1,092
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Mini-intronic plasmid vaccination elicits tolerant LAG3+ CD8+ T cells and inferior antitumor responses

, &
Article: e1223002 | Received 16 May 2016, Accepted 06 Aug 2016, Published online: 27 Sep 2016

References

  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465-8; PMID:1690918; http://dx.doi.org/10.1126/science.1690918
  • Zhang G, Budker V, Wolff JA. High levels of foreign gene expression in hepatocytes after tail vein injections of naked plasmid DNA. Hum Gene Ther 1999; 10:1735-7; PMID:10428218; http://dx.doi.org/10.1089/10430349950017734
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev 2011; 239:62-84; PMID:21198665; http://dx.doi.org/10.1111/j.1600-065X.2010.00980.x
  • Ulmer JB, Donnelly JJ, Parker SE, Rhodes GH, Felgner PL, Dwarki VJ, Gromkowski SH, Deck RR, DeWitt CM, Friedman A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259:1745-9; PMID:8456302; http://dx.doi.org/10.1126/science.8456302
  • Colluru VT, Johnson LE, Olson BM, McNeel DG. Preclinical and clinical development of DNA vaccines for prostate cancer. Urol Oncol Semin Orig Investig 2016; 34:193-204; PMID:24332642; http://dx.doi.org/10.1016/j.urolonc.2013.09.014
  • Fowler V, Robinson L, Bankowski B, Cox S, Parida S, Lawlor C, Gibson D, O'Brien F, Ellefsen B, Hannaman D et al. A DNA vaccination regime including protein boost and electroporation protects cattle against foot-and-mouth disease. Antiviral Res 2012; 94:25-34; PMID:22330893; http://dx.doi.org/10.1016/j.antiviral.2012.02.002
  • Vandermeulen G, Richiardi H, Escriou V, Ni J, Fournier P, Schirrmacher V, Scherman D, Préat V. Skin-specific promoters for genetic immunisation by DNA electroporation. Vaccine 2009; 27:4272-7; PMID:19450641; http://dx.doi.org/10.1016/j.vaccine.2009.05.022
  • Hon H, Oran A, Brocker T, Jacob J. B lymphocytes participate in cross-presentation of antigen following gene gun vaccination. J Immunol 2005; 174:5233-42; PMID:15843519; http://dx.doi.org/10.4049/jimmunol.174.9.5233
  • Ito K, Ito K, Shinohara N, Kato S. DNA immunization via intramuscular and intradermal routes using a gene gun provides different magnitudes and durations on immune response. Mol Immunol 2003; 39:847-54; PMID:12686500; http://dx.doi.org/10.1016/S0161-5890(03)00024-5
  • Lauterbach H, Gruber A, Ried C, Cheminay C, Brocker T. Insufficient APC capacities of dendritic cells in gene gun-mediated DNA vaccination. J Immunol 2006; 176:4600-7; PMID:16585550; http://dx.doi.org/10.4049/jimmunol.176.8.4600
  • Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188:1075-82; PMID:9743526; http://dx.doi.org/10.1084/jem.188.6.1075
  • Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, Norley S, Lipp M, Walther W, Pezzutto A et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2012; 1:1537-45; PMID:23264900; http://dx.doi.org/10.4161/onci.22563
  • Amante DH, Smith TRF, Mendoza JM, Schultheis K, McCoy JR, Khan AS, Sardesai NY, Broderick KE. Skin transfection patterns and expression kinetics of electroporation-enhanced plasmid delivery using the CELLECTRA-3P, a Portable next-generation dermal electroporation device. Hum Gene Ther Methods 2015; 26:134-46; PMID:26222896; http://dx.doi.org/10.1089/hgtb.2015.020
  • Choi T, Huang M, Gorman C, Jaenisch R. A generic intron increases gene expression in transgenic mice. Mol Cell Biol 1991; 11:3070-4; PMID:2038318; http://dx.doi.org/10.1128/MCB.11.6.3070
  • André S, Seed B, Eberle J, Schraut W, Bültmann A, Haas J. Increased Immune Response Elicited by DNA vaccination with a synthetic gp120 sequence with optimized codon usages. J Virol 1998; 72:1497-503
