6,672
Views
147
CrossRef citations to date
0
Altmetric
Review

Eosinophils: The unsung heroes in cancer?

, , , , , , & show all
Article: e1393134 | Received 22 Aug 2017, Accepted 11 Oct 2017, Published online: 13 Nov 2017

References

  • Kay AB. The early history of the eosinophil. Clin Exp Allergy. 2015;45(3):575–582. https://doi.org/10.1111/cea.12480. PMID:25544991
  • Johnston LK, Bryce PJ. Understanding Interleukin 33 and Its Roles in Eosinophil Development. Front Med (Lausanne). 2017;4(51); https://doi.org/10.3389/fmed.2017.00051.
  • Varricchi G, Bagnasco D, Borriello F, Heffler E, Canonica GW. Interleukin-5 pathway inhibition in the treatment of eosinophilic respiratory disorders: evidence and unmet needs. Curr Opin Allergy Clin Immunol. 2016;16(2):186–200; https://doi.org/10.1097/aci.0000000000000251. PMID:26859368
  • Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev Immunol. 2013;13(1):9–22; https://doi.org/10.1038/nri3341. PMID:23154224
  • Furuta GT, Atkins FD, Lee NA, Lee JJ. Changing roles of eosinophils in health and disease. Ann Allergy Asthma Immunol. 2014;113(1):3–8; https://doi.org/10.1016/j.anai.2014.04.002. PMID:24795292
  • Varricchi G, Senna G, Loffredo S, Bagnasco D, Ferrando M, Canonica GW. Reslizumab and Eosinophilic Asthma: One Step Closer to Precision Medicine? Front Immunol. 2017;8:242; https://doi.org/10.3389/fimmu.2017.00242. PMID:28344579
  • Huang L, Appleton JA. Eosinophils in Helminth Infection: Defenders and Dupes. Trends Parasitol. 2016;32(10):798–807; https://doi.org/10.1016/j.pt.2016.05.004. PMID:27262918
  • Wang Z, Lai Y, Bernard JJ, MacLeod DT, Cogen AL, Moss B, Di Nardo A. Skin Mast Cells Protect Mice against Vaccinia Virus by Triggering Mast Cell Receptor S1PR2 and Releasing Antimicrobial Peptides. J Immunol. 2012;188(1):345–357; https://doi.org/10.4049/jimmunol.1101703. PMID:22140255
  • Samarasinghe AE, Melo RC, Duan S, LeMessurier KS, Liedmann S, Surman SL, Lee JJ, Hurwitz JL, Thomas PG, McCullers JA. Eosinophils Promote Antiviral Immunity in Mice Infected with Influenza A Virus. J Immunol. 2017;198(8):3214–3226; https://doi.org/10.4049/jimmunol.1600787. PMID:28283567
  • Yousefi S, Gold JA, Andina N, Lee JJ, Kelly AM, Kozlowski E, Schmid I, Straumann A, Reichenbach J, Gleich GJ, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med. 2008;14(9):949–953; https://doi.org/10.1038/nm.1855. PMID:18690244
  • Hogan SP, Rosenberg HF, Moqbel R, Phipps S, Foster PS, Lacy P, Kay AB, Rothenberg ME. Eosinophils: biological properties and role in health and disease. Clin Exp Allergy. 2008;38(5):709–750; https://doi.org/10.1111/j.1365-2222.2008.02958.x. PMID:18384431
  • Chan CY, St John AL, Abraham SN. Plasticity in mast cell responses during bacterial infections. Curr Opin Microbiol. 2012;15(1):78–84; https://doi.org/10.1016/j.mib.2011.10.007. PMID:22055570
  • Josephs DH, Spicer JF, Corrigan CJ, Gould HJ, Karagiannis SN. Epidemiological associations of allergy, IgE and cancer. Clin Exp Allergy. 2013;43(10):1110–1123; https://doi.org/10.1111/cea.12178. PMID:24074329
  • Jensen-Jarolim E, Bax HJ, Bianchini R, Capron M, Corrigan C, Castells M, Dombrowicz D, Daniels-Wells TR, Fazekas J, Fiebiger E, et al. AllergoOncology – the impact of allergy in oncology: EAACI position paper. Allergy. 2017;72(6):866–887; https://doi.org/10.1111/all.13119. PMID:28032353
  • Platzer B, Elpek KG, Cremasco V, Baker K, Stout MM, Schultz C, Dehlink E, Shade KT, Anthony RM, Blumberg RS, et al. IgE/FcepsilonRI-Mediated Antigen Cross-Presentation by Dendritic Cells Enhances Anti-Tumor Immune Responses. Cell Rep. 2015;10(9):1487–1495; https://doi.org/10.1016/j.celrep.2015.02.015. PMID:25753415
  • Tomasetti C, Li L, Vogelstein B. Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science. 2017;355(6331):1330–1334; https://doi.org/10.1126/science.aaf9011. PMID:28336671
  • Dawson MA, Kouzarides T, Huntly BJ. Targeting epigenetic readers in cancer. N Engl J Med. 2012;367(7):647–657; https://doi.org/10.1056/NEJMra1112635. PMID:22894577
  • Dawson MA. The cancer epigenome: Concepts, challenges, and therapeutic opportunities. Science. 2017;355(6330):1147–1152; https://doi.org/10.1126/science.aam7304. PMID:28302822
  • Zitvogel L, Apetoh L, Ghiringhelli F, Andre F, Tesniere A, Kroemer G. The anticancer immune response: indispensable for therapeutic success? J Clin Invest. 2008;118(6):1991–2001; https://doi.org/10.1172/JCI35180. PMID:18523649
  • Zitvogel L, Galluzzi L, Smyth MJ, Kroemer G. Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity. 2013;39(1):74–88; https://doi.org/10.1016/j.immuni.2013.06.014. PMID:23890065
  • Bissell MJ, Hines WC. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat Med. 2011;17(3):320–329; https://doi.org/10.1038/nm.2328. PMID:21383745
  • Galdiero MR, Varricchi G, Marone G. The immune network in thyroid cancer. Oncoimmunology. 2016;5(6):e1168556; https://doi.org/10.1080/2162402X.2016.1168556. PMID:27471646
  • Varricchi G, Galdiero MR, Loffredo S, Marone G, Iannone R, Granata F. Are Mast Cells MASTers in Cancer? Front Immunol. 2017;8:424; https://doi.org/10.3389/fimmu.2017.00424. PMID:28446910
  • Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–322; https://doi.org/10.1016/j.ccr.2012.02.022. PMID:22439926
  • Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454(7203):436–444; https://doi.org/10.1038/nature07205. PMID:18650914
  • Galdiero MR, Garlanda C, Jaillon S, Marone G, Mantovani A. Tumor associated macrophages and neutrophils in tumor progression. J Cell Physiol. 2013;228(7):1404–1412; https://doi.org/10.1002/jcp.24260. PMID:23065796
  • Marone G, Varricchi G, Loffredo S, Granata F. Mast cells and basophils in inflammatory and tumor angiogenesis and lymphangiogenesis. Eur J Pharmacol. 2016;778:146–151; https://doi.org/10.1016/j.ejphar.2015.03.088. PMID:25941082
  • Varricchi G, Galdiero MR, Marone G, Granata F, Borriello F. Controversial role of mast cells in skin cancers. Exp Dermatol. 2017;26(1):11–17; https://doi.org/10.1111/exd.13107. PMID:27305467
  • Galdiero MR, Marone G, Mantovani A. Cancer Inflammation and Cytokines. Cold Spring Harb Perspect Biol. 2017;pii: a028662; in press. https://doi.org/10.1101/cshperspect.a028662. PMID:28778871
  • Varricchi G, Granata F, Loffredo S, Genovese A, Marone G. Angiogenesis and lymphangiogenesis in inflammatory skin disorders. J Am Acad Dermatol. 2015;73(1):144–153; https://doi.org/10.1016/j.jaad.2015.03.041. PMID:25922287
  • Nissim Ben Efraim AH, Levi-Schaffer F. Roles of eosinophils in the modulation of angiogenesis. Chem Immunol Allergy. 2014;99:138–154; https://doi.org/10.1159/000353251. PMID:24217607
  • Jung Y, Wen T, Mingler MK, Caldwell JM, Wang YH, Chaplin DD, Lee EH, Jang MH, Woo SY, Seoh JY, et al. IL-1[beta] in eosinophil-mediated small intestinal homeostasis and IgA production. Mucosal Immunol. 2015;8(4):930–942; https://doi.org/10.1038/mi.2014.123. PMID:25563499
  • Throsby M, Herbelin A, Pléau J-M, Dardenne M. CD11 c+Eosinophils in the Murine Thymus: Developmental Regulation and Recruitment upon MHC Class I-Restricted Thymocyte Deletion. J Immunol. 2000;165(4):1965–1975; https://doi.org/10.4049/jimmunol.165.4.1965. PMID:10925279
  • Gouon-Evans Vr, Pollard JW. Eotaxin Is Required for Eosinophil Homing into the Stroma of the Pubertal and Cycling Uterus. Endocrinology. 2001;142(10):4515–4521; https://doi.org/10.1210/endo.142.10.8459. PMID:11564717
  • Mesnil C, Raulier Sf, Paulissen Gv, Xiao X, Birrell MA, Pirottin D, Janss T, Starkl P, Ramery E, Henket M, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest. 2016;126(9):3279–3295; https://doi.org/10.1172/jci85664. PMID:27548519
  • Wu D, Molofsky AB, Liang H-E, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM. Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis. Science. 2011;332(6026):243–247; https://doi.org/10.1126/science.1201475. PMID:21436399
  • Rothenberg ME, Hogan SP. THE EOSINOPHIL. Ann Rev Immunol. 2006;24(1):147–174; https://doi.org/10.1146/annurev.immunol.24.021605.090720.
