9,628
Views
103
CrossRef citations to date
0
Altmetric
Review

Trial watch: dendritic cell vaccination for cancer immunotherapy

, , , , , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 1638212 | Received 21 Jun 2019, Accepted 26 Jun 2019, Published online: 18 Jul 2019

References

  • Inglesfield S, Cosway EJ, Jenkinson WE, Anderson G. Rethinking Thymic Tolerance: lessons from Mice. Trends Immunol. 2019;40:279–21. doi:10.1016/j.it.2019.01.011.
  • Schuijs MJ, Hammad H, Lambrecht BN. Professional and ‘Amateur’ Antigen-Presenting Cells In Type 2 Immunity. Trends Immunol. 2019;40:22–34. doi:10.1016/j.it.2018.11.001.
  • Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Current Opinion in Immunology. 2017;45:43–51. doi:10.1016/j.coi.2017.01.002.
  • Nilsson JS, Abolhalaj M, Lundberg K, Lindstedt M, Greiff L. Dendritic cell subpopulations in nasopharyngeal cancer. Oncology Letters. 2019;17:2557–2561. doi:10.3892/ol.2018.9835.
  • Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nature Reviews Cancer. 2019;19:307–325. doi:10.1038/s41568-019-0144-6.
  • Grees M, Sharbi-Yunger A, Evangelou C, Baumann D, Cafri G, Tzehoval E, Eichmüller SB, Offringa R, Utikal J, Eisenbach L, et al. Optimized dendritic cell vaccination induces potent CD8 T cell responses and anti-tumor effects in transgenic mouse melanoma models. Oncoimmunology. 2018;7:e1445457. doi:10.1080/2162402X.2018.1445457.
  • Berraondo P, Labiano S, Minute L, Etxeberria I, Vasquez M, Sanchez-Arraez A, Teijeira A, Melero I. Cellular immunotherapies for cancer. Oncoimmunology. 2017;6:e1306619. doi:10.1080/2162402X.2017.1306619.
  • Bol KF, Schreibelt G, Rabold K, Wculek SK, Schwarze JK, Dzionek A, Teijeira A, Kandalaft LE, Romero P, Coukos G, et al. The clinical application of cancer immunotherapy based on naturally circulating dendritic cells. J Immunother Cancer. 2019;7:109. doi:10.1186/s40425-019-0580-6.
  • Mulder WJM, Ochando J, Joosten LAB, Fayad ZA, Netea MG. Therapeutic targeting of trained immunity. Nat Rev Drug Discov. 2019;18:553–566. doi:10.1038/s41573-019-0025-4.
  • Weller M, Roth P, Preusser M, Wick W, Reardon DA, Platten M, Sampson JH. Vaccine-based immunotherapeutic approaches to gliomas and beyond. Nature Reviews Neurology. 2017;13:363–374. doi:10.1038/nrneurol.2017.64.
  • Nagaoka K, Hosoi A, Iino T, Morishita Y, Matsushita H, Kakimi K. Dendritic cell vaccine induces antigen-specific CD8(+) T cells that are metabolically distinct from those of peptide vaccine and is well-combined with PD-1 checkpoint blockade. Oncoimmunology. 2018;7:e1395124. doi:10.1080/2162402X.2017.1395124.
  • Fang S, Agostinis P, Salven P, Garg AD. Decoding cancer cell death-driven immune cell recruitment: an in vivo method for site-of-vaccination analyses. Methods in Enzymology: Academic Press. 2019. doi:10.1016/bs.mie.2019.04.013.
  • Chrisikos TT, Zhou Y, Slone N, Babcock R, Watowich SS, Li HS. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer. Molecular Immunology. 2019;110:24–39. doi:10.1016/j.molimm.2018.01.014.
  • Avigan D, Rosenblatt J. Vaccine therapy in hematologic malignancies. Blood. 2018;131:2640–2650. doi:10.1182/blood-2017-11-785873.
  • Garg AD, Agostinis P. Cell death and immunity in cancer: from danger signals to mimicry of pathogen defense responses. Immunol Rev. 2017;280:126–148. doi:10.1111/imr.12574.
  • Qian C, Cao X Dendritic cells in the regulation of immunity and inflammation. Seminars in immunology 2018; 35:3–11. doi: 10.1016/j.smim.2017.12.002.
  • Kim YS, Park HJ, Park JH, Hong EJ, Jang G-Y, Jung ID, Han HD, Lee S-H, Vo M-C, Lee -J-J, et al. A novel function of API5 (apoptosis inhibitor 5), TLR4-dependent activation of antigen presenting cells. Oncoimmunology. 2018;7:e1472187. doi:10.1080/2162402X.2018.1472187.
  • Lee J-H, Tak WY, Lee Y, Heo M-K, Song J-S, Kim H-Y, Park SY, Bae SH, Lee JH, Heo J, et al. Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study. Oncoimmunology. 2017;6:e1328335. doi:10.1080/2162402X.2017.1328335.
  • Nanaware PP, Jurewicz MM, Leszyk JD, Shaffer SA, Stern LJ. HLA-DO Modulates the Diversity of the MHC-II Self-peptidome. Molecular & Cellular Proteomics: MCP. 2019;18:490–503. doi:10.1074/mcp.RA118.000956.
  • Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological Consequences of MHC-II Expression by Tumor Cells in Cancer. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2019;25:2392–2402. doi:10.1158/1078-0432.CCR-18-3200.
  • Kelly A, Trowsdale J. Genetics of antigen processing and presentation. Immunogenetics. 2019;71:161–170. doi:10.1007/s00251-018-1082-2.
  • Guerriero JL. Macrophages: their Untold Story in T Cell Activation and Function. International Review of Cell and Molecular Biology. 2019;342:73–93 doi: 10.1016/bs.ircmb.2018.07.001.
  • Saez JJ, Lennon-Dumenil AM, Yuseff MI. Studying MHC Class II Presentation of Immobilized Antigen by B Lymphocytes. Methods in Molecular Biology. 2019;1988:419–437. doi: 10.1007/978-1-62703-218-6_39.
  • Allen F, Bobanga ID, Rauhe P, Barkauskas D, Teich N, Tong C, Myers J, Huang AY. CCL3 augments tumor rejection and enhances CD8(+) T cell infiltration through NK and CD103(+) dendritic cell recruitment via IFNγ. Oncoimmunology. 2018;7:e1393598. doi:10.1080/2162402X.2017.1393598.
  • Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. CD4(+) T cell help in cancer immunology and immunotherapy. Nature Reviews Immunology. 2018;18:635–647. doi:10.1038/s41577-018-0044-0.
  • Ebrahimi-Nik H, Corwin WL, Shcheglova T, Das Mohapatra A, Mandoiu II, Srivastava PK. CD11c(+) MHCII(lo) GM-CSF-bone marrow-derived dendritic cells act as antigen donor cells and as antigen presenting cells in neoepitope-elicited tumor immunity against a mouse fibrosarcoma. Cancer Immunology, Immunotherapy: CII. 2018;67:1449–1459. doi:10.1007/s00262-018-2202-4.
  • Steinman RM, Hawiger D, Nussenzweig MC. Tolerogenic dendritic cells. Annual Review of Immunology. 2003;21:685–711. doi:10.1146/annurev.immunol.21.120601.141040.
  • Hsu JL, Bryant CE, Papadimitrious MS, Kong B, Gasiorowski RE, Orellana D, McGuire HM, Groth BFDS, Joshua DE, Ho PJ, et al. A blood dendritic cell vaccine for acute myeloid leukemia expands anti-tumor T cell responses at remission. Oncoimmunology. 2018;7:e1419114. doi:10.1080/2162402X.2017.1419114.
  • Sharbi-Yunger A, Grees M, Cafri G, Bassan D, Eichmuller SB, Tzehoval E, Utikal J, Umansky V, Eisenbach L. A universal anti-cancer vaccine: chimeric invariant chain potentiates the inhibition of melanoma progression and the improvement of survival. Int J Cancer. 2019;144:909–921. doi:10.1002/ijc.31795.
  • Jakubzick CV, Randolph GJ, Henson PM. Monocyte differentiation and antigen-presenting functions. Nature Reviews Immunology. 2017;17:349–362. doi:10.1038/nri.2017.28.
  • Kroemer M, Spehner L, Mercier-Letondal P, Boullerot L, Kim S, Jary M, Galaine J, Picard E, Ferrand C, Nguyen T, et al. SALL4 oncogene is an immunogenic antigen presented in various HLA-DR contexts. Oncoimmunology. 2018;7:e1412030. doi:10.1080/2162402X.2017.1412030.
  • Lanzavecchia A, Sallusto F. Ralph M. Steinman 1943-2011. Cell. 2011;147:1216–1217. doi:10.1016/j.cell.2011.11.040.
  • Nussenzweig MC, Mellman I. Ralph Steinman (1943-2011). Nature. 2011;478:460. doi:10.1038/478460a.
  • Mellman I, Nussenzweig M. Retrospective. Ralph M. Steinman (1943-2011). Science. 2011;334:466. doi:10.1126/science.1215136.
  • Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137:1142–1162. doi:10.1084/jem.137.5.1142.
  • Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252. doi:10.1038/32588.
  • Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449:419–426. doi:10.1038/nature06175.
  • Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annual Review of Immunology. 2013;31:563–604. doi:10.1146/annurev-immunol-020711-074950.
  • Dudek AM, Martin S, Garg AD, Agostinis P. Immature, Semi-Mature, and Fully Mature Dendritic Cells: toward a DC-Cancer Cells Interface That Augments Anticancer Immunity. Frontiers in Immunology. 2013;4:438. doi:10.3389/fimmu.2013.00438.
  • Liu Z, Hao X, Zhang Y, Zhang J, Carey CD, Falo LD Jr., Storkus WJ, You Z. Intratumoral delivery of tumor antigen-loaded DC and tumor-primed CD4(+) T cells combined with agonist alpha-GITR mAb promotes durable CD8(+) T-cell-dependent antitumor immunity. Oncoimmunology. 2017;6:e1315487.
  • Dominguez‐Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol. 2019;105:329–338. doi:10.1002/JLB.MR0318-104R.