  • Nagata T, Uchijima M, Yoshida A, Kawashima M, Koide Y. Codon optimization effect on translational efficiency of DNA vaccine in mammalian cells: analysis of plasmid DNA encoding a CTL epitope derived from microorganisms. Biochem Biophys Res Commun 1999; 261:445-51; PMID:10425204; http://dx.doi.org/10.1006/bbrc.1999.1050
  • Jechlinger W. Optimization and delivery of plasmid DNA for vaccination. Expert Rev Vaccines 2006; 5:803-25; PMID:17184219; http://dx.doi.org/10.1586/14760584.5.6.803
  • Xu Z-L, Mizuguchi H, Ishii-Watabe A, Uchida E, Mayumi T, Hayakawa T. Optimization of transcriptional regulatory elements for constructing plasmid vectors. Gene 2001; 272:149-56; PMID:11470520; http://dx.doi.org/10.1016/S0378-1119(01)00550-9
  • Chen Z-Y, He C-Y, Ehrhardt A, Kay MA. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol Ther J Am Soc Gene Ther 2003; 8:495-500; PMID:12946323; http://dx.doi.org/10.1016/S1525-0016(03)00168-0
  • Lu J, Zhang F, Kay MA. A Mini-intronic Plasmid (MIP): A novel robust transgene expression vector in vivo and in vitro. Mol Ther [Internet] 2013 [cited 2013 Mar 6]; Available from: http://www.nature.com/mt/journal/vaop/ncurrent/full/mt201333a.html
  • Lu J, Zhang F, Xu S, Fire AZ, Kay MA. The extragenic spacer length between the 5|[prime]| and 3|[prime]| Ends of the transgene expression cassette affects transgene silencing from plasmid-based vectors. Mol Ther [Internet] 2012 [cited 2012 Sep 21]; Available from: http://www.nature.com/mt/journal/vaop/ncurrent/full/mt201265a.html
  • Roos A-K, Eriksson F, Timmons JA, Gerhardt J, Nyman U, Gudmundsdotter L, Bråve A, Wahren B, Pisa P. Skin electroporation: Effects on transgene expression, DNA persistence and local tissue environment. PLoS ONE [Internet] 2009 [cited 2016 Mar 14]; 4. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2748717/
  • Lee IH, Park J-B, Cheong M, Choi YS, Park D, Sin J-I. Antitumor therapeutic and antimetastatic activity of electroporation-delivered human papillomavirus 16 E7 DNA vaccines: a possible mechanism for enhanced tumor control. DNA Cell Biol 2011; 30:975-85; PMID:21649506; http://dx.doi.org/10.1089/dna.2011.1266
  • Stacey KJ, Ross IL, Hume DA. Electroporation and DNA-dependent cell death in murine macrophages. Immunol Cell Biol 1993; 71 (Pt 2):75-85; PMID:8486399; http://dx.doi.org/10.1038/icb.1993.8
  • Wang Q, Jiang W, Chen Y, Liu P, Sheng C, Chen S, Zhang H, Pan C, Gao S, Huang W. In Vivo Electroporation of Minicircle DNA as a Novel Method of Vaccine Delivery To Enhance HIV-1-Specific Immune Responses. J Virol 2014; 88:1924-34; PMID:24284319; http://dx.doi.org/10.1128/JVI.02757-13
  • Dietz WM, Skinner NEB, Hamilton SE, Jund MD, Heitfeld SM, Litterman AJ, Hwu P, Chen Z-Y, Salazar AM, Ohlfest JR et al. Minicircle DNA is Superior to Plasmid DNA in Eliciting Antigen-specific CD8+ T-cell Responses. Mol Ther [Internet] 2013 [cited 2013 May 22]; Available from: http://www.nature.com/mt/journal/vaop/ncurrent/full/mt201385a.html
  • Smith HA, McNeel DG. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells. J Immunother Hagerstown Md 1997 2011; 34:569-80; PMID:21904219; http://dx.doi.org/10.1097/CJI.0b013e31822b5b1d
  • Smith HA, Rekoske BT, McNeel DG. DNA vaccines encoding altered peptide ligands for SSX2 enhance epitope-specific CD8+ T-cell immune responses. Vaccine 2014; 32:1707-15; PMID:24492013; http://dx.doi.org/10.1016/j.vaccine.2014.01.048
  • Rekoske BT, Smith HA, Olson BM, Maricque BB, McNeel DG. PD-1 or PD-L1 blockade restores antitumor efficacy following SSX2 Epitope-modified DNA vaccine immunization. Cancer Immunol Res 2015; 3:946-55; PMID:26041735; http://dx.doi.org/10.1158/2326-6066.CIR-14-0206
  • Smith HA, Cronk RJ, Lang JM, McNeel DG. Expression and immunotherapeutic targeting of the SSX family of cancer-testis antigens in prostate cancer. Cancer Res 2011; 71:6785-95; PMID:21880588; http://dx.doi.org/10.1158/0008-5472.CAN-11-2127
