119:e181-91; PMID:22438248; http://dx.doi.org/10.1182/blood-2012-02-412593
  • Bassani-Sternberg M, Barnea E, Beer I, Avivi I, Katz T, Admon A. Soluble plasma HLA peptidome as a potential source for cancer biomarkers. Proc Natl Acad Sci USA 2010; 107:18769-76; PMID:20974924; http://dx.doi.org/10.1073/pnas.1008501107
  • Mommen GP, Frese CK, Meiring HD, van Gaans-van den Brink J, de Jong AP, van Els CA, Heck AJ. Expanding the detectable HLA peptide repertoire using electron-transfer/higher-energy collision dissociation (EThcD). Proc Nat Acad Sci USA 2014; 111:4507-12; PMID:24616531; http://dx.doi.org/10.1073/pnas.1321458111
  • Tan CT, Croft NP, Dudek NL, Williamson NA, Purcell AW. Direct quantitation of MHC-bound peptide epitopes by selected reaction monitoring. Proteomics 2011; 11:2336-40; PMID:21598389; http://dx.doi.org/10.1002/pmic.201000531
  • Hassan C, Kester MG, Oudgenoeg G, de Ru AH, Janssen GM, Drijfhout JW, Spaapen RM, Jiménez CR, Heemskerk MH, Falkenburg JH et al. Accurate quantitation of MHC-bound peptides by application of isotopically labeled peptide MHC complexes. Journal of Proteomics. 2014; 109:240-4; PMID:25050860; http://dx.doi.org/10.1016/j.jprot.2014.07.009
  • Hogan KT, Sutton JN, Chu KU, Busby JA, Shabanowitz J, Hunt DF, Slingluff CL Jr Use of selected reaction monitoring mass spectrometry for the detection of specific MHC class I peptide antigens on A3 supertype family members. Cancer Immunol Immunother 2005; 54:359-71; PMID:15378283; http://dx.doi.org/10.1007/s00262-004-0592-y
  • Hassan C, Kester MG, de Ru AH, Hombrink P, Drijfhout JW, Nijveen H, Leunissen JA, Heemskerk MH, Falkenburg JH, van Veelen PA. The human leukocyte antigen-presented ligandome of B lymphocytes. Mol Cell Proteomics. 2013; 12:1829-43; PMID:23481700; http://dx.doi.org/10.1074/mcp.M112.024810
  • Abelin JG, Trantham PD, Penny SA, Patterson AM, Ward ST, Hildebrand WH, Cobbold M, Bai DL, Shabanowitz J, Hunt DF. Complementary IMAC enrichment methods for HLA-associated phosphopeptide identification by mass spectrometry. Nature Protocols 2015; 10:1308-18; PMID:26247297; http://dx.doi.org/10.1038/nprot.2015.086
  • Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999; 20:3551-67; PMID:10612281; http://dx.doi.org/10.1002/(SICI)1522-2683(19991201)20 :18<3551::AID-ELPS3551>3.0.CO;2-2
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nature Biotechnology 2008; 26:1367-72; PMID:19029910; http://dx.doi.org/10.1038/nbt.1511
  • Mommen GP, Marino F, Meiring HD, Poelen MC, van Gaans-van den Brink JA, Mohammed S, Heck AJR, van Els ACM. Sampling from the proteome to the HLA-D ligandome proceeds via high specificity. Mol Cell Proteomics 2016; 15:1412-32; PMID:26764012; http://dx.doi.org/10.1074/mcp.M115.055780
  • Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Method. 2007; 4:207-14; PMID:17327847; http://dx.doi.org/10.1038/nmeth1019
  • Mazor R, Tai CH, Lee B, Pastan I. Poor correlation between T-cell activation assays and HLA-DR binding prediction algorithms in an immunogenic fragment of Pseudomonas exotoxin A. J Immunol Methods 2015; 425:10-20; PMID:26056938; http://dx.doi.org/10.1016/j.jim.2015.06.003
  • Saethang T, Hirose O, Kimkong I, Tran VA, Dang XT, Nguyen LA, Le TK, Kubo M, Yamada Y, Satou K. PAAQD: Predicting immunogenicity of MHC class I binding peptides using amino acid pairwise contact potentials and quantum topological molecular similarity descriptors. J Immunol Methods 2013; 387:293-302; PMID:23058674; http://dx.doi.org/10.1016/j.jim.2012.09.016
  • Trolle T, Nielsen M. NetTepi: an integrated method for the prediction of T cell epitopes. Immunogenetics 2014; 66:449-56; PMID:24863339; http://dx.doi.org/10.1007/s00251-014-0779-0
