5,626
Views
58
CrossRef citations to date
0
Altmetric
Original Research

Overcoming resistance to HER2-targeted therapy with a novel HER2/CD3 bispecific antibody

, , , , , , , , , & ORCID Icon show all
Article: e1267891 | Received 31 Aug 2016, Accepted 24 Nov 2016, Published online: 30 Mar 2017

References

  • Singh JC, Jhaveri K, Esteva FJ. HER2-positive advanced breast cancer: optimizing patient outcomes and opportunities for drug development. Br J Cancer 2014; 111:1888-98; PMID: 25025958; http://dx.doi.org/10.1038/bjc.2014.388
  • Gajria D, Chandarlapaty S. HER2-amplified breast cancer: mechanisms of trastuzumab resistance and novel targeted therapies. Expert Rev Anticancer Ther. 2011; 11:263-75; PMID: 21342044; http://dx.doi.org/10.1586/era.10.226
  • Lipton A, Goodman L, Leitzel K, Cook J, Sperinde J, Haddad M, Kostler WJ, Huang W, Weidler JM, Ali S, et al. HER3, p95HER2, and HER2 protein expression levels define multiple subtypes of HER2-positive metastatic breast cancer. Breast Cancer Res Treat 2013; 141:43-53; PMID: 23959396; http://dx.doi.org/10.1007/s10549-013-2665-0
  • Montemurro F, Scaltriti M. Biomarkers of drugs targeting HER-family signalling in cancer. J Pathol 2014; 232:219-29; PMID: 24105684; http://dx.doi.org/10.1002/path.4269
  • Gorlick R, Huvos AG, Heller G, Aledo A, Beardsley GP, Healey JH, Meyers PA. Expression of HER2/erbB-2 correlates with survival in osteosarcoma. J Clin Oncol 1999; 17:2781-8; PMID: 10561353; http://dx.doi.org/10.1200/JCO.1999.17.9.2781
  • Ebb D, Meyers P, Grier H, Bernstein M, Gorlick R, Lipshultz SE, Krailo M, Devidas M, Barkauskas DA, Siegal GP et al. Phase II trial of trastuzumab in combination with cytotoxic chemotherapy for treatment of metastatic osteosarcoma with human epidermal growth factor receptor 2 overexpression: a report from the children's oncology group. J Clin Oncol 2012; 30:2545-51; PMID: 22665540; http://dx.doi.org/10.1200/JCO.2011.37.4546
  • Pollock NI, Grandis JR. HER2 as a therapeutic target in head and neck squamous cell carcinoma. Clin Cancer Res 2015; 21:526-33; PMID: 25424855; http://dx.doi.org/10.1158/1078-0432.CCR-14-1432
  • Nathanson DA, Gini B, Mottahedeh J, Visnyei K, Koga T, Gomez G, Eskin A, Hwang K, Wang J, Masui K, et al. Targeted therapy resistance mediated by dynamic regulation of extrachromosomal mutant EGFR DNA. Science 2014; 343:72-6; PMID: 24310612; http://dx.doi.org/10.1126/science.1241328
  • Mullard A. FDA approves first bispecific. Nature Reviews Drug Discovery 2015; 14:7; http://dx.doi.org/10.1038/nrd4531
  • Kershaw MH, Westwood JA, Slaney CY, Darcy PK. Clinical application of genetically modified T cells in cancer therapy. Clin Transl Immunology 2014; 3:e16; PMID: 25505964; http://dx.doi.org/10.1038/cti.2014.7
  • Brischwein K, Parr L, Pflanz S, Volkland J, Lumsden J, Klinger M, Locher M, Hammond SA, Kiener P, Kufer P, et al. Strictly target cell-dependent activation of T cells by bispecific single-chain antibody constructs of the BiTE class. J Immunother 2007; 30:798-807; PMID: 18049331; http://dx.doi.org/10.1097/CJI.0b013e318156750c
  • Sabbatino F, Schwab JH, Ferrone S, Ferrone CR. Evolution of studies of HLA class I antigen processing machinery (APM) components in malignant cells. Clin Transpl 2013:453-63; PMID: 25095541
  • Sanford M. Blinatumomab: first global approval. Drugs 2015; 75:321-7; PMID: 25637301; http://dx.doi.org/10.1007/s40265-015-0356-3
  • Shalaby MR, Shepard HM, Presta L, Rodrigues ML, Beverley PC, Feldmann M, Carter P. Development of humanized bispecific antibodies reactive with cytotoxic lymphocytes and tumor cells overexpressing the HER2 protooncogene. J Exp Med 1992; 175:217-25; PMID: 1346155; http://dx.doi.org/10.1084/jem.175.1.217
  • Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clinical pharmacology : advances and applications 2013; 5:5-11; PMID: 23671399; http://dx.doi.org/10.2147/CPAA.S42689
  • Junttila TT, Li J, Johnston J, Hristopoulos M, Clark R, Ellerman D, Wang BE, Li Y, Mathieu M, Li G et al. Antitumor Efficacy of a Bispecific Antibody That Targets HER2 and Activates T Cells. Cancer Res 2014; 74:5561-71; PMID: 25228655; http://dx.doi.org/10.1158/0008-5472.CAN-13-3622-T
  • Wittrup KD, Thurber GM, Schmidt MM, Rhoden JJ. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol 2012; 503:255-68; PMID: 22230572; http://dx.doi.org/10.1016/B978-0-12-396962-0.00010-0
  • Cheal SM, Xu H, Guo HF, Zanzonico PB, Larson SM, Cheung NK. Preclinical evaluation of multistep targeting of diasialoganglioside GD2 using an IgG-scFv bispecific antibody with high affinity for GD2 and DOTA metal complex. Mol Cancer Ther 2014; 13:1803-12; PMID: 24944121; http://dx.doi.org/10.1158/1535-7163.MCT-13-0933
  • Orcutt KD, Ackerman ME, Cieslewicz M, Quiroz E, Slusarczyk AL, Frangioni JV, Wittrup KD. A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel 2010; 23:221-8; PMID: 20019028; http://dx.doi.org/10.1093/protein/gzp077
  • Xu H, Cheng M, Guo H, Chen Y, Huse M, Cheung NK. Retargeting T cells to GD2 pentasaccharide on human tumors using Bispecific humanized antibody. Cancer Immunol Res 2015; 3:266-77; PMID: 25542634; http://dx.doi.org/10.1158/2326-6066.CIR-14-0230-T
  • Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, Chmielowski B, Spasic M, Henry G, Ciobanu V et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515:568-71; PMID: 25428505; http://dx.doi.org/10.1038/nature13954
  • Tang H, Wang Y, Chlewicki LK, Zhang Y, Guo J, Liang W et al. Facilitating T Cell Infiltration in Tumor Microenvironment Overcomes Resistance to PD-L1 Blockade. Cancer Cell 2016; 29:285-96; PMID: 26977880; http://dx.doi.org/10.1016/j.ccell.2016.02.004
  • Gajewski TF. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment. Semin Oncol 2015; 42:663-71; PMID: 26320069; http://dx.doi.org/10.1053/j.seminoncol.2015.05.011
  • Diaz-Montero CM, Finke J, Montero AJ. Myeloid-derived suppressor cells in cancer: therapeutic, predictive, and prognostic implications. Semin Oncol 2014; 41:174-84; PMID: 24787291; http://dx.doi.org/10.1053/j.seminoncol.2014.02.003
  • Laoui D, Van Overmeire E, De Baetselier P, Van Ginderachter JA, Raes G. Functional Relationship between Tumor-Associated Macrophages and Macrophage Colony-Stimulating Factor as Contributors to Cancer Progression. Frontiers in immunology 2014; 5:489; PMID: 25339957; http://dx.doi.org/10.3389/fimmu.2014.00489
  • Nishikawa H, Sakaguchi S. Regulatory T cells in cancer immunotherapy. Curr Opin Immunol 2014; 27:1-7; PMID: 24413387; http://dx.doi.org/10.1016/j.coi.2013.12.005
  • Munn DH, Mellor AL. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol 2013; 34:137-43; PMID: 23103127; http://dx.doi.org/10.1016/j.it.2012.10.001
  • Callahan MK, Postow MA, Wolchok JD. CTLA-4 and PD-1 Pathway Blockade: Combinations in the Clinic. Front Oncol 2014; 4:385; PMID: 25642417; http://dx.doi.org/10.3389/fonc.2014.00385
  • Postow MA, Callahan MK, Wolchok JD. Immune Checkpoint Blockade in Cancer Therapy. J Clin Oncol 2015; 33:1974-82; PMID: 25605845; http://dx.doi.org/10.1200/JCO.2014.59.4358
  • Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331:1565-70; PMID: 21436444; http://dx.doi.org/10.1126/science.1203486
