1,799
Views
10
CrossRef citations to date
0
Altmetric
Original Research

CD28H expression identifies resident memory CD8 + T cells with less cytotoxicity in human peripheral tissues and cancers

, , , , , , , ORCID Icon, , & show all
Article: e1538440 | Received 20 Aug 2018, Accepted 16 Oct 2018, Published online: 05 Nov 2018

References

  • Masopust D, Vezys V, Marzo AL, Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001;291(5512):2413–2417, doi:10.1126/science.1058867.
  • Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, and Carbone FR. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat Immunol. 2009;10(5):524–530. doi:10.1038/ni.1718.
  • Gebhardt T, Whitney PG, Zaid A, et al. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature, 2011;477(7363):216–219. doi:10.1038/nature10339.
  • Thome JJ, Yudanin N, Ohmura Y, et al. Spatial map of human T cell compartmentalization and maintenance over decades of life. Cell, 2014;159(4):814–828. doi:10.1016/j.cell.2014.10.026.
  • Okhrimenko A, Grun JR, Westendorf K, et al. Human memory T cells from the bone marrow are resting and maintain long-lasting systemic memory. Proc Natl Acad Sci U S A, 2014;111(25):9229–9234. doi:10.1073/pnas.1318731111.
  • Watanabe R, Gehad A, Yang C, et al. Human skin is protected by four functionally and phenotypically discrete populations of resident and recirculating memory. T Cells. Sci Transl Med, 2015;7(279):279ra39. doi:10.1126/scitranslmed.3010302.
  • Casey KA, Fraser KA, Schenkel JM, et al. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J Immunol, 2012;188(10):4866–4875. doi:10.4049/jimmunol.1200402.
  • Mackay LK, Rahimpour A, Ma JZ, et al. The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin. Nat Immunol, 2013;14(12):1294–1301. doi:10.1038/ni.2744.
  • Kunkel EJ, Campbell JJ, Haraldsen G, et al. Lymphocyte CC chemokine receptor 9 and epithelial thymus-expressed chemokine (TECK) expression distinguish the small intestinal immune compartment: epithelial expression of tissue-specific chemokines as an organizing principle in regional immunity. J Exp Med. 2000;192(5):761–768. doi:10.1084/jem.192.5.761
  • Gorfu G, Rivera-Nieves J, Ley K. Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med. 2009;9(7):836–850.
  • Shao JY, Yu Y, Dustin ML. A model for CD2/CD58-mediated adhesion strengthening. Ann Biomed Eng. 2005;33(4):483–493. doi:10.1007/s10439-005-2504-5
  • Witherden DA, Verdino P, Rieder SE, Garijo O, Mills RE, Teyton L, Fischer, W H., Wilson, I A., Havran, W L. The junctional adhesion molecule JAML is a costimulatory receptor for epithelial gammadelta T cell activation. Science, 2010;329(5996):1205–1210. doi:10.1126/science.1192698.
  • Prajapati K, Perez C, Rojas LBP, Burke B, Guevara-Patino JA. Functions of NKG2D in CD8(+) T cells: an opportunity for immunotherapy. Cell Mol Immunol. 2018. doi:10.1038/cmi.2017.161. 15 470–479
  • Amsen D, van Gisbergen K, Hombrink P. and van Lier RAW. Tissue-resident memory T cells at the center of immunity to solid tumors. Nature Immunology. 2018;19(6):538–546, doi:10.1038/s41590-018-0114-2.
  • Woodland DL, Kohlmeier JE. Migration, maintenance and recall of memory T cells in peripheral tissues. Nat Rev Immunol. 2009;9(3):153–161, doi:10.1038/nri2496.
  • Ariotti S, Haanen JB, Schumacher TN. Behavior and function of tissue-resident memory T cells. Adv Immunol. 2012;114:203–216. doi:10.1016/B978-0-12-396548-6.00008-1.
  • Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity. 2014;41(6):886–897, doi:10.1016/j.immuni.2014.12.007
  • Djenidi F, Adam J, Goubar A, et al. CD8+CD103+ tumor-infiltrating lymphocytes are tumor-specific tissue-resident memory T cells and a prognostic factor for survival in lung cancer patients. J Immunol (Baltimore, Md: 1950)., 2015;194(7):3475–3486. doi:10.4049/jimmunol.1402711
  • Komdeur FL, Prins TM, van de Wall S, Plat A, Wisman GBA, Hollema H, Daemen, T., Church, D N., de Bruyn, M., Nijman, H W. CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. Oncoimmunology, 2017;6(9):e1338230. doi:10.1080/2162402X.2017.1338230.
