1,619
Views
32
CrossRef citations to date
0
Altmetric
Original Research

Co-delivery of the NKT agonist α-galactosylceramide and tumor antigens to cross-priming dendritic cells breaks tolerance to self-antigens and promotes antitumor responses

, , , , , , , , , , ORCID Icon, , , & ORCID Icon show all
Article: e1339855 | Received 28 Apr 2017, Accepted 01 Jun 2017, Published online: 30 Aug 2017

References

  • Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunol Rev 2011; 239(1):27-44; PMID:21198663; https://doi.org/10.1111/j.1600-065X.2010.00979.x
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39(1):1-10; PMID:23890059; https://doi.org/10.1016/j.immuni.2013.07.012
  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity 2013; 39(1):38-48; PMID:23890062; https://doi.org/10.1016/j.immuni.2013.07.004
  • Pooley JL, Heath WR, Shortman K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 2001; 166(9):5327-30; PMID:11313367; https://doi.org/10.4049/jimmunol.166.9.5327
  • Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre CA, Ventre E, Vu Manh TP, Baranek T, Storset AK, Marvel J, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207(6):1283-92; PMID:20479118; https://doi.org/10.1084/jem.20100223
  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen JL, Keller AM, Joffre O, Zelenay S, Nye E, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med 2010; 207(6):1261-71; PMID:20479117; https://doi.org/10.1084/jem.20092618
  • Sancho D, Mourão-Sá D, Joffre OP, Schulz O, Rogers NC, Pennington DJ, Carlyle JR, Reis e Sousa C. Tumor therapy in mice via antigen targeting to a novel, DC-restricted C-type lectin. J Clin Invest 2008; 118(6):2098-110; PMID:18497879; https://doi.org/10.1172/JCI34584
  • Paulis LE, Mandal S, Kreutz M, Figdor CG. Dendritic cell-based nanovaccines for cancer immunotherapy. Curr Opin Immunol 2013; 25(3):389-95; PMID:23571027; https://doi.org/10.1016/j.coi.2013.03.001
  • Macho-Fernandez E, Cruz LJ, Ghinnagow R, Fontaine J, Bialecki E, Frisch B, Trottein F, Faveeuw C. Targeted delivery of a-galactosylceramide to CD8a+ dendritic cells optimizes type I NKT cell-based antitumor responses. J Immunol 2014; 193(2):961-9; PMID:24913977; https://doi.org/10.4049/jimmunol.1303029
  • Picco G, Beatson R, Taylor-Papadimitriou J, Burchell JM. Targeting DNGR-1 (CLEC9A) with antibody/MUC1 peptide conjugates as a vaccine for carcinomas. Eur J Immunol 2014; 44(7):1947-55; PMID:24648154; https://doi.org/10.1002/eji.201344076
  • Dhodapkar MV, Sznol M, Zhao B, Wang D, Carvajal RD, Keohan ML, Chuang E, Sanborn RE, Lutzky J, Powderly J, et al. Induction of antigen-specific immunity with a vaccine targeting NY-ESO-1 to the dendritic cell receptor DEC-205. Sci Transl Med 2014; 6(232):232ra51; PMID:24739759; https://doi.org/10.1126/scitranslmed.3008068
  • Vega-Ramos J, Villadangos JA. Consequences of direct and indirect activation of dendritic cells on antigen presentation: functional implications and clinical considerations. Mol Immunol 2013; 55(2):175-8; PMID:23200227; https://doi.org/10.1016/j.molimm.2012.10.034
  • Wiesel M, Oxenius A. From crucial to negligible: functional CD8+ T-cell responses and their dependence on CD4+ T-cell help. Eur J Immunol 2012; 42(5):1080-8; PMID:22539281; https://doi.org/10.1002/eji.201142205
  • Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 2013; 168(2):179-99; PMID:23524187; https://doi.org/10.1016/j.jconrel.2013.03.010
