986
Views
7
CrossRef citations to date
0
Altmetric
Point of View

Uncovering the immunotherapeutic cycle initiated by p19Arf and interferon-β gene transfer to cancer cells: An inducer of immunogenic cell death

, , & ORCID Icon
Article: e1329072 | Received 05 May 2017, Accepted 08 May 2017, Published online: 20 Jun 2017

References

  • Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5):646-74; PMID:21376230; https://doi.org/10.1016/j.cell.2011.02.013
  • Giglia-Mari G, Sarasin A. TP53 mutations in human skin cancers. Hum Mutant 2003; 21(3):217-28; PMID:12619107; https://doi.org/10.1002/humu.10179
  • Sharpless E, Chin L. The INK4a/ARF locus and melanoma. Oncogene 2003; 22(20):3092-8; PMID:12789286; https://doi.org/10.1038/sj.onc.1206461
  • Fountain JW, Karayiorgou M, Ernstoff MS, Kirkwood JM, Vlock DR, Titus-Ernstoff L, Bouchard B, Vijayasaradhi S, Houghton AN, Lahti J et al. Homozygous deletions within human chromosome band 9p21 in melanoma. Proc Natl Acad Sci USA 1992; 89(21):10557-61; PMID:1438246; https://doi.org/10.1073/pnas.89.21.10557
  • Coleman A, Fountain JW, Nobori T, Olopade OI, Robertson G, Housman DE, Lugo TG. Distinct deletions of chromosome 9p associated with melanoma versus glioma, lung cancer, and leukemia. Cancer Res 1994; 54(2):344-8; PMID:8275465; www.cancerres.aacrjournals.org/content/54/2/344.long
  • Merkel CA, Medrano RF, Barauna VG, Strauss BE. Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo. Cancer Gene Ther 2013; 20(5):317-25; PMID:23618951; https://doi.org/10.1038/cgt.2013.23
  • Textor S, Fiegler N, Arnold A, Porgador A, Hofmann TG, Cerwenka A. Human NK cells are alerted to induction of p53 in cancer cells by upregulation of the NKG2D ligands ULBP1 and ULBP2. Cancer Res 2011; 71(18):5998-6009; PMID:21764762; https://doi.org/10.1158/0008-5472.CAN-10-3211
  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF, Sherr CJ, Zambetti GP. p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 2000; 14(18):2358-65; PMID:10995391; https://doi.org/10.1101/gad.827300
  • Pestka S, Langer JA, Zoon KC, Samuel CE. Interferons and their actions. Annu Rev Biochem 1987; 56:727-77; PMID:2441659; https://doi.org/10.1146/annurev.biochem.56.1.727 10.1146/annurev.bi.56.070187.003455
  • Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, Chapman R, Hertzog PJ. Interferome v2.0: An updated database of annotated interferon-regulated genes. Nucleic Acids Res 2013; 41(Database issue):D1040-6; PMID:23203888; https://doi.org/10.1093/nar/gks1215
  • González-Navajas JM, Lee J, David M, Raz E. Immunomodulatory functions of type I interferons. Nat Rev Immunol 2012; 12(2):125-35; PMID:22222875; https://doi.org/10.1038/nri3133
  • Takaoka A, Hayakawa S, Yanai H, Stoiber D, Negishi H, Kikuchi H, Sasaki S, Imai K, Shibue T, Honda K et al. Integration of interferon-alpha/beta signalling to p53 responses in tumour suppression and antiviral defence. Nature 2003; 424(6948):516-23; PMID:12872134; https://doi.org/10.1038/nature01850
  • Zhu Z, Yang Y, Wei J, Shao D, Shi Z, Li B, Liu K, Qiu Y, Zheng H, Ma Z. Type I interferon-mediated immune response against influenza A virus is attenuated in the absence of p53. Biochem Biophys Res Commun 2014; 454(1):189-95; PMID:25450379; https://doi.org/10.1016/j.bbrc.2014.10.067
  • Hu G, Mancl ME, Barnes BJ. Signaling through IFN regulatory factor-5 sensitizes p53-deficient tumors to DNA damage-induced apoptosis and cell death. Cancer Res 2005; 65(16):7403-12; PMID:16103093; https://doi.org/10.1158/0008-5472.CAN-05-0583
  • Mori T, Anazawa Y, Iiizumi M, Fukuda S, Nakamura Y, Arakawa H. Identification of the interferon regulatory factor 5 gene (IRF-5) as a direct target for p53. Oncogene 2002; 21(18):2914-8; PMID:11973653; https://doi.org/10.1038/sj.onc.1205459
