2,237
Views
28
CrossRef citations to date
0
Altmetric
Original Research

The inhibitory checkpoint, PD-L2, is a target for effector T cells: Novel possibilities for immune therapy

, , ORCID Icon, , , , ORCID Icon, , , , , , & show all
Article: e1390641 | Received 17 Aug 2017, Accepted 05 Oct 2017, Published online: 01 Nov 2017

References

  • Andersen MH. The targeting of immunosuppressive mechanisms in hematological malignancies. Leukemia. 2014;28:1784–1792. doi:10.1038/leu.2014.108. PMID:24691076
  • Yearley JH, Gibson C, Yu N, Moon C, Murphy E, Juco J et al. PD-L2 expression in human tumors: Relevance to Anti-PD-1 therapy in cancer. Clin Cancer Res. 2017;23:3158–3167. doi:10.1158/1078-0432.CCR-16-1761. PMID:28619999
  • Danilova L, Wang H, Sunshine J, Kaunitz GJ, Cottrell TR, Xu H et al. Association of PD-1/PD-L axis expression with cytolytic activity, mutational load, and prognosis in melanoma and other solid tumors. Proc Natl Acad Sci U S A. 2016;113:E7769–E7777. doi:10.1073/pnas.1607836113. PMID:27837027
  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704. doi:10.1146/annurev.immunol.26.021607.090331. PMID:18173375
  • Roemer MG, Advani RH, Ligon AH, Natkunam Y, Redd RA, Homer H et al. PD-L1 and PD-L2 genetic alterations define classical Hodgkin Lymphoma and predict outcome. J Clin Oncol. 2016;34:2690–2697. doi:10.1200/JCO.2016.66.4482. PMID:27069084
  • Laurent C, Charmpi K, Gravelle P, Tosolini M, Franchet C, Ysebaert L et al. Several immune escape patterns in non-Hodgkin's lymphomas. Oncoimmunology. 2015;4:e1026530. doi:10.1080/2162402X.2015.1026530. PMID:26405585
  • Yang H, Bueso-Ramos C, Dinardo C, Estecio MR, Davanlou M, Geng QR et al. Expression of PD-L1, PD-L2, PD-1 and CTLA4 in myelodysplastic syndromes is enhanced by treatment with hypomethylating agents. Leukemia. 2014;28:1280–1288. doi:10.1038/leu.2013.355. PMID:24270737
  • Solito S, Pinton L, Mandruzzato S. In Brief: Myeloid-derived suppressor cells in cancer. J Pathol. 2017;242(1):7–9. doi:10.1002/path.4876. PMID:28097660
  • Munir S, Andersen GH, Met O, Donia M, Frosig TM, Larsen SK et al. HLA-restricted cytotoxic T cells that are specific for the immune checkpoint ligand PD-L1 occur with high frequency in cancer patients. Cancer Research. 2013;73:1674–1776. doi:10.1158/0008-5472.CAN-12-3507.
  • Munir S, Andersen GH, Woetmann A, Odum N, Becker JC, Andersen MH. Cutaneous T cell lymphoma cells are targets for immune checkpoint ligand PD-L1-specific, cytotoxic T cells. Leukemia. 2013;27:2251–2253. doi:10.1038/leu.2013.118. PMID:23660624
  • Munir S, Andersen GH, Svane IM, Andersen MH. The immune checkpoint regulator PD-L1 is a specific target for naturally occurring CD4+ T cells. Oncoimmunology. 2013;2:e23991. doi:10.4161/onci.23991. PMID:23734334
  • Ahmad SM, Larsen SK, Svane IM, Andersen MH. Harnessing PD-L1-specific cytotoxic T cells for anti-leukemia immunotherapy to defeat mechanisms of immune escape mediated by the PD-1 pathway. Leukemia. 2014;28:236–238. doi:10.1038/leu.2013.261. PMID:24091833
  • Ahmad SM, Svane IM, Andersen MH. The stimulation of PD-L1-specific cytotoxic T lymphocytes can both directly and indirectly enhance antileukemic immunity. Blood Cancer J. 2014;4:230–233. doi:10.1038/bcj.2014.50.
  • Larsen SK, Munir S, Woetmann A, Froesig TM, Odum N, Svane IM et al. Functional characterization of Foxp3-specific spontaneous immune responses. Leukemia. 2013;27:2332–2340. doi:10.1038/leu.2013.196. PMID:23812418
  • Martinenaite E, Ahmad SM, Hansen M, Met O, Westergaard MW, Larsen SK et al. CCL22-specific T cells: Modulating the immunosuppressive tumor microenvironment. Oncoimmunology. 2016;5:e1238541. doi:10.1080/2162402X.2016.1238541. PMID:27999757
  • Met O, Balslev E, Flyger H, Svane IM. High immunogenic potential of p53 mRNA-transfected dendritic cells in patients with primary breast cancer. Breast Cancer Res Treat. 2011;125:395–406. doi:10.1007/s10549-010-0844-9. PMID:20336365
  • Moodie Z, Price L, Janetzki S, Britten CM. Response determination criteria for ELISPOT: toward a standard that can be applied across laboratories. Methods Mol Biol. 2012;792:185–196. doi:10.1007/978-1-61779-325-7_15. PMID:21956511
  • Rammensee HG, Falk K, Roetzschke O. MHC molecules as peptide receptors. Curr Biol. 1995;5:35–44. PMID:7697344
  • Andersen MH. Immune regulation by self-recognition: Novel possibilities for anticancer immunotherapy. J Natl Cancer Inst. 2015;107:154. doi:10.1093/jnci/djv154.
  • Andersen MH. Anti-regulatory T cells. Semin Immunopathol. 2016;39(3):317–326. doi:10.1007/s00281-016-0593-x.Review. PMID:27677755
  • Keilholz U, Weber J, Finke JH, Gabrilovich DI, Kast WM, Disis ML et al. Immunologic monitoring of cancer vaccine therapy: Results of a workshop sponsored by the Society for Biological Therapy. J Immunother. 2002;25:97–138. doi:10.1097/00002371-200203000-00001. PMID:12074049
  • Rhee F. Idiotype vaccination strategies in myeloma: how to overcome a dysfunctional immune system. Clin Cancer Res. 2007;13:1353–1355. doi:10.1158/1078-0432.CCR-06-2650. PMID:17332275

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.