  • Travers J, Rothenberg ME. Eosinophils in mucosal immune responses. Mucosal Immunol. 2015;8(3):464–475; https://doi.org/10.1038/mi.2015.2. PMID:25807184
  • Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. Eosinophils in health and disease: the LIAR hypothesis. Clin Exp Allergy. 2010;40(4):563–575; https://doi.org/10.1111/j.1365-2222.2010.03484.x. PMID:20447076
  • Long H, Liao W, Wang L, Lu Q. A Player and Coordinator: The Versatile Roles of Eosinophils in the Immune System. Transfus Med Hemother. 2016;43(2):96–108; https://doi.org/10.1159/000445215. PMID:27226792
  • Wen T, Rothenberg ME. The Regulatory Function of Eosinophils. Microbiol Spectr. 2016;4(5); https://doi.org/10.1128/microbiolspec.MCHD-0020-2015. PMID:27780017
  • Galdiero MR, Varricchi G, Seaf M, Marone G, Levi-Schaffer F, Marone G. Bidirectional mast cell – eosinophil Interactions in inflammatory disorders and cancer Front Med (Lausanne). 2017;4:103; https://doi.org/10.3389/fmed.2017.00103.
  • Broughton SE, Nero TL, Dhagat U, Kan WL, Hercus TR, Tvorogov D, Lopez AF, Parker MW. The betac receptor family – Structural insights and their functional implications. Cytokine. 2015;74(2):247–258; https://doi.org/10.1016/j.cyto.2015.02.005. PMID:25982846
  • Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE, et al. Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 2013;502(7470):245–248; https://doi.org/10.1038/nature12526. PMID:24037376
  • Dubucquoi S, Desreumaux P, Janin A, Klein O, Goldman M, Tavernier J, Capron A, Capron M. Interleukin 5 synthesis by eosinophils: association with granules and immunoglobulin-dependent secretion. J Exp Med 1994;179(2):703–708; https://doi.org/10.1084/jem.179.2.703. PMID:8294877
  • Drissen R, Buza-Vidas N, Woll P, Thongjuea S, Gambardella A, Giustacchini A, Mancini E, Zriwil A, Lutteropp M, Grover A, et al. Distinct myeloid progenitor-differentiation pathways identified through single-cell RNA sequencing. Nat Immunol. 2016;17(6):666–676; https://doi.org/10.1038/ni.3412. PMID:27043410
  • Johnston LK, Hsu CL, Krier-Burris RA, Chhiba KD, Chien KB, McKenzie A, Berdnikovs S, Bryce PJ. IL-33 Precedes IL-5 in Regulating Eosinophil Commitment and Is Required for Eosinophil Homeostasis. J Immunol. 2016;197(9):3445–3453; https://doi.org/10.4049/jimmunol.1600611. PMID:27683753
  • Gabriele L, Schiavoni G, Mattei F, Sanchez M, Sestili P, Butteroni C, Businaro R, Mirchandani A, Niedbala W, Liew FY, et al. Novel allergic asthma model demonstrates ST2-dependent dendritic cell targeting by cypress pollen. J Allergy Clin Immunol. 2013;132(3):686–695; https://doi.org/10.1016/j.jaci.2013.02.037. PMID:23608732
  • Anderson EL, Kobayashi T, Iijima K, Bartemes KR, Chen CC, Kita H. IL-33 Mediates reactive eosinophilopoiesis in response to airborne allergen exposure. Allergy. 2016;71(7):977−-988; https://doi.org/10.1111/all.12861. PMID:26864308
  • Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-1 family cytokine, IL-33, potently activates human eosinophils. J Allergy Clin Immunol. 2008;121(6):1484–1490; https://doi.org/10.1016/j.jaci.2008.04.005. PMID:18539196
  • Bouffi C, Rochman M, Zust CB, Stucke EM, Kartashov A, Fulkerson PC, Barski A, Rothenberg ME. IL-33 Markedly Activates Murine Eosinophils by an NF-κB-Dependent Mechanism Differentially Dependent upon an IL-4-Driven Autoinflammatory Loop. J Immunol. 2013;191(8):4317–4325; https://doi.org/10.4049/jimmunol.1301465. PMID:24043894
  • Hashiguchi M, Kashiwakura Y, Kojima H, Kobayashi A, Kanno Y, Kobata T. IL-33 activates eosinophils of visceral adipose tissue both directly and via innate lymphoid cells. Eur J Immunol. 2015;45(3):876–885; https://doi.org/10.1002/eji.201444969. PMID:25504587
  • Lucarini V, Ziccheddu G, Macchia I, La Sorsa V, Peschiaroli F, Buccione C, Sistigu A, Sanchez M, Andreone S, D'Urso MT, et al. IL-33 restricts tumor growth and inhibits pulmonary metastasis in melanoma-bearing mice through eosinophils. Oncoimmunology. 2017;6(6):e1317420; https://doi.org/10.1080/2162402x.2017.1317420. PMID:28680750
  • Bochner BS. Novel Therapies for Eosinophilic Disorders. Immunol Allergy Clin North Am. 2015;35(3):577–598; https://doi.org/10.1016/j.iac.2015.05.007. PMID:26209901
  • Ponath PD, Qin S, Post TW, Wang J, Wu L, Gerard NP, Newman W, Gerard C, Mackay CR. Molecular cloning and characterization of a human eotaxin receptor expressed selectively on eosinophils. J Exp Med 1996;183(6):2437–2448; https://doi.org/10.1084/jem.183.6.2437. PMID:8676064
  • Rot A, Krieger M, Brunner T, Bischoff SC, Schall TJ, Dahinden CA. RANTES and macrophage inflammatory protein 1 alpha induce the migration and activation of normal human eosinophil granulocytes. J Exp Med 1992;176(6):1489–1495; https://doi.org/10.1084/jem.176.6.1489 . PMID:1281207
  • Shinkai A, Yoshisue H, Koike M, Shoji E, Nakagawa S, Saito A, Takeda T, Imabeppu S, Kato Y, Hanai N, et al. A novel human CC chemokine, eotaxin-3, which is expressed in IL-4-stimulated vascular endothelial cells, exhibits potent activity toward eosinophils. J Immunol 1999;163(3):1602–1610. PMID:10415065
  • Looi LM. Tumor-associated tissue eosinophilia in nasopharyngeal carcinoma. A pathologic study of 422 primary and 138 metastatic tumors. Cancer 1987;59(3):466–470; https://doi.org/10.1002/1097-0142(19870201)59:3<466::AID-CNCR2820590319>3.0.CO;2-P.PMID:3791157
  • Caruso RA, Parisi A, Quattrocchi E, Scardigno M, Branca G, Parisi C, Luciano R, Paparo D, Fedele F. Ultrastructural descriptions of heterotypic aggregation between eosinophils and tumor cells in human gastric carcinomas. Ultrastruct Pathol. 2011;35(4):145–149; https://doi.org/10.3109/01913123.2011.578233. PMID:21657821
  • Harbaum L, Pollheimer MJ, Kornprat P, Lindtner RA, Bokemeyer C, Langner C. Peritumoral eosinophils predict recurrence in colorectal cancer. Mod Pathol. 2015; 28(3):403–413; https://doi.org/10.1038/modpathol.2014.104. PMID:25216222