  • Sandoval R, Xue J, Pilkinton M, Salvi D, Kiyokawa H, Colamonici OR. Different requirements for the cytostatic and apoptotic effects of type I interferons. Induction of apoptosis requires ARF but not p53 in osteosarcoma cell lines. J Biol Chem 2004; 279(31):32275-80; PMID:15169789; https://doi.org/10.1074/jbc.M313830200
  • Bajgelman MC, Strauss BE. Development of an adenoviral vector with robust expression driven by p53. Virology 2008; 371(1):8-13; PMID:18076963; https://doi.org/10.1016/j.virol.2007.11.015
  • Tamura RE, da Silva Soares RB, Costanzi-Strauss E, Strauss BE. Autoregulated expression of p53 from an adenoviral vector confers superior tumor inhibition in a model of prostate carcinoma gene therapy. Cancer Biol Ther 2016; 17(12):1221-30; PMID:27646031; https://doi.org/10.1080/15384047.2016.1235655
  • Merkel CA, da Silva Soares RB, de Carvalho AC, Zanatta DB, Bajgelman MC, Fratini P, Costanzi-Strauss E, Strauss BE. Activation of endogenous p53 by combined p19Arf gene transfer and nutlin-3 drug treatment modalities in the murine cell lines B16 and C6. BMC Cancer 2010; 10:316; PMID:20569441; https://doi.org/10.1186/1471-2407-10-316
  • Medrano RF, Catani JP, Ribeiro AH, Tomaz SL, Merkel CA, Costanzi-Strauss E, Strauss BE. Vaccination using melanoma cells treated with p19arf and interferon beta gene transfer in a mouse model: A novel combination for cancer immunotherapy. Cancer Immunol Immunother 2016; 65(4):371-82; PMID:26887933; https://doi.org/10.1007/s00262-016-1807-8
  • Keil D, Luebke RW, Pruett SB. Quantifying the relationship between multiple immunological parameters and host resistance: Probing the limits of reductionism. J Immunol 2001; 167(8):4543-52; PMID:11591782; https://doi.org/10.4049/jimmunol.167.8.4543
  • Catani JP, Medrano RF, Hunger A, Del Valle P, Adjemian S, Zanatta DB, Kroemer G, Costanzi-Strauss E, Strauss BE. Intratumoral immunization by p19Arf and interferon-β gene transfer in a heterotopic mouse model of lung carcinoma. Transl Oncol 2016; 9(6):565-74; PMID:27916291; https://doi.org/10.1016/j.tranon.2016.09.011
  • Hunger A, Medrano RF, Zanatta DB, Del Valle PR, Merkel CA, Salles TA, Ferrari DG, Furuya TK, Bustos SO, de Freitas Saito R et al. Reestablishment of p53/Arf and interferon-β pathways mediated by a novel adenoviral vector potentiates antiviral response and immunogenic cell death. Cell Death Discov 2017; 3:17017; PMID:28386458; https://doi.org/10.1038/cddiscovery.2017.17
  • Yang H, Ma Y, Chen G, Zhou H, Yamazaki T, Klein C, Pietrocola F, Vacchelli E, Souquere S, Sauvat A et al. Contribution of RIP3 and MLKL to immunogenic cell death signaling in cancer chemotherapy. Oncoimmunology 2016; 5(6):e1149673; PMID:27471616; https://doi.org/10.1080/2162402X.2016.1149673
  • Mantovani A, Cassatella MA, Costantini C, Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol 2011; 11(8):519-31; PMID:21785456; https://doi.org/10.1038/nri3024
  • Shaabani N, Duhan V, Khairnar V, Gassa A, Ferrer-Tur R, Häussinger D, Recher M, Zelinskyy G, Liu J, Dittmer U et al. CD169(+) macrophages regulate PD-L1 expression via type I interferon and thereby prevent severe immunopathology after LCMV infection. Cell Death Dis 2016; 7(11):e2446; PMID:27809306; https://doi.org/10.1038/cddis.2016.350
  • Galluzzi L, Buqué A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 2017; 17(2):97-111; PMID:27748397; https://doi.org/10.1038/nri.2016.107
  • Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N, Van Gool SW. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 2015; 136(5):E313-25; PMID:25208916; https://doi.org/10.1002/ijc.29202
  • Pampena MB, Levy EM. Natural killer cells as helper cells in dendritic cell cancer vaccines. Front Immunol 2015; 6:13; PMID:25674087; https://doi.org/10.3389/fimmu.2015.00013
  • Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 2016; 8(328):328ra27; PMID:26936504; https://doi.org/10.1126/scitranslmed.aae0105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.