1,517
Views
16
CrossRef citations to date
0
Altmetric
Original Research

Chemo-immunotherapy mediates durable cure of orthotopic KrasG12D/p53−/− pancreatic ductal adenocarcinoma

, , , , , , , , , & show all
Article: e1213933 | Received 10 Jun 2016, Accepted 06 Jul 2016, Published online: 10 Sep 2016

References

  • Ansari D, Gustafsson A, Anderson R. Update on the management of pancreatic cancer: surgery is not enough. World J Gastroenterol 2015; 21:3157-65; PMID:25805920; http://dx.doi.org/10.3748/wjg.v21.i11.3157
  • Fesinmeyer MD, Austin MA, Li CI, De Roos AJ, Bowen DJ. Differences in survival by histologic type of pancreatic cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:1766-73; PMID:16030115; http://dx.doi.org/10.1158/1055-9965.EPI-05-0120
  • American Cancer Society. Cancer Facts & Figures 2016. Atlanta: American Cancer Society; 2016
  • Niccolai E, Prisco D, D'Elios MM, Amedei A. What is recent in pancreatic cancer immunotherapy? Biomed Res Int 2013; 2013:492372; PMID:23509731; http://dx.doi.org/10.1155/2013/492372
  • Lepisto AJ, Moser AJ, Zeh H, Lee K, Bartlett D, McKolanis JR, Geller BA, Schmotzer A, Potter DP, Whiteside T. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther 2008; 6:955-64; PMID:19129927
  • Morse MA, Nair SK, Boczkowski D, Tyler D, Hurwitz HI, Proia A, Clay TM, Schlom J, Gilboa E, Lyerly HK. The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 2002; 32:1-6; PMID:12630764; http://dx.doi.org/10.1385/IJGC:32:1:1
  • Kalady MF, Onaitis MW, Emani S, Abdul-Wahab Z, Pruitt SK, Tyler DS. Dendritic cells pulsed with pancreatic cancer total tumor RNA generate specific antipancreatic cancer T cells. J Gastrointest Surg 2004; 8:175-81; PMID:15036193; http://dx.doi.org/10.1016/j.gassur.2003.11.003
  • Akiyama Y, Maruyama K, Nara N, Hojo T, Cheng JY, Mori T, Wiltrout RH, Yamaguchi K. Antitumor effects induced by dendritic cell-based immunotherapy against established pancreatic cancer in hamsters. Cancer Lett 2002; 84:37-47; PMID:12104046; http://dx.doi.org/10.1016/S0304-3835(02)00189-1
  • Le DT, Lutz E, Uram JN, Sugar EA, Onners B, Solt S, Zheng L, Diaz LA Jr, Donehower RC, Jaffee EM et al. Evaluation of ipilimumab in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene in previously treated pancreatic cancer. J Immunother 2013; 36:382-9; PMID:23924790; http://dx.doi.org/10.1097/CJI.0b013e31829fb7a2
  • Kammertoens T, Schuler T, Blankenstein T. Immunotherapy: target the stroma to hit the tumor. Trends Mol Med 2005; 11:225-31; PMID:15882610; http://dx.doi.org/10.1016/j.molmed.2005.03.002
  • Halpert MM, Konduri V, Liang D, Chen Y, Wing JB, Paust S, Levitt JM, Decker WK. Dendritic cell secreted CTLA-4 regulates the T-cell response by downmodulating bystander surface B7. Stem Cells Dev 2016; 15:774-87; PMID:26979751; http://dx.doi.org/10.1089/scd.2016.0009
  • Cheng W, Ren X, Zhang C, Cai J, Liu Y, Han S, Wu A. Bioinformatic profiling identifies an immune-related risk signature for glioblastoma. Neurology 2016; 86:2226-34; PMID:27225222; http://dx.doi.org/10.1212/WNL.0000000000002770
  • Liang D, Halpert MM, Konduri V, Decker WK. Stepping out of the cytosol: AIMp1/p43 potentiates the link between innate and adaptive immunity. Int Rev Immunol 2015; 34:367-81; PMID:26325028; http://dx.doi.org/10.3109/08830185.2015.1077829
  • Hong HJ, Kim E, Jung MY, Kim S, Kim TS. AIMP1 deficiency enhances airway hyperreactivity in mice via increased TH2 immune responses. Clin Immunol 2012; 143:256-65; PMID:22472603; http://dx.doi.org/10.1016/j.clim.2012.02.004