  • Xie F, Liu LB, Shang WQ, Chang KK, Meng YH, Mei J, Yu JJ, Li DJ, Li MQ. The infiltration and functional regulation of eosinophils induced by TSLP promote the proliferation of cervical cancer cell. Cancer Lett. 2015;364(2):106–117; https://doi.org/10.1016/j.canlet.2015.04.029. PMID:25979231
  • Prizment AE, Vierkant RA, Smyrk TC, Tillmans LS, Lee JJ, Sriramarao P, Nelson HH, Lynch CF, Thibodeau SN, Church TR, et al. Tumor eosinophil infiltration and improved survival of colorectal cancer patients: Iowa Women's Health Study. Mod Pathol. 2016;29(5):516–527; https://doi.org/10.1038/modpathol.2016.42. PMID:26916075
  • Molin D, Glimelius B, Sundstrom C, Venge P, Enblad G. The serum levels of eosinophil cationic protein (ECP) are related to the infiltration of eosinophils in the tumours of patients with Hodgkin's disease. Leuk Lymphoma. 2001;42(3):457–465; https://doi.org/10.3109/10428190109064602. PMID:11699410
  • Cormier SA, Taranova AG, Bedient C, Nguyen T, Protheroe C, Pero R, Dimina D, Ochkur SI, O'Neill K, Colbert D, et al. Pivotal Advance: eosinophil infiltration of solid tumors is an early and persistent inflammatory host response. J Leukoc Biol. 2006;79(6):1131–1139; https://doi.org/10.1189/jlb.0106027. PMID:16617160
  • Lorena SC, Oliveira DT, Dorta RG, Landman G, Kowalski LP. Eotaxin expression in oral squamous cell carcinomas with and without tumour associated tissue eosinophilia. Oral Dis. 2003;9(6):279–283; https://doi.org/10.1034/j.1601-0825.2003.00958.x. PMID:14629326
  • Kay AB, McVie JM, Stuart AE, Krajewski A, Turnbull LW. Eosinophil chemotaxis of supernatants from cultured Hodgkin's lymph node cells. J Clin Pathol 1975;28(6):502–505; https://doi.org/10.1136/jcp.28.6.502. PMID:1141453
  • Teruya-Feldstein J, Jaffe ES, Burd PR, Kingma DW, Setsuda JE, Tosato G. Differential chemokine expression in tissues involved by Hodgkin's disease: direct correlation of eotaxin expression and tissue eosinophilia. Blood 1999;93(8):2463–2470. PMID:10194423
  • Bertheloot D, Latz E. HMGB1, IL-1alpha, IL-33 and S100 proteins: dual-function alarmins. Cell Mol Immunol. 2017;14(1):43–64; https://doi.org/10.1038/cmi.2016.34. PMID:27569562
  • Nguyen AH, Detty SQ, Agrawal DK. Clinical Implications of High-mobility Group Box-1 (HMGB1) and the Receptor for Advanced Glycation End-products (RAGE) in Cutaneous Malignancy: A Systematic Review. Anticancer Res. 2017;37(1):1–7; https://doi.org/10.21873/anticanres.11282. PMID:28011467
  • Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol. 2000;165(6):2950–2954; https://doi.org/10.4049/jimmunol.165.6.2950. PMID:10975801
  • Lotfi R, Herzog GI, DeMarco RA, Beer-Stolz D, Lee JJ, Rubartelli A, Schrezenmeier H, Lotze MT. Eosinophils Oxidize Damage-Associated Molecular Pattern Molecules Derived from Stressed Cells. J Immunol. 2009;183(8):5023–5031; https://doi.org/10.4049/jimmunol.0900504. PMID:19794066
  • Cebrian MJ, Bauden M, Andersson R, Holdenrieder S, Ansari D. Paradoxical Role of HMGB1 in Pancreatic Cancer: Tumor Suppressor or Tumor Promoter? Anticancer Res. 2016;36(9):4381–4389; https://doi.org/10.21873/anticanres.10981. PMID:27630273
  • Martin NT, Martin MU. Interleukin 33 is a guardian of barriers and a local alarmin. Nat Immunol. 2016;17(2):122–131; https://doi.org/10.1038/ni.3370. PMID:26784265
  • Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity. 2005;23(5):479–490; https://doi.org/10.1016/j.immuni.2005.09.015. PMID:16286016
  • Drube S, Heink S, Walter S, Lohn T, Grusser M, Gerbaulet A, Berod L, Schons J, Dudeck A, Freitag J, et al. The receptor tyrosine kinase c-Kit controls IL-33 receptor signaling in mast cells. Blood. 2010;115(19):3899–3906; https://doi.org/10.1182/blood-2009-10-247411.. PMID:20200353
  • Griesenauer B, Paczesny S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front Immunol. 2017;8:475; https://doi.org/10.3389/fimmu.2017.00475. PMID:28484466
  • Pecaric-Petkovic T, Didichenko SA, Kaempfer S, Spiegl N, Dahinden CA. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood. 2009;113(7):1526–1534; https://doi.org/10.1182/blood-2008-05-157818. PMID:18955562
  • Endo Y, Hirahara K, Iinuma T, Shinoda K, Tumes DJ, Asou HK, Matsugae N, Obata-Ninomiya K, Yamamoto H, Motohashi S, et al. The interleukin-33-p38 kinase axis confers memory T helper 2 cell pathogenicity in the airway. Immunity. 2015;42(2):294–308; https://doi.org/10.1016/j.immuni.2015.01.016. PMID:25692703
  • Taracanova A, Alevizos M, Karagkouni A, Weng Z, Norwitz E, Conti P, Leeman SE, Theoharides TC. SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors. Proc Natl Acad Sci U S A. 2017;114(20):E4002−E4009; https://doi.org/10.1073/pnas.1524845114. PMID:28461492
  • Morita H, Arae K, Unno H, Miyauchi K, Toyama S, Nambu A, Oboki K, Ohno T, Motomura K, Matsuda A, et al. An Interleukin-33-Mast Cell-Interleukin-2 Axis Suppresses Papain-Induced Allergic Inflammation by Promoting Regulatory T Cell Numbers. Immunity. 2015;43(1):175–186; https://doi.org/10.1016/j.immuni.2015.06.021. PMID:26200013
  • Aymeric L, Apetoh L, Ghiringhelli Fo, Tesniere A, Martins I, Kroemer G, Smyth MJ, Zitvogel L. Tumor Cell Death and ATP Release Prime Dendritic Cells and Efficient Anticancer Immunity. Cancer Res. 2010;70(3):855–858; https://doi.org/10.1158/0008-5472.can-09-3566. PMID:20086177
  • Müller T, Robaye B, Vieira RP, Ferrari D, Grimm M, Jakob T, Martin SF, Di Virgilio F, Boeynaems JM, Virchow JC, et al. The purinergic receptor P2Y2 receptor mediates chemotaxis of dendritic cells and eosinophils in allergic lung inflammation. Allergy. 2010;65(12):1545–1553; https://doi.org/10.1111/j.1398-9995.2010.02426.x. PMID:20880147
  • Kobayashi T, Soma T, Noguchi T, Nakagome K, Nakamoto H, Kita H, Nagata M. ATP drives eosinophil effector responses through P2 purinergic receptors. Allergol Int. 2015;64, Suppl S30–S36; https://doi.org/10.1016/j.alit.2015.04.009. .