  • Temizoz B, Kuroda E, Ishii KJ. Vaccine adjuvants as potential cancer immunotherapeutics. Int Immunol 2016; 28(7):329-38; PMID:27006304; https://doi.org/10.1093/intimm/dxw015
  • Aarntzen EHJG, Bol K, Schreibelt G, Jacobs JFM, Lesterhuis WJ, Van Rossum MM, Blokx WA, Jacobs JF, Duiveman-de Boer T, Schuurhuis DH, et al. Skin-test infiltrating lymphocytes early predict clinical outcome of dendritic cell-based vaccination in metastatic melanoma. Cancer Res 2012; 72(23):6102-10; PMID:23010076; https://doi.org/10.1158/0008-5472.CAN-12-2479
  • Neumann S, Young K, Compton B, Anderson R, Painter G, Hook S. Synthetic TRP2 long-peptide and α-galactosylceramide formulated into cationic liposomes elicit CD8+ T-cell responses and prevent tumour progression. Vaccine 2015; 33(43):5838-44; PMID:26363382; https://doi.org/10.1016/j.vaccine.2015.08.083
  • Bendelac A, Savage PB, Teyton L. The biology of NKT cells. Annu Rev Immunol. 2007; 25:297-336; PMID:17150027; https://doi.org/10.1146/annurev.immunol.25.022106.141711
  • Cerundolo V, Silk JD, Masri SH, Salio M. Harnessing invariant NKT cells in vaccination strategies. Nat Rev Immunol 2009; 9(1):28-38; PMID:19079136; https://doi.org/10.1038/nri2451
  • Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme linked to diverse effector functions. Nat Rev Immunol 2013; 13(2):101-17; PMID:23334244; https://doi.org/10.1038/nri3369
  • Hermans IF, Silk JD, Gileadi U, Salio M, Mathew B, Ritter G, Schmidt R, Harris AL, Old L, Cerundolo V. NKT cells enhance CD4+ and CD8+ T cell responses to soluble antigen in vivo through direct interaction with dendritic cells. J Immunol 2003; 171(10):5140-7; PMID:14607913; https://doi.org/10.4049/jimmunol.171.10.5140
  • Fujii S-I, Shimizu K, Smith C, Bonifaz L, Steinman RM. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein. J Exp Med 2003; 198(2):267-79; PMID:12874260; https://doi.org/10.1084/jem.20030324
  • Stober D, Jomantaite I, Schirmbeck R, Reimann J. NKT cells provide help for dendritic cell-dependent priming of MHC class I-restricted CD8+ T cells in vivo. J Immunol 2003; 170(5):2540-8; PMID:12594280; https://doi.org/10.4049/jimmunol.170.5.2540
  • Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K, Panzer U, Rossjohn J, Perlmutter P, Cao J, Godfrey DI et al. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat Immunol 2010; 11(4):313-20; PMID:20190758; https://doi.org/10.1038/ni.1848
  • Tullett KM, Lahoud MH, Radford KJ. Harnessing Human Cross-Presenting CLEC9A(+)XCR1(+) Dendritic Cells for Immunotherapy. Front Immunol. 2014; 5:239; PMID:24904587; https://doi.org/10.3389/fimmu.2014.00239
  • Parekh VV, Lalani S, Kim S, Halder R, Azuma M, Yagita H, Kumar V, Wu L, Kaer LV. PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J Immunol 2009; 182(5):2816-26; PMID:19234176; https://doi.org/10.4049/jimmunol.0803648
  • Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10–producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Inves 2014; 124(9):3725-40; https://doi.org/10.1172/JCI72308
  • Preston CC, Maurer MJ, Oberg AL, Visscher DW, Kalli KR, Hartmann LC, Goode EL, Knutson KL. The ratios of CD8+ T cells to CD4+CD25+ FOXP3+ and FOXP3- T cells correlate with poor clinical outcome in human serous ovarian cancer. PloS One 2013; 8(11):e80063; PMID:24244610; https://doi.org/10.1371/journal.pone.0080063
  • Bachem A, Güttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med 2010; 207(6):1273-81; PMID:20479115; https://doi.org/10.1084/jem.20100348