  • Montico B, Lapenta C, Ravo M, Martorelli D, Muraro E, Zeng B, Comaro E, Spada M, Donati S, Santini SM, et al. Exploiting a new strategy to induce immunogenic cell death to improve dendritic cell-based vaccines for lymphoma immunotherapy. Oncoimmunology. 2017;6:e1356964. doi:10.1080/2162402X.2017.1356964.
  • Van Acker HH, Versteven M, Lichtenegger FS, Roex G, Campillo-Davo D, Lion E, Subklewe, M., Van Tendeloo, V.F., Berneman, Z.N., Anguille, S. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. Journal of Clinical Medicine. 2019:8. doi: 10.3390/jcm8050579.
  • Santegoets S, de Groot AF, Dijkgraaf EM, Simoes AMC, van der Noord VE, van Ham JJ, Welters MJP, Kroep JR, van der Burg SH. The blood mMDSC to DC ratio is a sensitive and easy to assess independent predictive factor for epithelial ovarian cancer survival. Oncoimmunology. 2018;7:e1465166. doi:10.1080/2162402X.2018.1465166.
  • Yu H, Tian Y, Wang Y, Mineishi S, Zhang Y. Dendritic Cell Regulation of Graft-Vs.-Host Disease: immunostimulation and Tolerance. Frontiers in Immunology. 2019;10:93. doi: 10.3389/fimmu.2019.00093.
  • Moussion C, Mellman I. The Dendritic Cell Strikes Back. Immunity. 2018;49:997–999. doi:10.1016/j.immuni.2018.12.007.
  • Mitchell D, Chintala S, Dey M. Plasmacytoid dendritic cell in immunity and cancer. Journal of Neuroimmunology. 2018;322:63–73. doi:10.1016/j.jneuroim.2018.06.012.
  • Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2013;2:e25771. doi:10.4161/onci.25771.
  • Mastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Frontiers in Immunology. 2019;10:766. doi:10.3389/fimmu.2019.00766.
  • Payandeh Z, Yarahmadi M, Nariman-Saleh-Fam Z, Tarhriz V, Islami M, Aghdam AM, Eyvazi S. Immune therapy of melanoma: overview of therapeutic vaccines. Journal of Cellular Physiology. 2019. doi:10.1002/jcp.28181.
  • Bryant CE, Sutherland S, Kong B, Papadimitrious MS, Fromm PD, Hart DNJ. Dendritic cells as cancer therapeutics. Seminars in Cell & Developmental Biology. 2019;86:77–88. doi:10.1016/j.semcdb.2018.02.015.
  • Penafuerte C, Feldhammer M, Mills JR, Vinette V, Pike KA, Hall A, Migon E, Karsenty G, Pelletier J, Zogopoulos G, Tremblay ML. Downregulation of PTP1B and TC-PTP phosphatases potentiate dendritic cell-based immunotherapy through IL-12/IFNgamma signaling. Oncoimmunology. 2017;6:e1321185. doi: 10.1080/2162402X.2017.1321185.
  • Mikyskova R, Indrova M, Stepanek I, Kanchev I, Bieblova J, Vosahlikova S, Moserova I, Truxova I, Fucikova J, Bartunkova J, et al. Dendritic cells pulsed with tumor cells killed by high hydrostatic pressure inhibit prostate tumor growth in TRAMP mice. Oncoimmunology. 2017;6:e1362528. doi:10.1080/2162402X.2017.1362528.
  • Swain S, Roe MM, Sebrell TA, Sidar B, Dankoff J, VanAusdol R, Smythies LE, Smith PD, Bimczok D. CD103 (αE Integrin) Undergoes Endosomal Trafficking in Human Dendritic Cells, but Does Not Mediate Epithelial Adhesion. Frontiers in Immunology. 2018;9:2989. doi:10.3389/fimmu.2018.02989.
  • Huo CW, Hill P, Chew G, Neeson PJ, Halse H, Williams ED, Henderson MA, Thompson EW, Britt KL. High mammographic density in women is associated with protumor inflammation. Breast Cancer Research: BCR. 2018;20:92. doi:10.1186/s13058-018-1010-2.
  • Bashaw AA, Leggatt GR, Chandra J, Tuong ZK, Frazer IH. Modulation of antigen presenting cell functions during chronic HPV infection. Papillomavirus Research (Amsterdam, Netherlands). 2017;4:58–65. doi:10.1016/j.pvr.2017.08.002.
  • Ren J, Gwin WR, Zhou X, Wang X, Huang H, Jiang N, Zhou L, Agarwal P, Hobeika A, Crosby E, et al. Adaptive T cell responses induced by oncolytic Herpes Simplex Virus-granulocyte macrophage-colony-stimulating factor therapy expanded by dendritic cell and cytokine-induced killer cell adoptive therapy. Oncoimmunology. 2017;6:e1264563. doi:10.1080/2162402X.2016.1264563.
  • Yatim N, Cullen S, Albert ML. Dying cells actively regulate adaptive immune responses. Nature Reviews Immunology. 2017;17:262–275. doi:10.1038/nri.2017.9.
  • Ossevoort MA, Feltkamp MC, van Veen KJ, Melief CJ, Kast WM. Dendritic cells as carriers for a cytotoxic T-lymphocyte epitope-based peptide vaccine in protection against a human papillomavirus type 16-induced tumor. J Immunother Emphasis Tumor Immunol. 1995;18:86–94. doi:10.1097/00002371-199508000-00002.