  • Farolfi A, Ridolfi L, Guidoboni M, Nicoletti SV, Piciucchi S, Valmorri L, Costantini M, Scarpi E, Amadori D, Ridolfi R. Ipilimumab in advanced melanoma: reports of long-lasting responses. Melanoma research 2012; 22:263-70; PMID: 22516968; http://dx.doi.org/10.1097/CMR.0b013e328353e65c
  • Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014; 371:2189-99; PMID: 25409260; http://dx.doi.org/10.1056/NEJMoa1406498
  • McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, Jamal-Hanjani M, Wilson GA, Birkbak NJ, Hiley CT et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 2016; 351(6280):1463-9; PMID: 26940869; http://dx.doi.org/10.1126/science.aaf1490
  • Seliger B, Kiessling R. The two sides of HER2/neu: immune escape versus surveillance. Trends Mol Med 2013; 19:677-84; PMID: 24035606; http://dx.doi.org/10.1016/j.molmed.2013.08.003
  • Ahmed M, Cheng M, Cheung IY, Cheung NK. Human derived dimerization tag enhances tumor killing potency of a T-cell engaging bispecific antibody. OncoImmunology 2015; 4:e989776; PMID: 26137406; http://dx.doi.org/10.4161/2162402X.2014.989776
  • Lum LG, Thakur A. Targeting T cells with bispecific antibodies for cancer therapy. BioDrugs : clinical immunotherapeutics, biopharmaceuticals and gene therapy 2011; 25:365-79; PMID: 22050339; http://dx.doi.org/10.2165/11595950-000000000-00000
  • Yankelevich M, Kondadasula SV, Thakur A, Buck S, Cheung NK, Lum LG. Anti-CD3 x anti-GD2 bispecific antibody redirects T-cell cytolytic activity to neuroblastoma targets. Pediatr Blood Cancer 2012; 59:1198-205; PMID:22707078; http://dx.doi.org/10.1002/pbc.24237
  • Kontermann RE. Dual targeting strategies with bispecific antibodies. MAbs 2012; 4:182-97; PMID: 22453100; http://dx.doi.org/10.4161/mabs.4.2.19000
  • Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18:843-51; PMID: 20179677; http://dx.doi.org/10.1038/mt.2010.24
  • Thomas DG, Giordano TJ, Sanders D, Biermann JS, Baker L. Absence of HER2/neu gene expression in osteosarcoma and skeletal Ewing's sarcoma. Clin Cancer Res 2002; 8:788-93; PMID: 11895910
  • Ahmed N, Salsman VS, Yvon E, Louis CU, Perlaky L, Wels WS, Dishop MK, Kleinerman EE, Pule M, Rooney CM et al. Immunotherapy for osteosarcoma: genetic modification of T cells overcomes low levels of tumor antigen expression. Mol Ther 2009; 17:1779-87; PMID: 19532139; http://dx.doi.org/10.1038/mt.2009.133
  • Rainusso N, Brawley VS, Ghazi A, Hicks MJ, Gottschalk S, Rosen JM, Ahmed N. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma. Cancer Gene Ther 2012; 19:212-7; PMID: 22173710; http://dx.doi.org/10.1038/cgt.2011.83
  • Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR et al. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med 2015; 21:581-90; PMID: 25939063; http://dx.doi.org/10.1038/nm.3838
  • Chen C-T, Kim H, Liska D, Gao S, Christensen J, Weiser M. MET activation mediates resistance to lapatinib inhibition of HER2-amplified gastric cancer cells. Mol Cancer Ther 2012; 11:660-9; PMID: 22238368; http://dx.doi.org/10.1158/1535-7163.MCT-11-0754
  • Koo GC, Hasan A, O'Reilly RJ. Use of humanized severe combined immunodeficient mice for human vaccine development. Expert Rev Vaccines 2009; 8:113-20; PMID: 19093778; http://dx.doi.org/10.1586/14760584.8.1.113
  • Andrade D, Redecha PB, Vukelic M, Qing X, Perino G, Salmon JE, Koo GC. Engraftment of peripheral blood mononuclear cells from systemic lupus erythematosus and antiphospholipid syndrome patient donors into BALB-RAG-2−/− IL-2Rgamma−/− mice: a promising model for studying human disease. Arthritis Rheum 2011; 63:2764-73; PMID: 21560114; http://dx.doi.org/10.1002/art.30424