  • Tahir SM, Cheng O, Shaulov A, Koezuka Y, Bubley GJ, Wilson SB, Balk SP, Exley MA. Loss of IFN-gamma production by invariant NK T cells in advanced cancer. J Immunol 2001; 167(7):4046-50; PMID:11564825; https://doi.org/10.4049/jimmunol.167.7.4046
  • Molling JW, Kölgen W, van der Vliet HJJ, Boomsma MF, Kruizenga H, Smorenburg CH, Molenkamp BG, Langendijk JA, Leemans CR, von Blomberg BM, et al. Peripheral blood IFN-gamma-secreting Valpha24+Vbeta11+ NKT cell numbers are decreased in cancer patients independent of tumor type or tumor load. Int J Cancer 2005; 116(1):87-93; PMID:15756674; https://doi.org/10.1002/ijc.20998
  • Dhodapkar MV, Richter J. Harnessing natural killer T (NKT) cells in human myeloma: progress and challenges. Clin Immunol 2011; 140(2):160-6; PMID:21233022; https://doi.org/10.1016/j.clim.2010.12.010
  • Exley MA, Nakayama T. NKT-cell-based immunotherapies in clinical trials. Clin Immunol 2011; 140(2):117-8; PMID:21592864; https://doi.org/10.1016/j.clim.2011.04.015
  • Motohashi S, Nagato K, Kunii N, Yamamoto H, Yamasaki K, Okita K, Hanaoka H, Shimizu N, Suzuki M, Yoshino I, et al. A phase I-II study of alpha-galactosylceramide-pulsed IL-2/GM-CSF-cultured peripheral blood mononuclear cells in patients with advanced and recurrent non-small cell lung cancer. J Immunol 2009; 182(4):2492-501; PMID:19201905; https://doi.org/10.4049/jimmunol.0800126
  • Schneiders FL, Scheper RJ, von Blomberg BME, Woltman AM, Janssen HL, van den Eertwegh AJ, Verheul HM, de Gruijl TD, van der Vliet HJ. Clinical experience with α-galactosylceramide (KRN7000) in patients with advanced cancer and chronic hepatitis B/C infection. Clin Immunol 2011; 140(2):130-41; PMID:21169066; https://doi.org/10.1016/j.clim.2010.11.010
  • Hunn MK, Hermans IF. Exploiting invariant NKT cells to promote T-cell responses to cancer vaccines. Oncoimmunology 2013; 2(4):e23789; PMID:23734325; https://doi.org/10.4161/onci.23789
  • Dölen Y, Kreutz M, Gileadi U, Tel J, Vasaturo A, van Dinther EAW, van Hout-Kuijer MA, Cerundolo V, Figdor CG. Co-delivery of PLGA encapsulated invariant NKT cell agonist with antigenic protein induce strong T cell-mediated antitumor immune responses. Oncoimmunology 2015; 5(1):e1068493; PMID:26942088; https://doi.org/10.1080/2162402X.2015.1068493
  • Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccines Immunother 2016; 12(4):1056-69; https://doi.org/10.1080/21645515.2015.1117714
  • Hermans IF, Silk JD, Gileadi U, Masri SH, Shepherd D, Farrand KJ, Salio M, Cerundolo V. Dendritic cell function can be modulated through cooperative actions of TLR ligands and invariant NKT cells. J Immunol 2007; 178(5):2721-9; PMID:17312114; https://doi.org/10.4049/jimmunol.178.5.2721
  • Dong T, Yi T, Yang M, Lin S, Li W, Xu X, Hu J, Jia L, Hong X, Niu W. Co-operation of α-galactosylceramide-loaded tumour cells and TLR9 agonists induce potent anti-tumour responses in a murine colon cancer model. Biochem J 2016; 473(1):7-19; PMID:26450924; https://doi.org/10.1042/BJ20150129
  • Coelho-Dos-Reis JG, Huang J, Tsao T, Pereira FV, Funakoshi R, Nakajima H, Sugiyama H, Tsuji M. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells. Clin Immunol 2016; 168:6-15; PMID:27132023; https://doi.org/10.1016/j.clim.2016.04.014
  • Balan S, Ollion V, Colletti N, Chelbi R, Montanana-Sanchis F, Liu H, Vu Manh TP, Sanchez C, Savoret J, Perrot I, et al. Human XCR1+ dendritic cells derived in vitro from CD34+ progenitors closely resemble blood dendritic cells, including their adjuvant responsiveness, contrary to monocyte-derived dendritic cells. J Immunol 2014; 193(4):1622-35; PMID:25009205; https://doi.org/10.4049/jimmunol.1401243