  • Slungaard A, Ascensao J, Zanjani E, Jacob HS. Pulmonary carcinoma with eosinophilia. Demonstration of a tumor-derived eosinophilopoietic factor. N Engl J Med 1983;309(13):778–781; https://doi.org/10.1056/NEJM198309293091307. PMID:6310397
  • Pandit R, Scholnik A, Wulfekuhler L, Dimitrov N. Non-small-cell lung cancer associated with excessive eosinophilia and secretion of interleukin-5 as a paraneoplastic syndrome. Am J Hematol. 2007;82(3):234–237; https://doi.org/10.1002/ajh.20789. PMID:17160990
  • Detoraki A, Staiano RI, Granata F, Giannattasio G, Prevete N, de Paulis A, Ribatti D, Genovese A, Triggiani M, Marone G. Vascular endothelial growth factors synthesized by human lung mast cells exert angiogenic effects. J Allergy Clin Immunol. 2009;123(5):1142–1149, 1149 e1141-1145; https://doi.org/10.1016/j.jaci.2009.01.044. PMID:19275959
  • Granata F, Frattini A, Loffredo S, Staiano RI, Petraroli A, Ribatti D, Oslund R, Gelb MH, Lambeau G, Marone G, et al. Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J Immunol. 2010;184(9):5232–5241; https://doi.org/10.4049/jimmunol.0902501. PMID:20357262
  • Feistritzer C, Kaneider NC, Sturn DH, Mosheimer BA, Kahler CM, Wiedermann CJ. Expression and function of the vascular endothelial growth factor receptor FLT-1 in human eosinophils. Am J Respir Cell Mol Biol. 2004;30(5):729–735; https://doi.org/10.1165/rcmb.2003-0314OC. PMID:14607815
  • Feistritzer C, Mosheimer BA, Sturn DH, Bijuklic K, Patsch JR, Wiedermann CJ. Expression and function of the angiopoietin receptor Tie-2 in human eosinophils. J Allergy Clin Immunol. 2004;114(5):1077–1084; https://doi.org/10.1016/j.jaci.2004.06.045. PMID:15536413
  • Gottfried E, Kreutz M, Mackensen A. Tumor metabolism as modulator of immune response and tumor progression. Semin Cancer Biol. 2012;22(4):335–341; https://doi.org/10.1016/j.semcancer.2012.02.009. PMID:22414910
  • Huang B, Lei Z, Zhang GM, Li D, Song C, Li B, Liu Y, Yuan Y, Unkeless J, Xiong H, et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood. 2008;112(4):1269–1279; https://doi.org/10.1182/blood-2008-03-147033. PMID:18524989
  • Visciano C, Liotti F, Prevete N, Cali G, Franco R, Collina F, de Paulis A, Marone G, Santoro M, Melillo RM. Mast cells induce epithelial-to-mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene. 2015;34(40):5175–5186; https://doi.org/10.1038/onc.2014.441. PMID:25619830
  • Schratl P, Royer JF, Kostenis E, Ulven T, Sturm EM, Waldhoer M, Hoefler G, Schuligoi R, Lippe IT, Peskar BA, et al. The role of the prostaglandin D2 receptor, DP, in eosinophil trafficking. J Immunol. 2007;179(7):4792–4799; https://doi.org/10.4049/jimmunol.179.7.4792. PMID:17878378
  • Capelo R, Lehmann C, Ahmad K, Snodgrass R, Diehl O, Ringleb J, Flamand N, Weigert A, Stark H, Steinhilber D, et al. Cellular analysis of the histamine H4 receptor in human myeloid cells. Biochem Pharmacol. 2016;103:74–84; https://doi.org/10.1016/j.bcp.2016.01.007. PMID:26774453
  • Mattes J, Hulett M, Xie W, Hogan S, Rothenberg ME, Foster P, Parish C. Immunotherapy of cytotoxic T cell-resistant tumors by T helper 2 cells: an eotaxin and STAT6-dependent process. J Exp Med. 2003;197(3):387–393. PMID:12566422
  • Tepper RI, Coffman RL, Leder P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 1992;257(5069):548–551; https://doi.org/10.1126/science.1636093. PMID:1636093
  • Chevrier S, Levine JH, Zanotelli VRT, Silina K, Schulz D, Bacac M, Ries CH, Ailles L, Jewett MAS, Moch H, et al. An Immune Atlas of Clear Cell Renal Cell Carcinoma. Cell. 2017;169(4):736–749 e718; https://doi.org/10.1016/j.cell.2017.04.016.
  • Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017;356(6335):pii: eaah4573; https://doi.org/10.1126/science.aah4573. PMID:28428369
  • Allavena P, Sica A, Garlanda C, Mantovani A. The Yin-Yang of tumor-associated macrophages in neoplastic progression and immune surveillance. Immunol Rev. 2008;222:155–161; https://doi.org/10.1111/j.1600-065X.2008.00607.x. PMID:18364000
  • Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16(3):183–194; https://doi.org/10.1016/j.ccr.2009.06.017. PMID:19732719
  • Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H, Levy L, Damti P, Lumbroso D, Polyansky L, Sionov RV, et al. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep. 2015;10(4):562–573; https://doi.org/10.1016/j.celrep.2014.12.039. doi:10.1016/j.celrep.2014.12.039. PMID:25620698
  • Abdala Valencia H, Loffredo LF, Misharin AV, Berdnikovs S. Phenotypic plasticity and targeting of Siglec-FhighCD11clow eosinophils to the airway in a murine model of asthma. Allergy. 2016;71(2):267–271; https://doi.org/10.1111/all.12776. PMID:26414117
  • Percopo CM, Brenner TA, Ma M, Kraemer LS, Hakeem RMA, Lee JJ, Rosenberg HF. SiglecF+Gr1hi eosinophils are a distinct subpopulation within the lungs of allergen-challenged mice. J Leukoc Biol. 2017;101(1):321–328; https://doi.org/10.1189/jlb.3A0416-166R. PMID:27531929
  • Reichman H, Karo-Atar D, Munitz A. Emerging Roles for Eosinophils in the Tumor Microenvironment. Trends Cancer. 2016;2(11):664–675; https://doi.org/10.1016/j.trecan.2016.10.002. PMID:28741505
  • Noffz G, Qin Z, Kopf M, Blankenstein T. Neutrophils but not eosinophils are involved in growth suppression of IL-4-secreting tumors. J Immunol. 1998;160(1):345–350. PMID:9551990
  • Ishibashi S, Ohashi Y, Suzuki T, Miyazaki S, Moriya T, Satomi S, Sasano H. Tumor-associated tissue eosinophilia in human esophageal squamous cell carcinoma. Anticancer Res. 2006;26(2B):1419–1424. PMID:16619553
  • Keresztes K, Szollosi Z, Simon Z, Tarkanyi I, Nemes Z, Illes A. Retrospective analysis of the prognostic role of tissue eosinophil and mast cells in Hodgkin's lymphoma. Pathol Oncol Res. 2007;13(3):237–242; https://doi.org/PAOR.2007.13.3.0237. PMID:17922053
  • Chua JC, Douglass JA, Gillman A, O'Hehir RE, Meeusen EN. Galectin-10, a Potential Biomarker of Eosinophilic Airway Inflammation. PLoS One. 2012;7(8):e42549. PMID:22880030
  • Sakkal S, Miller S, Apostolopoulos V, Nurgali K. Eosinophils in Cancer: Favourable or Unfavourable? Curr Med Chem. 2016;23(7):650–666; https://doi.org/10.2174/0929867323666160119094313. PMID:26785997
  • Tateno H, Crocker PR, Paulson JC. Mouse Siglec-F and human Siglec-8 are functionally convergent paralogs that are selectively expressed on eosinophils and recognize 6 ′-sulfo-sialyl Lewis X as a preferred glycan ligand. Glycobiology. 2005;15(11):1125–1135; https://doi.org/10.1093/glycob/cwi097. PMID:15972893
  • Aguirre-Gamboa R, Gomez-Rueda H, Martinez-Ledesma E, Martinez-Torteya A, Chacolla-Huaringa R, Rodriguez-Barrientos A, Tamez-Peña José G TV. SurvExpress: An Online Biomarker Validation Tool and Database for Cancer Gene Expression Data Using Survival Analysis. PLoS One. 2013;8(9):e74250; https://doi.org/10.1371/journal.pone.0074250. PMID:24066126
  • Iwasaki K, Torisu M, Fujimura T. Malignant tumor and eosinophils. I. Prognostic significance in gastric cancer. Cancer 1986;58(6):1321–1327; https://doi.org/10.1002/1097-0142(19860915)58:6<1321::AID-CNCR2820580623>3.0.CO;2-O.