  • Kim E, Kim SH, Kim S, Cho D, Kim TS. AIMP1/p43 protein induces the maturation of bone marrow-derived dendritic cells with T helper type 1-polarizing ability. J Immunol 2008; 180:2894-902; PMID:18292511; http://dx.doi.org/10.4049/jimmunol.180.5.2894
  • Decker WK, Xing D, Li S, Robinson SN, Yang H, Steiner D, Komanduri KV, Shpall EJ. Th-1 polarization is regulated by dendritic cell comparison of MHC class I and class II antigens. Blood 2009; 113:4213-23; PMID:19171878; http://dx.doi.org/10.1182/blood-2008-10-185470
  • Decker WK, Xing D, Li S, Robinson SN, Yang H, Yao X, Segall H, McMannis JD, Komanduri KV, Champlin RE et al. Double loading of dendritic cell MHC class I and class II with an AML antigen repertoire enhances correlates of T-cell immunity in vitro via amplification of T-cell help. Vaccine 2006; 24:3203-16; PMID:16480795; http://dx.doi.org/10.1016/j.vaccine.2006.01.029
  • Halpert MM, Carstens JL, Schissler P et al. Homologous antigenic loading of dendritic cell MHC class I and II initiates AIMp1-mediated TH1 immunity. Submitted.
  • Jalah R, Rosati M, Ganneru B, Pilkington GR, Valentin A, Kulkarni V, Bergamaschi C, Chowdhury B, Zhang GM, Beach RK et al. The p40 subunit of interleukin (IL)-12 promotes stabilization and export of the p35 subunit. J Biol Chem 2013; 288:6763-76; PMID:23297419; http://dx.doi.org/10.1074/jbc.M112.436675
  • Ruiz AL, Soudja SM, Deceneux C, Lauvau G, Marie JC. NK1.1+CD8+ T cells escape TGF-β control and contribute to early microbial pathogen response. Nat Commun 2014; 5:5150; PMID:25284210; http://dx.doi.org/10.1038/ncomms6150
  • Krupnick AS, Lin X, Li W, Higashikubo R, Zinselmeyer BH, Hartzler H, Toth K, Ritter JH, Berezin MY, Wang ST et al. Central memory CD8+ T lymphocytes mediate lung allograft acceptance. J Clin Invest 2014; 124:1130-43; PMID:24569377; http://dx.doi.org/10.1172/JCI71359
  • Zou Q, Wu B, Xue J, Fan X, Feng C, Geng S, Wang M, Wang B. CD8+ Treg cells suppress CD8+ T cell-responses by IL-10 dependent mechanism during H5N1 influenza virus infection. Eur J Immunol 2014; 44:103-14; PMID:24114149; http://dx.doi.org/10.1002/eji.201343583
  • Dauer M, Herten J, Bauer C, Renner F, Schad K, Schnurr M, Endres S, Eigler A. Chemosensitization of pancreatic carcinoma cells to enhance T cell-mediated cytotoxicity induced by tumor lysate-pulsed dendritic cells. J Immunother 2005; 28:332-42; PMID:16000951; http://dx.doi.org/10.1097/01.cji.0000164038.41104.f5
  • Kim HS, Choo YS, Koo T, Bang S, Oh TY, Wen J, Song SY. Enhancement of antitumor immunity of dendritic cells pulsed with heat-treated tumor lysate in murine pancreatic cancer. Immunol Lett 2006; 103:142-8; PMID:16313973; http://dx.doi.org/10.1016/j.imlet.2005.10.021
  • Schmidt T, Ziske C, Marten A, Endres S, Tiemann K, Schmitz V, Gorschlüter M, Schneider C, Sauerbruch T, Schmidt-Wolf IG. Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL/6 pancreatic murine tumor model. Cancer Res 2003; 63:8962-8967; PMID:14695214
  • Nair SK, Hull S, Coleman D, Gilboa E, Lyerly HK, Morse MA. Induction of carcinoembryonic antigen (CEA)-specific cytotoxic T-lymphocyte responses in vitro using autologous dendritic cells loaded with CEA peptide or CEA RNA in patients with metastatic malignancies expressing CEA. Int J Cancer 1999; 82:121-124; PMID:10360830; http://dx.doi.org/10.1002/(SICI)1097-0215(19990702)82:1%3c121::AID-IJC20%3e3.0.CO;2-X