  • Smith HA, McNeel DG. Vaccines targeting the cancer-testis antigen SSX-2 elicit HLA-A2 epitope-specific cytolytic T cells. J Immunother Hagerstown Md 1997 2011; 34:569-80; PMID:21904219; http://dx.doi.org/10.1097/CJI.0b013e31822b5b1d
  • Luke J, Carnes AE, Hodgson CP, Williams JA. Improved antibiotic-free DNA vaccine vectors utilizing a novel RNA based plasmid selection system. Vaccine 2009; 27:6454-9; PMID:19559109; http://dx.doi.org/10.1016/j.vaccine.2009.06.017
  • Maniar LEG, Maniar JM, Chen Z-Y, Lu J, Fire AZ, Kay MA. Minicircle DNA vectors achieve sustained expression reflected by active chromatin and transcriptional level. Mol Ther [Internet] 2012 [cited 2012 Nov 29]; Available from: http://www.nature.com/mt/journal/vaop/ncurrent/full/mt2012244a.html
  • Kobelt D, Schleef M, Schmeer M, Aumann J, Schlag PM, Walther W. Performance of high quality minicircle DNA for in vitro and in vivo gene transfer. Mol Biotechnol 2013; 53:80-9; PMID:22467123; http://dx.doi.org/10.1007/s12033-012-9535-6
  • Darquet AM, Rangara R, Kreiss P, Schwartz B, Naimi S, Delaére P, Crouzet J, Scherman D. Minicircle: an improved DNA molecule for in vitro and in vivo gene transfer. Gene Ther 1999; 6:209-18; PMID: 10435105; http://dx.doi.org/10.1038/sj.gt.3300816
  • Alves CPA, Šimčíková M, Brito L, Monteiro GA, Prazeres DMF. Development of a nicking endonuclease-assisted method for the purification of minicircles. J Chromatogr A [Internet] [cited 2016 Mar 28]; Available from: http://www.sciencedirect.com/science/article/pii/S0021967316303004; PMID:AMBIGUOUS
  • Grosso JF, Goldberg MV, Getnet D, Bruno TC, Yen H-R, Pyle KJ, Hipkiss E, Vignali DAA, Pardoll DM, Drake CG. Functionally distinct LAG-3 and PD-1 subsets on activated and chronically stimulated CD8 T cells. J Immunol 2009; 182:6659-69; PMID:19454660; http://dx.doi.org/10.4049/jimmunol.0804211
  • Bucks CM, Norton JA, Boesteanu AC, Mueller YM, Katsikis PD. Chronic antigen stimulation alone is sufficient to drive CD8+ T cell exhaustion. J Immunol Baltim Md 1950 2009; 182:6697-708; PMID:1945466; http://dx.doi.org/10.4049/jimmunol.0800997
  • Blackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, Betts MR, Freeman GJ, Vignali DAA, Wherry EJ. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol 2009; 10:29-37; PMID:19043418; http://dx.doi.org/10.1038/ni.1679
  • Goldberg MV, Drake CG. LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol 2011; 344:269-78; PMID:21086108; http://dx.doi.org/10.1007/82_2010_114
  • Weijzen S, Meredith SC, Velders MP, Elmishad AG, Schreiber H, Kast WM. Pharmacokinetic differences between a T Cell-Tolerizing and a T cell-activating peptide. J Immunol 2001; 166:7151-7; PMID:11390461; http://dx.doi.org/10.4049/jimmunol.166.12.7151
  • Denton AE, Wesselingh R, Gras S, Guillonneau C, Olson MR, Mintern JD, Zeng W, Jackson DC, Rossjohn J, Hodgkin PD et al. Affinity thresholds for naive CD8+ CTL activation by peptides and engineered influenza a viruses. J Immunol 2011; 187:5733-44; PMID:22039305; http://dx.doi.org/10.4049/jimmunol.1003937
  • Kim MS, Sin J-I. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunology 2005; 116:255-66; PMID:16162274; http://dx.doi.org/10.1111/j.1365-2567.2005.02219.x
  • Chattopadhyay PK, Yu J, Roederer M. A live-cell assay to detect antigen-specific CD4+ T cells with diverse cytokine profiles. Nat Med 2005; 11:1113-7; PMID:16186817; http://dx.doi.org/10.1038/nm1293
  • van der Most RG, Murali-Krishna K, Lanier JG, Wherry EJ, Puglielli MT, Blattman JN, Sette A, Ahmed R. Changing immunodominance patterns in antiviral CD8 T-cell responses after loss of epitope presentation or chronic antigenic stimulation. Virology 2003; 315:93-102; PMID:14592762; http://dx.doi.org/10.1016/j.virol.2003.07.001
  • Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol 2003; 77:4911-27; PMID:12663797; http://dx.doi.org/10.1128/JVI.77.8.4911-4927.2003
  • Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E. Galectin-3 shapes antitumor immune responses by suppressing CD8+ T Cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells. Cancer Immunol Res 2015; 3:412-23; PMID:25691328; http://dx.doi.org/10.1158/2326-6066.CIR-14-0150
  • Grosso JF, Kelleher CC, Harris TJ, Maris CH, Hipkiss EL, De Marzo A, Anders R, Netto G, Getnet D, Bruno TC et al. LAG-3 regulates CD8+ T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest 2007; 117:3383-92; PMID:17932562; http://dx.doi.org/10.1172/JCI31184
  • Sierro S, Romero P, Speiser DE. The CD4-like molecule LAG-3, biology and therapeutic applications. Expert Opin Ther Targets 2011; 15:91-101; PMID:21142803; http://dx.doi.org/10.1517/14712598.2011.540563
  • Li N, Wang Y, Forbes K, Vignali KM, Heale BS, Saftig P, Hartmann D, Black RA, Rossi JJ, Blobel CP et al. Metalloproteases regulate T-cell proliferation and effector function via LAG-3. EMBO J 2007; 26:494-504; PMID:17245433; http://dx.doi.org/10.1038/sj.emboj.7601520
  • Cappello P, Triebel F, Iezzi M, Caorsi C, Quaglino E, Lollini P-L, Amici A, Carlo ED, Musiani P, Giovarelli M et al. LAG-3 enables DNA vaccination to persistently prevent mammary carcinogenesis in HER-2/neu transgenic BALB/c Mice. Cancer Res 2003; 63:2518-25; PMID:12750275
  • Kano Y, Iguchi T, Matsui H, Adachi K, Sakoda Y, Miyakawa T, Doi S, Hazama S, Nagano H, Ueyama Y et al. Combined adjuvants of poly(I:C) plus LAG-3-Ig improve antitumor effects of tumor-specific T cells, preventing their exhaustion. Cancer Sci 2016; 107:398-406; PMID:27079438; http://dx.doi.org/10.1111/cas.12861
  • Andreae S, Buisson S, Triebel F. MHC class II signal transduction in human dendritic cells induced by a natural ligand, the LAG-3 protein (CD223). Blood 2003; 102:2130-7; PMID:12775570; http://dx.doi.org/10.1182/blood-2003-01-0273
  • Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, Flores M, Li N, Schweighoffer E, Greenberg S et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 2008; 180:5916-26; PMID:18424711; http://dx.doi.org/10.4049/jimmunol.180.9.5916
  • Workman CJ, Rice DS, Dugger KJ, Kurschner C, Vignali DAA. Phenotypic analysis of the murine CD4-related glycoprotein, CD223 (LAG-3). Eur J Immunol 2002; 32:2255-63; PMID:12209638; http://dx.doi.org/10.1002/1521-4141(200208)32:8%3c2255::AID-IMMU2255%3e3.0.CO;2-A
  • Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang X-F, Dorta-Estremera SM, Greeley NR, Nitti G, Peng W et al. Persistent antigen at vaccination sites induces tumor-specific CD8+ T cell sequestration, dysfunction and deletion. Nat Med [Internet] 2013 [cited 2013 Mar 11]; advance online publication. Available from: http://www.nature.com/nm/journal/vaop/ncurrent/abs/nm.3105.html
  • Bar-Or A, Vollmer T, Antel J, Arnold DL, Bodner CA, Campagnolo D, Gianettoni J, Jalili F, Kachuck N, Lapierre Y et al. INduction of antigen-specific tolerance in multiple sclerosis after immunization with dna encoding myelin basic protein in a randomized, placebo-controlled phase 1/2 trial. Arch Neurol 2007; 64:1407-15; PMID:17698695; http://dx.doi.org/10.1001/archneur.64.10.nct70002
  • Klock HE, Koesema EJ, Knuth MW, Lesley SA. Combining the polymerase incomplete primer extension method for cloning and mutagenesis with microscreening to accelerate structural genomics efforts. Proteins Struct Funct Bioinforma 2008; 71:982-994; PMID:18004753; http://dx.doi.org/10.1002/prot.21786
  • Olson BM, Frye TP, Johnson LE, Fong L, Knutson KL, Disis ML, McNeel DG. HLA-A2-restricted T-cell epitopes specific for prostatic acid phosphatase. Cancer Immunol Immunother CII 2010; 59:943-53; PMID:20140431; http://dx.doi.org/10.1007/s00262-010-0820-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.