  • Wu C-J, Tsai Y-T, Lee I-J, Wu P-Y, Lu L-S, Tsao W-S, Huang Y-J, Chang -C-C, Ka S-M, Tao M-H. Combination of radiation and interleukin 12 eradicates large orthotopic hepatocellular carcinoma through immunomodulation of tumor microenvironment. Oncoimmunology. 2018;7:e1477459. doi:10.1080/2162402X.2018.1477459.
  • Raaijmakers TK, Ansems M. Microenvironmental derived factors modulating dendritic cell function and vaccine efficacy: the effect of prostanoid receptor and nuclear receptor ligands. Cancer Immunology, Immunotherapy: CII. 2018;67:1789–1796. doi:10.1007/s00262-018-2205-1.
  • Xie K, Xu L, Wu H, Liao H, Luo L, Liao M, Gong J, Deng Y, Yuan K, Wu H, et al. OX40 expression in hepatocellular carcinoma is associated with a distinct immune microenvironment, specific mutation signature, and poor prognosis. Oncoimmunology. 2018;7:e1404214. doi:10.1080/2162402X.2017.1404214.
  • Chyuan IT, Tsai HF, Wu CS, Hsu PN. TRAIL suppresses gut inflammation and inhibits colitogeic T-cell activation in experimental colitis via an apoptosis-independent pathway. Mucosal Immunology. 2019;12:980–989. doi:10.1038/s41385-019-0168-y.
  • Roan F, Obata-Ninomiya K, Ziegler SF. Epithelial cell-derived cytokines: more than just signaling the alarm. The Journal of Clinical Investigation. 2019;129:1441–1451. doi:10.1172/JCI124606.
  • Branchett WJ, Lloyd CM. Regulatory cytokine function in the respiratory tract. Mucosal Immunology. 2019;12:589–600. doi:10.1038/s41385-019-0158-0.
  • Jones AT, Shen X, Walter KL, LaBranche CC, Wyatt LS, Tomaras GD, Montefiori DC, Moss B, Barouch DH, Clements JD, et al. HIV-1 vaccination by needle-free oral injection induces strong mucosal immunity and protects against SHIV challenge. Nat Commun. 2019;10:798. doi:10.1038/s41467-019-08739-4.
  • Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Frontiers in Immunology. 2019;10:1088. doi:10.3389/fimmu.2019.01088.
  • Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL. The Myeloid Cell Compartment-Cell by Cell. Annual Review of Immunology. 2019;37:269–293. doi:10.1146/annurev-immunol-042718-041728.
  • Strobl H, Krump C, Borek I Micro-environmental signals directing human epidermal Langerhans cell differentiation. Seminars in cell & developmental biology 2019; 86:36–43. Seminars in cell & developmental biology 10.1016/j.semcdb.2018.02.016
  • Ohmatsu H, Humme D, Gonzalez J, Gulati N, Mobs M, Sterry W, Krueger JG. IL-32 induces indoleamine 2,3-dioxygenase(+)CD1c(+) dendritic cells and indoleamine 2,3-dioxygenase(+)CD163(+) macrophages: relevance to mycosis fungoides progression. Oncoimmunology. 2017;6:e1181237. doi:10.1080/2162402X.2016.1181237.
  • Pellegatta S, Eoli M, Cuccarini V, Anghileri E, Pollo B, Pessina S, Frigerio S, Servida M, Cuppini L, Antozzi C, et al. Survival gain in glioblastoma patients treated with dendritic cell immunotherapy is associated with increased NK but not CD8(+) T cell activation in the presence of adjuvant temozolomide. Oncoimmunology. 2018;7:e1412901. doi:10.1080/2162402X.2017.1412901.
  • Truxova I, Kasikova L, Hensler M, Skapa P, Laco J, Pecen L, Belicova L, Praznovec I, Halaska MJ, Brtnicky T, et al. Mature dendritic cells correlate with favorable immune infiltrate and improved prognosis in ovarian carcinoma patients. J Immunother Cancer. 2018;6:139. doi:10.1186/s40425-018-0446-3.
  • Kiss M, Van Gassen S, Movahedi K, Saeys Y, Laoui D. Myeloid cell heterogeneity in cancer: not a single cell alike. Cell Immunol. 2018;330:188–201. doi:10.1016/j.cellimm.2018.02.008.
  • Huber A, Dammeijer F, Aerts J, Vroman H. Current State of Dendritic Cell-Based Immunotherapy: opportunities for in vitro Antigen Loading of Different DC Subsets?. Frontiers in Immunology. 2018;9:2804. doi:10.3389/fimmu.2018.02804.
  • Pyfferoen L, Brabants E, Everaert C, De Cabooter N, Heyns K, Deswarte K, Vanheerswynghels M, De Prijck S, Waegemans G, Dullaers M, et al. The transcriptome of lung tumor-infiltrating dendritic cells reveals a tumor-supporting phenotype and a microRNA signature with negative impact on clinical outcome. Oncoimmunology. 2017;6:e1253655. doi:10.1080/2162402X.2016.1253655.