  • Mule JJ. Dendritic cell-based vaccines for pancreatic cancer and melanoma. Ann NY Acad Sci 2009; 1174:33-40; PMID:19769734; http://dx.doi.org/10.1111/j.1749-6632.2009.04936.x
  • Mosolits S, Ullenhag G, Mellstedt H. Therapeutic vaccination in patients with gastrointestinal malignancies. A review of immunological and clinical results. Ann Oncol 2005; 16:847-62; PMID:15829493; http://dx.doi.org/10.1093/annonc/mdi192
  • Broomfield S, Currie A, van der Most RG, Brown M, van Bruggen I, Robinson BW, Lake RA. Partial, but not complete, tumor-debulking surgery promotes protective antitumor memory when combined with chemotherapy and adjuvant immunotherapy. Cancer Res 2005; 65:7580-4; PMID:16140921
  • Correale P, Cusi MG, Tsang KY, Del Vecchio MT, Marsili S, Placa ML, Intrivici C, Aquino A, Micheli L, Nencini C et al. Chemo-immunotherapy of metastatic colorectal carcinoma with gemcitabine plus FOLFOX 4 followed by subcutaneous granulocyte macrophage colony-stimulating factor and interleukin-2 induces strong immunologic and antitumor activity in metastatic colon cancer patients. J Clin Oncol 2005; 23:8950-8; PMID:16061910; http://dx.doi.org/10.1200/JCO.2005.12.147
  • Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11:6713-21; PMID:16166452; http://dx.doi.org/10.1158/1078-0432.CCR-05-0883
  • Sinha P, Clements VK, Bunt SK, Albelda SM, Ostrand-Rosenberg S. Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol 2007; 179:977-83; PMID:17617589; http://dx.doi.org/10.4049/jimmunol.179.2.977
  • Le HK, Graham L, Cha E, Morales JK, Manjili MH, Bear HD. Gemcitabine directly inhibits myeloid derived suppressor cells in BALB/c mice bearing 4T1 mammary carcinoma and augments expansion of T cells from tumor-bearing mice. Int Immunopharmacol 2009; 9:900-9; PMID:19336265; http://dx.doi.org/10.1016/j.intimp.2009.03.015
  • Soeda A, Morita-Hoshi Y, Makiyama H, Morizane C, Ueno H, Ikeda M, Okusaka T, Yamagata S, Takahashi N, Hyodo I et al. Regular dose of gemcitabine induces an increase in CD14+ monocytes and CD11c+ dendritic cells in patients with advanced pancreatic cancer. Jpn J Clin Oncol 2009; 39:797-806; PMID:19797418; http://dx.doi.org/10.1093/jjco/hyp112
  • Bauer C, Bauernfeind F, Sterzik A, Orban M, Schnurr M, Lehr HA, Endres S, Eigler A, Dauer M. Dendritic cell-based vaccination combined with gemcitabine increases survival in a murine pancreatic carcinoma model. Gut 2007; 56:1275-82; PMID:17395611; http://dx.doi.org/10.1136/gut.2006.108621
  • Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL et al. CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 2011; 331:1612-6; PMID:21436454; http://dx.doi.org/10.1126/science.1198443
  • Nowak AK, Robinson BW, Lake RA. Gemcitabine exerts a selective effect on the humoral immune response: implications for combination chemo-immunotherapy. Cancer Res 2002; 62:2353-8; PMID:11956096
  • Nowak AK, Lake RA, Marzo AL, Scott B, Heath WR, Collins EJ, Frelinger JA, Robinson BW. Induction of tumor cell apoptosis in vivo increases tumor antigen cross-presentation, cross-priming rather than cross tolerizing host tumor-specific CD8 T cells. J Immunol 2003; 170:4905-13; PMID:12734333; http://dx.doi.org/10.4049/jimmunol.170.10.4905
  • Plate JM, Plate AE, Shott S, Bograd S, Harris JE. Effect of gemcitabine on immune cells in subjects with adenocarcinoma of the pancreas. Cancer Immunol Immunother 2005; 54:915-25; PMID:15782312; http://dx.doi.org/10.1007/s00262-004-0638-1