  • Yamasaki K, Horiguchi S, Kurosaki M, Kunii N, Nagato K, Hanaoka H, Shimizu N, Ueno N, Yamamoto S, Taniguchi M, et al. Induction of NKT cell-specific immune responses in cancer tissues after NKT cell-targeted adoptive immunotherapy. Clin Immunol 2011; 138(3):255-65; PMID:21185787; https://doi.org/10.1016/j.clim.2010.11.014
  • Kitayama S, Zhang R, Liu TY, Ueda N, Iriguchi S, Yasui Y, Kawai Y, Tatsumi M, Hirai N, Mizoro Y, et al. Cellular adjuvant properties, direct cytotoxicity of Re-differentiated Vα24 invariant NKT-like cells from human induced pluripotent stem cells. Stem Cell Rep 2016; 6(2):213-27; https://doi.org/10.1016/j.stemcr.2016.01.005
  • Yamada D, Iyoda T, Vizcardo R, Shimizu K, Sato Y, Endo TA, Kitahara G, Okoshi M, Kobayashi M, Sakurai M, et al. Efficient regeneration of human V1537;24(+) invariant natural killer T cells and their anti-tumor activity in vivo. Stem Cells 2016; 34(12):2852-60; PMID:27422351; https://doi.org/10.1002/stem.2465
  • Mendiratta SK, Martin WD, Hong S, Boesteanu A, Joyce S, Van Kaer L. CD1d1 mutant mice are deficient in natural T cells that promptly produce IL-4. Immunity 1997; 6(4):469-77; PMID:9133426; https://doi.org/10.1016/S1074-7613(00)80290-3
  • Cui J, Shin T, Kawano T, Sato H, Kondo E, Toura I, Kaneko Y, Koseki H, Kanno M, Taniguchi M. Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science. 1997; 278(5343):1623-6; PMID:9374462; https://doi.org/10.1126/science.278.5343.1623
  • Hildner K, Edelson BT, Purtha WE, Diamond M, Matsushita H, Kohyama M, et al. Batf3 deficiency reveals a critical role for CD8alpha+ dendritic cells in cytotoxic T cell immunity. Science 2008; 322(5904):1097-100; PMID:19008445; https://doi.org/10.1126/science.1164206
  • Bouabe H, Liu Y, Moser M, Bösl MR, Heesemann J. Novel highly sensitive IL-10-beta-lactamase reporter mouse reveals cells of the innate immune system as a substantial source of IL-10 in vivo. J Immunol 2011; 187(6):3165-76; PMID:21844394; https://doi.org/10.4049/jimmunol.1101477
  • Kyaw T, Winship A, Tay C, Kanellakis P, Hosseini H, Cao A, Li P, Tipping P, Bobik A, Toh BH. Cytotoxic and Proinflammatory CD8+ T Lymphocytes Promote Development of Vulnerable Atherosclerotic Plaques in ApoE-Deficient Mice. Circulation 2013; 127(9):1028-39; PMID:23395974; https://doi.org/10.1161/CIRCULATIONAHA.112.001347
  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG. Targeted PLGA nano- but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 2010; 144(2):118-26; PMID:20156497; https://doi.org/10.1016/j.jconrel.2010.02.013
  • Cruz LJ, Tacken PJ, Bonetto F, Buschow SI, Croes HJ, Wijers M, Eich C, de Vries IJ, Figdor CG. Multimodal imaging of nanovaccine carriers targeted to human dendritic cells. Mol Pharm 2011; 8(2):520-31; PMID:21381651; https://doi.org/10.1021/mp100356k
  • Tel J, Sittig SP, Blom RA, Cruz LJ, Schreibelt G, Figdor CG, de Vries IJ. Targeting uptake receptors on human plasmacytoid dendritic cells triggers antigen cross-presentation and robust type I IFN secretion. J Immunol 2013; 191(10):5005-12; PMID:24127556; https://doi.org/10.4049/jimmunol.1300787
  • Thedrez A, de Lalla C, Allain S, Zaccagnino L, Sidobre S, Garavaglia C, Borsellino G, Dellabona P, Bonneville M, Scotet E et al. CD4 engagement by CD1d potentiates activation of CD4+ invariant NKT cells. Blood 2007; 110(1):251-8; PMID:17363727; https://doi.org/10.1182/blood-2007-01-066217

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.