  • Segura E. Review of Mouse and Human Dendritic Cell Subsets. Methods in Molecular Biology. 2016;1423:3–15. doi:10.1007/978-1-4939-3606-9_1.
  • Thordardottir S, Schaap N, Louer E, Kester MG, Falkenburg JH, Jansen J, Radstake TRD, Hobo W, Dolstra H. Hematopoietic stem cell-derived myeloid and plasmacytoid DC-based vaccines are highly potent inducers of tumor-reactive T cell and NK cell responses ex vivo. Oncoimmunology. 2017;6:e1285991. doi:10.1080/2162402X.2017.1285991.
  • Vanpouille-Box C, Galluzzi L. CD103(+) cells at the forefront of anticancer immunity. Oncoimmunology. 2017;6:e1356154. doi:10.1080/2162402X.2017.1356154.
  • Murgaski A, Bardet PMR, Arnouk SM, Clappaert EJ, Laoui D. Unleashing Tumour-Dendritic Cells to Fight Cancer by Tackling Their Three A’s: abundance, Activation and Antigen-Delivery. Cancers. 2019;11:670. doi:10.3390/cancers11050670.
  • Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol. 2019.106:309–322. doi: 10.1002/JLB.4RI0818-311R.
  • Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The cell surface phenotype of human dendritic cells. Seminars in Cell & Developmental Biology. 2019;86:3–14. doi:10.1016/j.semcdb.2018.02.013.
  • Ovcinnikovs V, Ross EM, Petersone L, Edner NM, Heuts F, Ntavli E, Kogimtzis A, Kennedy A, Wang CJ, Bennett CL, Sansom DM. CTLA-4-mediated transendocytosis of costimulatory molecules primarily targets migratory dendritic cells. Science Immunology. 2019:4.:eaaw0902. doi:10.1126/sciimmunol.aaw0902.
  • MacNabb BW, Kline DE, Albright AR, Chen X, Leventhal DS, Savage PA, Kline J. Negligible Role for Deletion Mediated by cDC1 in CD8(+) T Cell Tolerance. J Immunol. 2019;202:2628–2635. doi:10.4049/jimmunol.1801621.
  • Mundt S, Mrdjen D, Utz SG, Greter M, Schreiner B, Becher B. Conventional DCs sample and present myelin antigens in the healthy CNS and allow parenchymal T cell entry to initiate neuroinflammation. Science Immunology. 2019;4:eaau8380. doi: 10.1126/sciimmunol.aau8380.
  • See P, Dutertre CA, Chen J, Gunther P, McGovern N, Irac SE, Gunawan M, Beyer M, Händler K, Duan K, Sumatoh HR. Mapping the human DC lineage through the integration of high-dimensional techniques. Science. 2017:356:eaag3009. doi: 10.1126/science.aag3009.
  • Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S, Jardine L. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science. 2017:356:eaah4573. doi: 10.1126/science.aah4573.
  • Ali S, Mann-Nuttel R, Schulze A, Richter L, Alferink J, Scheu S. Sources of Type I Interferons in Infectious Immunity: plasmacytoid Dendritic Cells Not Always in the Driver’s Seat. Frontiers in Immunology. 2019;10:778. doi:10.3389/fimmu.2019.00778.
  • Vangeti S, Gertow J, Yu M, Liu S, Baharom F, Scholz S, Friberg D, Starkhammar M, Ahlberg A, Smed-Sörensen A. Human Blood and Tonsil Plasmacytoid Dendritic Cells Display Similar Gene Expression Profiles but Exhibit Differential Type I IFN Responses to Influenza A Virus Infection. J Immunol. 2019;202:2069–2081. doi:10.4049/jimmunol.1801191.
  • Loughland JR, Woodberry T, Boyle MJ, Tipping PE, Piera KA, Amante FH, Kenangalem E, Price RN, Engwerda CR, Anstey NM, et al. Plasmodium falciparum Activates CD16+ Dendritic Cells to Produce Tumor Necrosis Factor and Interleukin-10 in Subpatent Malaria. The Journal of Infectious Diseases. 2019;219:660–671. doi:10.1093/infdis/jiy555.
  • Bouteau A, Kervevan J, Su Q, Zurawski SM, Contreras V, Dereuddre-Bosquet N, Le Grand R, Zurawski G, Cardinaud S, Levy Y, et al. DC Subsets Regulate Humoral Immune Responses by Supporting the Differentiation of Distinct Tfh Cells. Frontiers in Immunology. 2019;10:1134. doi:10.3389/fimmu.2019.01134.
  • Wang Z, Wang W, Chai Q, Zhu M. Langerhans Cells Control Lymphatic Vessel Function during Inflammation via LIGHT-LTβR Signaling.. J Immunol. 2019;202:2999–3007. doi:10.4049/jimmunol.1801578.
  • Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight. 2019;4. doi: 10.1172/jci.insight.123947.
  • Eisenbarth SC. Dendritic cell subsets in T cell programming: location dictates function. Nature Reviews Immunology. 2019;19:89–103. doi:10.1038/s41577-018-0088-1.
  • Michea P, Noel F, Zakine E, Czerwinska U, Sirven P, Abouzid O, Goudot C, Scholer-Dahirel A, Vincent-Salomon A, Reyal F, et al. Adjustment of dendritic cells to the breast-cancer microenvironment is subset specific. Nat Immunol. 2018;19:885–897. doi:10.1038/s41590-018-0145-8.