  • Gilchuk P, Hill TM, Wilson JT, Joyce S. Discovering protective CD8 T cell epitopes-no single immunologic property predicts it! Curr Opin Immunol 2015; 34:43-51; PMID:25660347; http://dx.doi.org/10.1016/j.coi.2015.01.013
  • Rajasagi M, Shukla SA, Fritsch EF, Keskin DB, DeLuca D, Carmona E, Zhang W, Sougnez C, Cibulskis K, Sidney J et al. Systematic identification of personal tumor-specific neoantigens in chronic lymphocytic leukemia. Blood 2014; 124:453-62; PMID:24891321; http://dx.doi.org/10.1182/blood-2014-04-567933
  • Lu YC, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y, Rosenberg SA, Robbins PF. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res 2014; 20:3401-10; PMID:24987109; http://dx.doi.org/10.1158/1078-0432.CCR-14-0433
  • Robbins PF, Lu YC, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E, Samuels Y, Rosenberg SA. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med 2013; 19:747-52; PMID:23644516; http://dx.doi.org/10.1038/nm.3161
  • Frøsig TM, Lyngaa R, Met Ö, Larsen SK, Donia M, Svane IM, Thor Straten P, Hadrup SR. Broadening the repertoire of melanoma-associated T-cell epitopes. Cancer Immunol Immunother 2015; 64:609-20; PMID:25854582; http://dx.doi.org/10.1007/s00262-015-1664-x
  • Newell EW, Sigal N, Nair N, Kidd BA, Greenberg HB, Davis MM. Combinatorial tetramer staining and mass cytometry analysis facilitate T-cell epitope mapping and characterization. Nat Biotechnol 2013; 31:623-9; PMID:23748502; http://dx.doi.org/10.1038/nbt.2593
  • van Rooij N, van Buuren MM, Philips D, Velds A, Toebes M, Heemskerk B, van Dijk LJ, Behjati S, Hilkmann H, El Atmioui D et al. Tumor exome analysis reveal neoantigen-specific T-cell reactivity in an ipilimumab-responsive melanoma. J Clin Oncol. 2013; 31:e439-42; PMID:24043743; http://dx.doi.org/10.1200/JCO.2012.47.7521
  • Walz S, Stickel JS, Kowalewski DJ, Schuster H, Weisel K, Backert L, Kahn S, Nelde A, Stroh T, Handel M et al. The antigenic landscape of multiple myeloma: mass spectrometry (re)defines targets for T-cell-based immunotherapy. Blood 2015; 126:1203-13; PMID:26138685; http://dx.doi.org/10.1182/blood-2015-04-640532
  • Kowalewski DJ, Schuster H, Backert L, Berlin C, Kahn S, Kanz L, Salih HR, Rammensee HG, Stevanovic S, Stickel JS. HLA ligandome analysis identifies the underlying specificities of spontaneous antileukemia immune responses in chronic lymphocytic leukemia (CLL). Proc Natl Acad Sci USA. 2015; 112:E166-75; PMID:25548167; http://dx.doi.org/10.1073/pnas.1416389112
  • Carmona SJ, Nielsen M, Schafer-Nielsen C, Mucci J, Altcheh J, Balouz V, Tekiel V, Frasch AC, Campetella O, Buscaglia CA et al. Towards high-throughput immunomics for infectious diseases: use of next-generation peptide microarrays for rapid discovery and mapping of antigenic determinants. Mol Cell Proteomics 2015; 14:1871-84; PMID:25922409; http://dx.doi.org/10.1074/mcp.M114.045906
  • Kwong GA, Radu CG, Hwang K, Shu CJ, Ma C, Koya RC, Comin-Anduix B, Hadrup SR, Bailey RC, Witte ON et al. Modular nucleic acid assembled p/MHC microarrays for multiplexed sorting of antigen-specific T cells. J Am Chem Soc 2009; 131:9695-703; PMID:19552409; http://dx.doi.org/10.1021/ja9006707
  • Ma C, Fan R, Ahmad H, Shi Q, Comin-Anduix B, Chodon T, Koya RC, Liu CC, Kwong GA, Radu CG et al. A clinical microchip for evaluation of singleimmune cells reveals high functional heterogeneity in phenotypically similar Tcells. Nat Med 2011; 17:738-43; PMID:21602800; http://dx.doi.org/10.1038/nm.2375
  • Volpetti F, Garcia-Cordero J, Maerkl SJ. A microfluidic platform for high-throughput multiplexed protein quantitation. PLoS One 2015;10:e0117744; PMID:25680117; http://dx.doi.org/10.1371/journal.pone.0117744

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.