  • Yokoyama WM, Seaman W. The Ly-49 and NKR-P1 gene families encoding lectin-like receptors on natural killer cells: the NK gene complex. Annu Rev Immunol 1993; 11:613; PMID:8476574; http://dx.doi.org/10.1146/annurev.iy.11.040193.003145
  • Ryan JC, Turck J, Niemi EC, Yokoyama WM, Seaman WE. Molecular cloning of the NK1.1 antigen, a member of the NKR-P1 family of natural killer cell activation molecules. J Immunol 1992; 149:1631; PMID:1506685
  • Ryan JC, Seaman WE. Divergent functions of lectin-like receptors on NK cells. Immunol Rev 1997; 155:79; PMID:9059884; http://dx.doi.org/10.1111/j.1600-065X.1997.tb00941.x
  • Carlyle JR, Martin A, Mehra A, Attisano L, Tsui FW, Zúñiga-Pflücker JC. Mouse NKR-P1B, a novel NK1.1 antigen with inhibitory function. J Immunol 1999; 162:5917; PMID:10229828
  • Kung SK, Su RC, Shannon J, Miller RG. The NKR-P1B gene product is an inhibitory receptor on SJL/J NK cells. J Immunol 1999; 162:5876; PMID:10229823
  • Koo GC, Dumont FJ, Tutt M, Hackett J Jr, Kumar V. The NK-1.12 mouse: a model to study differentiation of murine NK cells. J Immunol 1986; 137:3742; PMID:3782794
  • Arase H, Arase N, Saito T. Interferon-g production by natural killer (NK) cells and NK1.11 T cells upon NKR-P1 cross-linking. J Exp Med 1996; 183:2391; PMID:8642351; http://dx.doi.org/10.1084/jem.183.5.2391
  • Reichlin A, Yokoyama WM. Natural killer cell proliferation induced by anti-NK1.1 and IL-2. Immunol Cell Biol 1998; 76:143; PMID:9619484; http://dx.doi.org/10.1046/j.1440-1711.1998.00726.x
  • Assarsson E, Kambayashi T, Sandberg JK, Hong S, Taniguchi M, Van Kaer L, Ljunggren HG, Chambers BJ. CD8+ T cells rapidly acquire NK1.1 and NK cell-associated molecules upon stimulation in vitro and in vivo. J Immunol 2000; 165:3673-9; PMID:11034371; http://dx.doi.org/10.4049/jimmunol.165.7.3673
  • Kos FJ, Engleman EG. Role of natural killer cells in the generation of influenza virus-specific cytotoxic T cells. Cell Immunol 1996; 173:1; PMID:8871595; http://dx.doi.org/10.1006/cimm.1996.0245
  • Fergusson JR, Huhn MH, Swadling L, Walker LJ, Kurioka A, Llibre A, Bertoletti A, Holländer G, Newell EW, Davis MM et al. CD161intCD8+ T cells: a novel population of highly functional, memory CD8+ T cells enriched within the gut. Mucosal Immunol 2016; 9:401-13; PMID:26220166; http://dx.doi.org/10.1038/mi.2015.69
  • Billerbeck E, Kang Y-H, Walker L, Lockstone H, Grafmueller S, Fleming V, Flint J, Willberg CB, Bengsch B, Seigel B et al. Analysis of CD161 expression on human CD8+ T cells defines a distinct functional subset with tissue-homing properties. Proc Natl Acad Sci USA 2010; 107:3006-11; PMID:20133607; http://dx.doi.org/10.1073/pnas.0914839107
  • Fergusson JR, Fleming VM, Klenerman P. CD161-expressing human T-cells. Front Immunol 2011; 2:1-7; PMID:22566792; http://dx.doi.org/10.3389/fimmu.2011.00036
  • Northfield JW, Kasprowicz V, Lucas M, Kersting N, Bengsch B, Kim A, Phillips RE, Walker BD, Thimme R, Lauer G et al. CD161 expression on hepatitis C virus-specific CD8+ T cells suggests a distinct pathway of T cell differentiation. Hepatology 2008; 47:396-406; PMID:18219672; http://dx.doi.org/10.1002/hep.22040
  • Poon K, Montamat-Sicotte D, Cumberbatch N, McMichael AJ, Callan MF. Expression of leukocyte immunoglobulin-like receptors and natural killer receptors on virus-specific CD8+ T cells during the evolution of Epstein-Barr virus-specific immune responses in vivo. Viral Immunol 2005; 18:513-22; PMID:16212530; http://dx.doi.org/10.1089/vim.2005.18.513

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.