  • Macri C, Pang ES, Patton T, O’Keeffe M. Dendritic cell subsets. Seminars in Cell & Developmental Biology. 2018;84:11–21. doi:10.1016/j.semcdb.2017.12.009.
  • Durai V, Murphy KM. Functions of Murine Dendritic Cells. Immunity. 2016;45:719–736. doi:10.1016/j.immuni.2016.10.010.
  • Shortman K, Heath WR. The CD8+ dendritic cell subset. Immunol Rev. 2010;234:18–31. doi:10.1111/j.0105-2896.2009.00870.x.
  • Lavin Y, Kobayashi S, Leader A, Amir EAD, Elefant N, Bigenwald C, Remark R, Sweeney R, Becker CD, Levine JH, et al. Innate Immune Landscape in Early Lung Adenocarcinoma by Paired Single-Cell Analyses. Cell. 2017;169:750–65 e17. doi:10.1016/j.cell.2017.04.014.
  • Bachem A, Guttler S, Hartung E, Ebstein F, Schaefer M, Tannert A, Salama A, Movassaghi K, Opitz C, Mages HW, et al. Superior antigen cross-presentation and XCR1 expression define human CD11c+CD141+ cells as homologues of mouse CD8+ dendritic cells. J Exp Med. 2010;207:1273–1281. doi:10.1084/jem.20100348.
  • Crozat K, Guiton R, Contreras V, Feuillet V, Dutertre C-A, Ventre E, Vu Manh T-P, Baranek T, Storset AK, Marvel J, et al. The XC chemokine receptor 1 is a conserved selective marker of mammalian cells homologous to mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207:1283–1292. doi:10.1084/jem.20100223.
  • Poulin LF, Salio M, Griessinger E, Anjos-Afonso F, Craciun L, Chen J-L, Keller AM, Joffre O, Zelenay S, Nye E, et al. Characterization of human DNGR-1+ BDCA3+ leukocytes as putative equivalents of mouse CD8alpha+ dendritic cells. J Exp Med. 2010;207:1261–1271. doi:10.1084/jem.20092618.
  • Jongbloed SL, Kassianos AJ, McDonald KJ, Clark GJ, Ju X, Angel CE, Chen CJJ, Dunbar PR, Wadley RB, Jeet V, et al. Human CD141+ (BDCA-3)+ dendritic cells (DCs) represent a unique myeloid DC subset that cross-presents necrotic cell antigens. J Exp Med. 2010;207:1247–1260. doi:10.1084/jem.20092140.
  • Di Blasio S, Wortel IM, van Bladel DA, de Vries LE, Duiveman-de Boer T, Worah K, de Haas N, Buschow SI, de Vries IJM, Figdor CG, et al. Human CD1c(+) DCs are critical cellular mediators of immune responses induced by immunogenic cell death. Oncoimmunology. 2016;5:e1192739. doi:10.1080/2162402X.2016.1192739.
  • Ghinnagow R, De Meester J, Cruz LJ, Aspord C, Corgnac S, Macho-Fernandez E, Soulard D, Fontaine J, Chaperot L, Charles J, et al. Co-delivery of the NKT agonist alpha-galactosylceramide and tumor antigens to cross-priming dendritic cells breaks tolerance to self-antigens and promotes antitumor responses. Oncoimmunology. 2017;6:e1339855. doi:10.1080/2162402X.2017.1339855.
  • Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nature Reviews Immunology. 2012;12:557–569. doi:10.1038/nri3254.
  • Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L, Briere F, Chaussabel D, Zurawski G, Palucka AK, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 2008;29:497–510. doi:10.1016/j.immuni.2008.07.013.
  • Ueno H, Klechevsky E, Morita R, Aspord C, Cao T, Matsui T, Di Pucchio T, Connolly J, Fay JW, Pascual V, et al. Dendritic cell subsets in health and disease. Immunol Rev. 2007;219:118–142. doi:10.1111/j.1600-065X.2007.00551.x.
  • Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, Antonenko S, Liu YJ. The Nature of the Principal Type 1 Interferon-Producing Cells in Human Blood. Science. 1999;284:1835–1837. doi:10.1126/science.284.5421.1835.
  • Cella M, Facchetti F, Lanzavecchia A, Colonna M. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol. 2000;1:305–310. doi:10.1038/79747.
  • Gilliet M, Boonstra A, Paturel C, Antonenko S, Xu X-L, Trinchieri G, O’Garra A, Liu Y-J. The development of murine plasmacytoid dendritic cell precursors is differentially regulated by FLT3-ligand and granulocyte/macrophage colony-stimulating factor. J Exp Med. 2002;195:953–958. doi:10.1084/jem.20020045.
  • Medler T, Patel JM, Alice A, Baird JR, Hu HM, Gough MJ. Activating the Nucleic Acid-Sensing Machinery for Anticancer Immunity. International Review of Cell and Molecular Biology. 2019;344:173–214. doi: 10.1016/bs.ircmb.2018.08.006.
  • Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. International Review of Cell and Molecular Biology. 2019. doi:10.1016/bs.ircmb.2019.06.001.