  • Cuschieri A, Talbot IC, Weeden S. Influence of pathological tumour variables on long-term survival in resectable gastric cancer. Br J Cancer. 2002;86(5):674–679; https://doi.org/10.1038/sj.bjc.6600161. PMID:11875724
  • Pretlow TP, Keith EF, Cryar AK, Bartolucci AA, Pitts AM, Pretlow TG, 2 nd, Kimball PM, Boohaker EA. Eosinophil infiltration of human colonic carcinomas as a prognostic indicator. Cancer Res 1983;43(6):2997–3000. PMID:6850611
  • Nielsen HJ, Hansen U, Christensen IJ, Reimert CM, Brunner N, Moesgaard F. Independent prognostic value of eosinophil and mast cell infiltration in colorectal cancer tissue. J Pathol 1999;189(4):487–495; https://doi.org/10.1002/(SICI)1096-9896(199912)189:4<487::AID-PATH484>3.0.CO;2-I. PMID:10629548
  • Fernandez-Acenero MJ, Galindo-Gallego M, Sanz J, Aljama A. Prognostic influence of tumor-associated eosinophilic infiltrate in colorectal carcinoma. Cancer. 2000;88(7):1544–1548; https://doi.org/10.1002/(SICI)1097-0142(20000401)88:7<1544::AID-CNCR7>3.0.CO;2-S. PMID:10738211
  • Fujii M, Yamashita T, Ishiguro R, Tashiro M, Kameyama K. Significance of epidermal growth factor receptor and tumor associated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma. Auris Nasus Larynx. 2002;29(2):175–181; https://doi.org/10.1016/S0385-8146(01)00135-3. PMID:11893453
  • Dorta RG, Landman G, Kowalski LP, Lauris JR, Latorre MR, Oliveira DT. Tumour-associated tissue eosinophilia as a prognostic factor in oral squamous cell carcinomas. Histopathology. 2002;41(2):152–157; https://doi.org/10.1046/j.1365-2559.2002.01437.x. PMID:12147093
  • Jain M, Kasetty S, Sudheendra US, Tijare M, Khan S, Desai A. Assessment of tissue eosinophilia as a prognosticator in oral epithelial dysplasia and oral squamous cell carcinoma-an image analysis study. Patholog Res Int. 2014; 2014:507512; https://doi.org/10.1155/2014/507512. PMID:24693457
  • Thompson AC, Bradley PJ, Griffin NR. Tumor-associated tissue eosinophilia and long-term prognosis for carcinoma of the larynx. Am J Surg 1994;168(5):469–471; https://doi.org/10.1016/S0002-9610(05)80102-3. PMID:7977976
  • Ownby HE, Roi LD, Isenberg RR, Brennan MJ. Peripheral lymphocyte and eosinophil counts as indicators of prognosis in primary breast cancer. Cancer. 1983;52(1):126–130; https://doi.org/10.1002/1097-0142(19830701)52:1<126::aid-cncr2820520123>3.0.co;2-y. PMID:6850535
  • von Wasielewski R, Seth S, Franklin J, Fischer R, Hubner K, Hansmann ML, Diehl V, Georgii A. Tissue eosinophilia correlates strongly with poor prognosis in nodular sclerosing Hodgkin's disease, allowing for known prognostic factors. Blood. 2000;95(4):1207–1213. PMID:10666192
  • Enblad G, Sundstrom C, Glimelius B. Infiltration of eosinophils in Hodgkin's disease involved lymph nodes predicts prognosis. Hematol Oncol 1993;11(4):187–193; https://doi.org/10.1002/hon.2900110404. PMID:8144133
  • van Driel WJ, Hogendoorn PC, Jansen FW, Zwinderman AH, Trimbos JB, Fleuren GJ. Tumor-associated eosinophilic infiltrate of cervical cancer is indicative for a less effective immune response. Hum Pathol 1996;27(9):904–911; https://doi.org/10.1016/S0046-8177(96)90216-6. PMID:8816884
  • Gebhardt C, Sevko A, Jiang H, Lichtenberger R, Reith M, Tarnanidis K, Holland-Letz T, Umansky L, Beckhove P, Sucker A, et al. Myeloid Cells and Related Chronic Inflammatory Factors as Novel Predictive Markers in Melanoma Treatment with Ipilimumab. Clin Cancer Res. 2015; 21(24):5453–5459; https://doi.org/10.1158/1078-0432.CCR-15-0676. PMID:26289067
  • Moreira A, Leisgang W, Schuler G, Heinzerling L. Eosinophilic count as a biomarker for prognosis of melanoma patients and its importance in the response to immunotherapy. Immunotherapy. 2017;9(2):115–121; https://doi.org/10.2217/imt-2016-0138. PMID:28128709
  • Weide B, Martens A, Hassel JC, Berking C, Postow MA, Bisschop K, Simeone E, Mangana J, Schilling B, Di Giacomo AM, et al. Baseline Biomarkers for Outcome of Melanoma Patients Treated with Pembrolizumab. Clin Cancer Res. 2016;22(22):5487–5496; https://doi.org/10.1158/1078-0432.ccr-16-0127. PMID:27185375
  • Utsunomiya A, Ishida T, Inagaki A, Ishii T, Yano H, Komatsu H, Iida S, Yonekura K, Takeuchi S, Takatsuka Y, et al. Clinical significance of a blood eosinophilia in adult T-cell leukemia/lymphoma: a blood eosinophilia is a significant unfavorable prognostic factor. Leuk Res. 2007;31(7):915–920; https://doi.org/10.1016/j.leukres.2006.10.017. PMID:17123603
  • Kruger-Krasagakes S, Li W, Richter G, Diamantstein T, Blankenstein T. Eosinophils infiltrating interleukin-5 gene-transfected tumors do not suppress tumor growth. Eur J Immunol 1993;23(4):992–995; https://doi.org/10.1002/eji.1830230438. PMID:8458388
  • Gatault S, Delbeke M, Driss V, Sarazin A, Dendooven A, Kahn JE, Lefevre G, Capron M. IL-18 Is Involved in Eosinophil-Mediated Tumoricidal Activity against a Colon Carcinoma Cell Line by Upregulating LFA-1 and ICAM-1. J Immunol. 2015;195(5):2483–2492; https://doi.org/10.4049/jimmunol.1402914. . PMID:26216891
  • Legrand F, Driss V, Delbeke M, Loiseau S, Hermann E, Dombrowicz D, Capron M. Human eosinophils exert TNF-alpha and granzyme A-mediated tumoricidal activity toward colon carcinoma cells. J Immunol. 2010;185(12):7443–7451; https://doi.org/10.4049/jimmunol.1000446. PMID:21068403
  • Carretero R, Sektioglu IM, Garbi N, Salgado OC, Beckhove P, Hammerling GJ. Eosinophils orchestrate cancer rejection by normalizing tumor vessels and enhancing infiltration of CD8(+) T cells. Nat Immunol. 2015;16(6):609–617; https://doi.org/10.1038/ni.3159. PMID:25915731
  • Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S, et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol. 2012;188(2):703–713; https://doi.org/10.4049/jimmunol.1101270. . PMID:22174445
  • Glimelius I, Rubin J, Fischer M, Molin D, Amini RM, Venge P, Enblad G. Effect of eosinophil cationic protein (ECP) on Hodgkin lymphoma cell lines. Exp Hematol. 2011;39(8):850–858; https://doi.org/10.1016/j.exphem.2011.05.006. PMID:21679745
  • Kataoka S, Konishi Y, Nishio Y, Fujikawa-Adachi K, Tominaga A. Antitumor activity of eosinophils activated by IL-5 and eotaxin against hepatocellular carcinoma. DNA Cell Biol 2004;23(9):549–560; https://doi.org/10.1089/dna.2004.23.549. . PMID:15383175
  • Furbert-Harris P, Parish-Gause D, Laniyan I, Hunter KA, Okomo-Awich J, Vaughn TR, Forrest KC, Howland C, Abdelnaby A, Oredipe OA. Inhibition of prostate cancer cell growth by activated eosinophils. Prostate. 2003;57(2):165–175; https://doi.org/10.1002/pros.10286. PMID:12949941
  • Simson L, Ellyard JI, Dent LA, Matthaei KI, Rothenberg ME, Foster PS, Smyth MJ, Parish CR. Regulation of Carcinogenesis by IL-5 and CCL11: A Potential Role for Eosinophils in Tumor Immune Surveillance. J Immunol. 2007;178(7):4222–4229; https://doi.org/10.4049/jimmunol.178.7.4222. PMID:17371978
  • Lotfi R, Lee JJ, Lotze MT. Eosinophilic Granulocytes and Damage-associated Molecular Pattern Molecules (DAMPs): Role in the Inflammatory Response Within Tumors. J Immunother. 2007;30(1):16–28; https://doi.org/10.1097/01.cji.0000211324.53396.f6. PMID:17198080
  • Davis BP, Rothenberg ME. Eosinophils and cancer. Cancer Immunol Res. 2014;2(1):1–8; https://doi.org/10.1158/2326-6066.CIR-13-0196. PMID:24778159
  • Gatault S, Legrand F, Delbeke M, Loiseau S, Capron M. Involvement of eosinophils in the anti-tumor response. Cancer Immunol Immunother. 2012;61(9):1527–1534; https://doi.org/10.1007/s00262-012-1288-3. PMID:22706380
  • Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol. 2010;11(10):889–896; https://doi.org/10.1038/ni.1937. PMID:20856220
  • Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J, Lepelley A, Becht E, Katsahian S, Bizouard G, et al. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med. 2014;189(7):832–844; https://doi.org/10.1164/rccm.201309-1611OC. PMID:24484236
  • Eruslanov EB, Bhojnagarwala PS, Quatromoni JG, Stephen TL, Ranganathan A, Deshpande C, Akimova T, Vachani A, Litzky L, Hancock WW, et al. Tumor-associated neutrophils stimulate T cell responses in early-stage human lung cancer. J Clin Invest. 2014;124(12):5466–5480; https://doi.org/10.1172/JCI77053. . PMID:25384214
  • Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, Torrejon DY, Abril-Rodriguez G, Sandoval S, Barthly L, et al. Mutations Associated with Acquired Resistance to PD-1 Blockade in Melanoma. N Engl J Med. 2016;375(9):819–829; https://doi.org/10.1056/NEJMoa1604958. PMID:27433843
  • Siiskonen H, Poukka M, Bykachev A, Tyynela-Korhonen K, Sironen R, Pasonen-Seppanen S, Harvima IT. Low numbers of tryptase+ and chymase+ mast cells associated with reduced survival and advanced tumor stage in melanoma. Melanoma Res. 2015;25(6):479–485; https://doi.org/10.1097/CMR.0000000000000192. PMID:26317168
  • Welsh TJ, Green RH, Richardson D, Waller DA, O'Byrne KJ, Bradding P. Macrophage and mast-cell invasion of tumor cell islets confers a marked survival advantage in non-small-cell lung cancer. J Clin Oncol. 2005;23(35):8959–8967; https://doi.org/10.1200/JCO.2005.01.4910. PMID:16219934
  • Shikotra A, Ohri CM, Green RH, Waller DA, Bradding P. Mast cell phenotype, TNFalpha expression and degranulation status in non-small cell lung cancer. Sci Rep. 2016;6:38352; https://doi.org/10.1038/srep38352. PMID:27922077
  • Carlini MJ, Dalurzo MC, Lastiri JM, Smith DE, Vasallo BC, Puricelli LI, Lauria de Cidre LS. Mast cell phenotypes and microvessels in non-small cell lung cancer and its prognostic significance. Hum Pathol. 2010;41(5):697–705; https://doi.org/10.1016/j.humpath.2009.04.029. PMID:20040391
  • Cai SW, Yang SZ, Gao J, Pan K, Chen JY, Wang YL, Wei LX, Dong JH. Prognostic significance of mast cell count following curative resection for pancreatic ductal adenocarcinoma. Surgery. 2011;149(4):576–584; https://doi.org/10.1016/j.surg.2010.10.009. PMID:21167541
  • Rabenhorst A, Schlaak M, Heukamp LC, Forster A, Theurich S, von Bergwelt-Baildon M, Buttner R, Kurschat P, Mauch C, Roers A, et al. Mast cells play a protumorigenic role in primary cutaneous lymphoma. Blood. 2012;120(10):2042–2054; https://doi.org/10.1182/blood-2012-03-415638. PMID:22837530
  • Lavin Y, Kobayashi S, Leader A, Amir ED, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell. 2017;169(4):750–765 e717; https://doi.org/10.1016/j.cell.2017.04.014.
  • Marone G, Granata F, eds. Angiogenesis, Lymphangiogenesis and Clinical Implications. Chem Immunol Allergy. Basel: Karger. 2014.
  • Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267(16):10931–10934. PMID:1375931
  • Horiuchi T, Weller PF. Expression of vascular endothelial growth factor by human eosinophils: upregulation by granulocyte macrophage colony-stimulating factor and interleukin-5. Am J Respir Cell Mol Biol 1997;17(1):70–77; https://doi.org/10.1165/ajrcmb.17.1.2796. PMID:9224211
  • Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. J Allergy Clin Immunol. 2001;107(2):295–301; https://doi.org/10.1067/mai.2001.111928. PMID:11174196
  • Yousefi S, Hemmann S, Weber M, Holzer C, Hartung K, Blaser K, Simon HU. IL-8 is expressed by human peripheral blood eosinophils. Evidence for increased secretion in asthma. J Immunol 1995;154(10):5481–5490.