  • Savas P, Virassamy B, Ye C, et al. Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nat Med. 2018;24(7):986–993. doi: 10.1038/s41591-018-0078-7.
  • Zhu Y, Yao S, Iliopoulou BP, et al. B7-H5 costimulates human T cells via CD28H. Nat Commun. 2013;4:2043. doi:10.1038/ncomms3043.
  • Janakiram M, Chinai JM, Fineberg S, et al. Expression, clinical significance, and receptor identification of the newest B7 family member HHLA2 protein. Clin Cancer Res, 2015;21(10):2359–2366. doi:10.1158/1078-0432.CCR-14-1495.
  • Janakiram M, Chinai JM, Zhao A, Sparano JA, Zang X. HHLA2 and TMIGD2: new immunotherapeutic targets of the B7 and CD28 families. Oncoimmunology. 2015;4(8):e1026534, doi:10.1080/2162402X.2015.1008371.
  • Rahimi N, Rezazadeh K, Mahoney JE, Hartsough E, Meyer RD. Identification of IGPR-1 as a novel adhesion molecule involved in angiogenesis. Mol Biol Cell. 2012;23(9):1646–1656, doi:10.1091/mbc.E11-11-0934.
  • Mager DL, Hunter DG, Schertzer M, Freeman JD. Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics. 1999;59(3):255–263, doi:10.1006/geno.1999.5877.
  • Zhao R, Chinai JM, Buhl S, Scandiuzzi L, Ray A, Jeon H, et al. HHLA2 is a member of the B7 family and inhibits human CD4 and CD8 T-cell function. Proc Natl Acad Sci U S A, 2013;110(24):9879–9884. doi:10.1073/pnas.1303524110.
  • Crespo J, Vatan L, Maj T, Liu R, Kryczek I, Zou W. Phenotype and tissue distribution of CD28H(+) immune cell subsets. Oncoimmunology. 2017;6(12):e1362529, doi:10.1080/2162402X.2017.1362529.
  • Pelton RW, Saxena B, Jones M, Moses HL, Gold LI. Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. J Cell Biol. 1991;115(4):1091–1105. doi:10.1083/jcb.115.4.1091
  • Koyama SY, Podolsky DK. Differential expression of transforming growth factors alpha and beta in rat intestinal epithelial cells. J Clin Invest. 1989;83(5):1768–1773, doi:10.1172/JCI114080.
  • Byers JT, Paniccia A, Kaplan J, Koenig M, Kahn N, Wilson L, et al. Expression of the novel costimulatory molecule B7-H5 in pancreatic cancer. Ann Surg Oncol, 2015;22(Suppl 3):S1574–9. doi:10.1245/s10434-014-4293-2.
  • Koh J, Kim S, Kim MY, Go H, Jeon YK, Chung DH. Prognostic implications of intratumoral CD103+ tumor-infiltrating lymphocytes in pulmonary squamous cell carcinoma. Oncotarget. 2017;8(8):13762–13769, doi:10.18632/oncotarget.14632.
  • Boddupalli CS, Bar N, Kadaveru K, Krauthammer M, Pornputtapong N, Mai Z, et al. Interlesional diversity of T cell receptors in melanoma with immune checkpoints enriched in tissue-resident memory T cells. JCI Insight, 2016;1(21):e88955. doi:10.1172/jci.insight.88955.
  • Murray T, Fuertes Marraco SA, Baumgaertner P, et al. Very late antigen-1 marks functional tumor-resident CD8 T cells and correlates with survival of melanoma patients. Front Immunol. 2016;7:573. doi:10.3389/fimmu.2016.00573.
  • Cancer Genome Atlas Research Network. Electronic address aadhe, and cancer genome atlas research n. Integrated genomic characterization of pancreatic ductal adenocarcinoma. Cancer Cell. 2017;32(2): 185–203 e13. doi:10.1016/j.ccell.2017.07.007.
  • Cheuk S, Schlums H, Gallais Serezal I, et al. CD49a Expression defines tissue-resident CD8(+) T cells poised for cytotoxic function in human skin. Immunity, 2017;46(2):287–300. doi:10.1016/j.immuni.2017.01.009.
  • Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med, 1988;319(25):1676–1680. doi:10.1056/NEJM198812223192527.
  • Baitsch L, Baumgaertner P, Devevre E, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest, 2011;121(6):2350–2360. doi:10.1172/JCI46102.
  • Zhu Y, Chen L. CD137 as a biomarker for tumor-reactive T cells: finding gold in the desert. Clin Cancer Res. 2014;20(1):3–5, doi:10.1158/1078-0432.CCR-13-2573
  • Zhu Y, Yao S, Augustine MM, et al. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM. Sci Adv, 2016;2(4):e1500637. doi:10.1126/sciadv.1600375.
  • Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov, 2012;2(5):401–404. doi:10.1158/2159-8290.CD-12-0095.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.