  • Galluzzi L, Yamazaki T, Kroemer G. Linking cellular stress responses to systemic homeostasis. Nat Rev Mol Cell Biol. 2018;19:731–745. doi:10.1038/s41580-018-0068-0.
  • Collignon A, Silvy F, Robert S, Trad M, Germain S, Nigri J, André F, Rigot V, Tomasini R, Bonnotte B, et al. Dendritic cell-based vaccination: powerful resources of immature dendritic cells against pancreatic adenocarcinoma. Oncoimmunology. 2018;7:e1504727. doi:10.1080/2162402X.2018.1504727.
  • Idoyaga J, Fiorese C, Zbytnuik L, Lubkin A, Miller J, Malissen B, Mucida D, Merad M, Steinman RM. Specialized role of migratory dendritic cells in peripheral tolerance induction. The Journal of Clinical Investigation. 2013;123:844–854. doi:10.1172/JCI65260.
  • Garg AD, Romano E, Rufo N, Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death and Differentiation. 2016;23:938–951. doi:10.1038/cdd.2016.5.
  • Garg AD, Krysko DV, Verfaillie T, Kaczmarek A, Ferreira GB, Marysael T, Rubio N, Firczuk M, Mathieu C, Roebroek AJM, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. The EMBO Journal. 2012;31:1062–1079. doi:10.1038/emboj.2011.497.
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nature Reviews Cancer. 2012;12:265–277. doi:10.1038/nrc3258.
  • Sistigu A, Yamazaki T, Vacchelli E, Chaba K, Enot DP, Adam J, Vitale I, Goubar A, Baracco EE, Remédios C. Cancer cell-autonomous contribution of type I interferon signaling to the efficacy of chemotherapy. Nature Medicine. 2014;20:1301–1309. doi:10.1038/nm.3708.
  • Aznar MA, Labiano S, Diaz-Lagares A, Molina C, Garasa S, Azpilikueta A, Etxeberria I, Sanchez-Paulete AR, Korman AJ, Esteller M, et al. CD137 (4-1BB) Costimulation Modifies DNA Methylation in CD8 + T Cell–relevant Genes. Cancer Immunology Research. 2018;6:69–78. doi:10.1158/2326-6066.CIR-17-0159.
  • Zafar S, Parviainen S, Siurala M, Hemminki O, Havunen R, Tahtinen S, Bramante S, Vassilev L, Wang H, Lieber A, et al. Intravenously usable fully serotype 3 oncolytic adenovirus coding for CD40L as an enabler of dendritic cell therapy. Oncoimmunology. 2017;6:e1265717. doi:10.1080/2162402X.2016.1265717.
  • Garg AD, Dudek AM, Agostinis P. Cancer immunogenicity, danger signals, and DAMPs: what, when, and how?. Biofactors. 2013;39:355–367. doi:10.1002/biof.1125.
  • Gonzalez FE, Chernobrovkin A, Pereda C, Garcia-Salum T, Tittarelli A, Lopez MN, Salazar-Onfray F, Zubarev RA. Proteomic Identification of Heat Shock-Induced Danger Signals in a Melanoma Cell Lysate Used in Dendritic Cell-Based Cancer Immunotherapy. Journal of Immunology Research. 2018;2018:3982942. doi:10.1155/2018/3982942.
  • Venkateswaran K, Verma A, Bhatt AN, Shrivastava A, Manda K, Raj HG, Prasad A, Len C, Parmar VS, Dwarakanath BS. Emerging Roles of Calreticulin in Cancer: implications for Therapy. Current Protein & Peptide Science. 2018;19:344–357. doi:10.2174/1389203718666170111123253.
  • Moserova I, Truxova I, Garg AD, Tomala J, Agostinis P, Cartron PF, Vosahlikova S, Kovar M, Spisek R, Fucikova J. Caspase-2 and oxidative stress underlie the immunogenic potential of high hydrostatic pressure-induced cancer cell death. Oncoimmunology. 2017;6:e1258505. doi:10.1080/2162402X.2016.1258505.
  • Patidar A, Selvaraj S, Sarode A, Chauhan P, Chattopadhyay D, Saha B. DAMP-TLR-cytokine axis dictates the fate of tumor. Cytokine. 2018;104:114–123. doi:10.1016/j.cyto.2017.10.004.
  • Carrington EM, Tarlinton DM, Gray DH, Huntington ND, Zhan Y, Lew AM. The life and death of immune cell types: the role of BCL-2 anti-apoptotic molecules. Immunology and Cell Biology. 2017;95:870–877. doi:10.1038/icb.2017.72.
  • Riganti C, Lingua MF, Salaroglio IC, Falcomata C, Righi L, Morena D, Picca F, Oddo D, Kopecka J, Pradotto M, et al. Bromodomain inhibition exerts its therapeutic potential in malignant pleural mesothelioma by promoting immunogenic cell death and changing the tumor immune-environment. Oncoimmunology. 2018;7:e1398874. doi:10.1080/2162402X.2017.1398874.
  • Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M. Molecular and Translational Classifications of DAMPs in Immunogenic Cell Death. Frontiers in Immunology. 2015;6:588. doi:10.3389/fimmu.2015.00588.