  • Puxeddu I, Berkman N, Ribatti D, Bader R, Haitchi HM, Davies DE, Howarth PH, Levi-Schaffer F. Osteopontin is expressed and functional in human eosinophils. Allergy. 2010;65(2):168–174; https://doi.org/10.1111/j.1398-9995.2009.02148.x. PMID:19804447
  • Esposito I, Menicagli M, Funel N, Bergmann F, Boggi U, Mosca F, Bevilacqua G, Campani D. Inflammatory cells contribute to the generation of an angiogenic phenotype in pancreatic ductal adenocarcinoma. J Clin Pathol. 2004;57(6):630–636; https://doi.org/10.1136/jcp.2003.014498. PMID:15166270
  • Tataroglu C, Kargi A, Ozkal S, Esrefoglu N, Akkoclu A. Association of macrophages, mast cells and eosinophil leukocytes with angiogenesis and tumor stage in non-small cell lung carcinomas (NSCLC). Lung Cancer. 2004;43(1):47–54; https://doi.org/10.1016/j.lungcan.2003.08.013. PMID:14698536
  • Varey AH, Rennel ES, Qiu Y, Bevan HS, Perrin RM, Raffy S, Dixon AR, Paraskeva C, Zaccheo O, Hassan AB, et al. VEGF 165 b, an antiangiogenic VEGF-A isoform, binds and inhibits bevacizumab treatment in experimental colorectal carcinoma: balance of pro- and antiangiogenic VEGF-A isoforms has implications for therapy. Br J Cancer. 2008;98(8):1366–1379; https://doi.org/10.1038/sj.bjc.6604308. PMID:18349829
  • Bates DO, Mavrou A, Qiu Y, Carter JG, Hamdollah-Zadeh M, Barratt S, Gammons MV, Millar AB, Salmon AH, Oltean S, et al. Detection of VEGF-A(xxx)b isoforms in human tissues. PLoS One. 2013;8(7):e68399; https://doi.org/10.1371/journal.pone.0068399. PMID:23935865
  • Loffredo S, Borriello F, Iannone R, Ferrara AL, Galdiero MR, Gigantino V, Esposito P, Varricchi G, Lambeau G, Cassatella MA, et al. Group V Secreted Phospholipase A2 Induces the Release of Proangiogenic and Antiangiogenic Factors by Human Neutrophils. Front Immunol. 2017;8:443; https://doi.org/10.3389/fimmu.2017.00443. PMID:28458672
  • Harper SJ, Bates DO. VEGF-A splicing: the key to anti-angiogenic therapeutics? Nat Rev Cancer. 2008;8(11):880–887; https://doi.org/10.1038/nrc2505.
  • Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in cancer. Nat Rev Cancer. 2014;14(3):159–172; https://doi.org/10.1038/nrc3677. PMID:24561443
  • Baram D, Vaday GG, Salamon P, Drucker I, Hershkoviz R, Mekori YA. Human mast cells release metalloproteinase-9 on contact with activated T cells: juxtacrine regulation by TNF-alpha. J Immunol. 2001;167(7):4008–4016; https://doi.org/10.4049/jimmunol.167.7.4008. PMID:11564820
  • Okada S, Kita H, George TJ, Gleich GJ, Leiferman KM. Migration of eosinophils through basement membrane components in vitro: role of matrix metalloproteinase-9. Am J Respir Cell Mol Biol 1997;17(4):519–528; https://doi.org/10.1165/ajrcmb.17.4.2877. PMID:9376127
  • Schwingshackl A, Duszyk M, Brown N, Moqbel R. Human eosinophils release matrix metalloproteinase-9 on stimulation with TNF-alpha. J Allergy Clin Immunol 1999;104(5):983–989; https://doi.org/10.1016/S0091-6749(99)70079-5. PMID:10550743
  • Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B, Bourdeau F, Kubes P, Ferri L. Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest. 2013;123(8):3446–3458; https://doi.org/10.1172/JCI67484. PMID:23863628
  • Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A, Olsson AK. Neutrophil Extracellular Traps Accumulate in Peripheral Blood Vessels and Compromise Organ Function in Tumor-Bearing Animals. Cancer Res. 2015;75(13):2653–2662; https://doi.org/10.1158/0008-5472.CAN-14-3299. PMID:26071254
  • Mollerherm H, von Kockritz-Blickwede M, Branitzki-Heinemann K. Antimicrobial Activity of Mast Cells: Role and Relevance of Extracellular DNA Traps. Front Immunol. 2016;7:265; https://doi.org/10.3389/fimmu.2016.00265. PMID:27486458
  • Ueki S, Konno Y, Takeda M, Moritoki Y, Hirokawa M, Matsuwaki Y, Honda K, Ohta N, Yamamoto S, Takagi Y, et al. Eosinophil extracellular trap cell death-derived DNA traps: Their presence in secretions and functional attributes. J Allergy Clin Immunol. 2016;137(1):258–267; https://doi.org/10.1016/j.jaci.2015.04.041. PMID:26070883
  • Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med. 2017;23(3):279–287; https://doi.org/10.1038/nm.4294. PMID:28267716
  • Huland E, Huland H. Tumor-associated eosinophilia in interleukin-2-treated patients: evidence of toxic eosinophil degranulation on bladder cancer cells. J Cancer Res Clin Oncol 1992;118(6):463–467; https://doi.org/10.1007/BF01629431. PMID:1618895
  • Costain DJ, Guha AK, Liwski RS, Lee TDG. Murine hypodense eosinophils induce tumour cell apoptosis by a granzyme B-dependent mechanism. Cancer Immunol Immunother. 2001;50(6):293–299; https://doi.org/10.1007/pl00006690. PMID:11570582
  • Ueki S, Tokunaga T, Fujieda S, Honda K, Hirokawa M, Spencer LA, Weller PF. Eosinophil ETosis and DNA Traps: a New Look at Eosinophilic Inflammation. Curr Allergy Asthma Rep. 2016;16(8):54; https://doi.org/10.1007/s11882-016-0634-5. PMID:27393701
  • O'Flaherty SM, Sutummaporn K, Häggtoft WL, Worrall AP, Rizzo M, Braniste V, Höglund P, Kadri N, Chambers BJ. TLR-Stimulated Eosinophils Mediate Recruitment and Activation of NK Cells In Vivo. Scand J Immunol. 2017;85(6):417–424; https://doi.org/10.1111/sji.12554. PMID:28426135
  • Lotfi R, Lotze MT. Eosinophils induce DC maturation, regulating immunity. J Leukoc Biol. 2008;83(3):456–460; https://doi.org/10.1189/jlb.0607366. PMID:17991762
  • Capobianco A, Manfredi AA, Monno A, Rovere-Querini P, Rugarli C. Melanoma and Lymphoma Rejection Associated With Eosinophil Infiltration Upon Intratumoral Injection of Dendritic and NK/LAK Cells. J Immunother. 2008;31(5):458–465; https://doi.org/10.1097/CJI.0b013e318174a512. PMID:18463539
  • Shi H-Z. Eosinophils function as antigen-presenting cells. J Leukoc Biol. 2004;76(3):520–527; https://doi.org/10.1189/jlb.0404228. PMID:15218055
  • Farhan RK, Vickers MA, Ghaemmaghami AM, Hall AM, Barker RN, Walsh GM. Effective antigen presentation to helper T cells by human eosinophils. Immunology. 2016;149(4):413–422; https://doi.org/10.1111/imm.12658. PMID:27502559
  • Bagnasco D, Ferrando M, Caminati M, Bragantini A, Puggioni F, Varricchi G, Passalacqua G, Canonica GW. Targeting Interleukin-5 or Interleukin-5Ralpha: Safety Considerations. Drug Saf. 2017;40(7):559–570; https://doi.org/10.1007/s40264-017-0522-5. PMID:28321782
  • Schlehofer B, Siegmund B, Linseisen J, Schuz J, Rohrmann S, Becker S, Michaud D, Melin B, Bas Bueno-de-Mesquita H, Peeters PH, et al. Primary brain tumours and specific serum immunoglobulin E: a case-control study nested in the European Prospective Investigation into Cancer and Nutrition cohort. Allergy. 2011;66(11):1434–1441; https://doi.org/10.1111/j.1398-9995.2011.02670.x. PMID:21726235
  • Vajdic CM, Falster MO, de Sanjose S, Martinez-Maza O, Becker N, Bracci PM, Melbye M, Smedby KE, Engels EA, Turner J, et al. Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Cancer Res. 2009;69(16):6482–6489; https://doi.org/10.1158/0008-5472.CAN-08-4372. PMID:19654312
  • Nigro EA, Brini AT, Soprana E, Ambrosi A, Dombrowicz D, Siccardi AG, Vangelista L. Antitumor IgE adjuvanticity: key role of Fc epsilon RI. J Immunol. 2009;183(7):4530–4536; https://doi.org/10.4049/jimmunol.0900842. PMID:19748979
  • Jensen-Jarolim E, Achatz G, Turner MC, Karagiannis S, Legrand F, Capron M, Penichet ML, Rodriguez JA, Siccardi AG, Vangelista L, et al. AllergoOncology: the role of IgE-mediated allergy in cancer. Allergy. 2008;63(10):1255–1266; https://doi.org/10.1111/j.1398-9995.2008.01768.x. PMID:18671772
  • West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, Oldham RK. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987;316(15):898–905; https://doi.org/10.1056/NEJM198704093161502. PMID:3493433
  • Rivoltini L, Colombo MP, Parmiani G, Viggiano V, Spinazzè S, Santoro A, Takatsu K. In vitro anti-tumor activity of eosinophils from cancer patients treated with subcutaneous administration of interleukin 2. Role of interleukin 5. International Journal of Cancer 1993;54(1):8–15; https://doi.org/10.1002/ijc.2910540103. PMID:8386711
  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–723; https://doi.org/10.1056/NEJMoa1003466. PMID:20525992
  • Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–2465; https://doi.org/10.1056/NEJMoa1200694. PMID:22658128
  • Peters S, Gettinger S, Johnson ML, Janne PA, Garassino MC, Christoph D, Toh CK, Rizvi NA, Chaft JE, Carcereny Costa E, et al. Phase II Trial of Atezolizumab As First-Line or Subsequent Therapy for Patients With Programmed Death-Ligand 1-Selected Advanced Non-Small-Cell Lung Cancer (BIRCH). J Clin Oncol. 2017;35(24):2781–2789; https://doi.org/1410 JCO2016719476. PMID:28609226
  • Delyon J, Mateus C, Lefeuvre D, Lanoy E, Zitvogel L, Chaput N, Roy S, Eggermont AM, Routier E, Robert C. Experience in daily practice with ipilimumab for the treatment of patients with metastatic melanoma: an early increase in lymphocyte and eosinophil counts is associated with improved survival. Ann Oncol. 2013;24(6):1697–703; https://doi.org/10.1093/annonc/mdt027. PMID:23439861
  • Umansky V, Utikal J, Gebhardt C. Predictive immune markers in advanced melanoma patients treated with ipilimumab. Oncoimmunology. 2016;5(6):e1158901; https://doi.org/10.1080/2162402X.2016.1158901. PMID:27471626
  • Martens A, Wistuba-Hamprecht K, Geukes Foppen MH, Yuan J, Postow MA, Wong P, Romano E, Khammari A, Dreno B, Capone M, et al. Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab. Clin Cancer Res. 2016; https://doi.org/10.1158/1078-0432.CCR-15-2412.
  • Movahedi K, Laoui D, Gysemans C, Baeten M, Stange G, Van den Bossche J, Mack M, Pipeleers D, In't Veld P, De Baetselier P, et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6 C(high) monocytes. Cancer Res. 2010;70(14):5728–5739; https://doi.org/10.1158/0008-5472.CAN-09-4672. PMID:20570887
  • Wang HB, Ghiran I, Matthaei K, Weller PF. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J Immunol. 2007;179(11):7585–7592; https://doi.org/10.4049/jimmunol.179.11.7585. PMID:18025204
  • Jacobsen EA, Zellner KR, Colbert D, Lee NA, Lee JJ. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J Immunol. 2011;187(11):6059–6068; https://doi.org/10.4049/jimmunol.1102299. PMID:22048766
  • De Monte L, Wormann S, Brunetto E, Heltai S, Magliacane G, Reni M, Paganoni AM, Recalde H, Mondino A, Falconi M, et al. Basophil Recruitment into Tumor-Draining Lymph Nodes Correlates with Th2 Inflammation and Reduced Survival in Pancreatic Cancer Patients. Cancer Res. 2016;76(7):1792–1803; https://doi.org/10.1158/0008-5472.CAN-15-1801-T. PMID:26873846
  • Lingblom C, Andersson J, Andersson K, Wenneras C. Regulatory Eosinophils Suppress T Cells Partly through Galectin-10. J Immunol. 2017;198(12):4672–4681; https://doi.org/10.4049/jimmunol.1601005. PMID:28515279
  • Sotiriou C, Pusztai L. Gene-expression signatures in breast cancer. N Engl J Med. 2009;360(8):790–800; https://doi.org/10.1056/NEJMra0801289. PMID:19228622
  • Popper HH, Ryska A, Timar J, Olszewski W. Molecular testing in lung cancer in the era of precision medicine. Transl Lung Cancer Res. 2014;3(5):291–300; https://doi.org/10.3978/j.issn.2218-6751.2014.10.01. PMID:25806314
  • Kim SY, Kim SN, Hahn HJ, Lee YW, Choe YB, Ahn KJ. Metaanalysis of BRAF mutations and clinicopathologic characteristics in primary melanoma. J Am Acad Dermatol. 2015;72(6):1036–1046 e1032; https://doi.org/10.1016/j.jaad.2015.02.1113.
  • Riquelme I, Saavedra K, Espinoza JA, Weber H, Garcia P, Nervi B, Garrido M, Corvalan AH, Roa JC, Bizama C. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget. 2015;6(28):24750–24779; https://doi.org/10.18632/oncotarget.4990. PMID:26267324
  • Holzel M, Landsberg J, Glodde N, Bald T, Rogava M, Riesenberg S, Becker A, Jonsson G, Tuting T. A Preclinical Model of Malignant Peripheral Nerve Sheath Tumor-like Melanoma Is Characterized by Infiltrating Mast Cells. Cancer Res. 2016;76(2):251–263; https://doi.org/10.1158/0008-5472.CAN-15-1090. PMID:26511633
  • Coussens LM, Zitvogel L, Palucka AK. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science. 2013;339(6117):286–291; https://doi.org/10.1126/science.1232227.
  • Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–364; https://doi.org/10.1038/nature12627. PMID:24048068
  • Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161(2):205–214; https://doi.org/10.1016/j.cell.2015.03.030. . PMID:25860605
  • Kleffel S, Posch C, Barthel SR, Mueller H, Schlapbach C, Guenova E, Elco CP, Lee N, Juneja VR, Zhan Q, et al. Melanoma Cell-Intrinsic PD-1 Receptor Functions Promote Tumor Growth. Cell. 2015;162(6):1242–1256; https://doi.org/10.1016/j.cell.2015.08.052. PMID:26359984
  • Pesce S, Thoren FB, Cantoni C, Prato C, Moretta L, Moretta A, Marcenaro E. The Innate Immune Cross Talk between NK Cells and Eosinophils Is Regulated by the Interaction of Natural Cytotoxicity Receptors with Eosinophil Surface Ligands. Front Immunol. 2017;8:510; https://doi.org/10.3389/fimmu.2017.00510.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.