  • Umansky V, Adema GJ, Baran J, Brandau S, Van Ginderachter JA, Hu X, Jablonska J, Mojsilovic S, Papadaki HA, Pico de Coaña Y, et al. Interactions among myeloid regulatory cells in cancer. Cancer Immunology, Immunotherapy: CII. 2019;68:645–660. doi:10.1007/s00262-018-2200-6.
  • Zom GG, Willems M, Khan S, van der Sluis TC, Kleinovink JW, Camps MGM, van der Marel GA, Filippov DV, Melief CJM, Ossendorp F. Novel TLR2-binding adjuvant induces enhanced T cell responses and tumor eradication. J Immunother Cancer. 2018;6:146. doi:10.1186/s40425-018-0455-2.
  • Land WG, Agostinis P, Gasser S, Garg AD, Linkermann A. DAMP-Induced Allograft and Tumor Rejection: the Circle Is Closing. American Journal of Transplantation: Official Journal of the American Society of Transplantation and the American Society of Transplant Surgeons. 2016;16:3322–3337. doi:10.1111/ajt.14012.
  • Santillo BT, Reis DDS, da Silva LT, Romani NT, Duarte A, Oshiro TM. Phenotypic and functional profile of IFN-alpha-differentiated dendritic cells (IFN-DCs) from HIV-infected individuals. Human Vaccines & Immunotherapeutics. 2019;15:2140–2149. doi: 10.1080/21645515.2018.1547603.
  • Krzastek SC, Goliadze E, Zhou S, Petrossian A, Youniss F, Sundaresan G, Wang L, Zweit J, Guruli G. Dendritic cell trafficking in tumor-bearing mice. Cancer Immunology, Immunotherapy: CII. 2018;67:1939–1947. doi:10.1007/s00262-018-2187-z.
  • Li X, Dong W, Nalin AP, Wang Y, Pan P, Xu B, Zhang Y, Tun S, Zhang J, Wang L-S, et al. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. Oncoimmunology. 2018;7:e1431085. doi:10.1080/2162402X.2018.1431085.
  • Ho HNI, In ‘t Veld LGM, Raaijmakers TK, Adema GJ. Adjuvants Enhancing Cross-Presentation by Dendritic Cells: the Key to More Effective Vaccines?. Frontiers in Immunology. 2018;9:2874. doi:10.3389/fimmu.2018.02874.
  • Zafar S, Sorsa S, Siurala M, Hemminki O, Havunen R, Cervera-Carrascon V, Santos JM, Wang H, Lieber A, De Gruijl T, et al. CD40L coding oncolytic adenovirus allows long-term survival of humanized mice receiving dendritic cell therapy. Oncoimmunology. 2018;7:e1490856. doi:10.1080/2162402X.2018.1490856.
  • Yang SC, Hillinger S, Riedl K, Zhang L, Zhu L, Huang M, Atianzar K, BY K, Gardner B, Batra RK, et al. Intratumoral administration of dendritic cells overexpressing CCL21 generates systemic antitumor responses and confers tumor immunity. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2004;10:2891–2901. doi:10.1158/1078-0432.CCR-03-0380.
  • Valentine FT, Golomb FM, Harris M, Roses DF. A novel immunization strategy using cytokine/chemokines induces new effective systemic immune responses, and frequent complete regressions of human metastatic melanoma. Oncoimmunology. 2018;7:e1386827. doi:10.1080/2162402X.2017.1386827.
  • Mitchell JP, Carmody RJ. NF-kappaB and the Transcriptional Control of Inflammation. International Review of Cell and Molecular Biology. 2018;335:41–84 doi: 10.1016/bs.ircmb.2017.07.007.
  • Garg AD, Vandenberk L, Fang S, Fasche T, Van Eygen S, Maes J, Van Woensel M, Koks C, Vanthillo N, Graf N, et al. Pathogen response-like recruitment and activation of neutrophils by sterile immunogenic dying cells drives neutrophil-mediated residual cell killing. Cell Death and Differentiation. 2017;24:832–843. doi:10.1038/cdd.2017.15.
  • Chow MT, Ozga AJ, Servis RL, Frederick DT, Lo JA, Fisher DE, Freeman GJ, Boland GM, Luster AD. Intratumoral Activity of the CXCR3 Chemokine System Is Required for the Efficacy of Anti-PD-1 Therapy. Immunity. 2019;50:1498–1512.e5. doi:10.1016/j.immuni.2019.04.010.
  • Jing W, McAllister D, Vonderhaar EP, Palen K, Riese MJ, Gershan J, Johnson BD, Dwinell MB. STING agonist inflames the pancreatic cancer immune microenvironment and reduces tumor burden in mouse models. J Immunother Cancer. 2019;7:115. doi:10.1186/s40425-019-0573-5.
  • Gianello V, Salvi V, Parola C, Moretto N, Facchinetti F, Civelli M, Villetti G, Bosisio D, Sozzani S. The PDE4 inhibitor CHF6001 modulates pro-inflammatory cytokines, chemokines and Th1- and Th17-polarizing cytokines in human dendritic cells. Biochemical Pharmacology. 2019;163:371–380. doi:10.1016/j.bcp.2019.03.006.
  • Lu F, Mosley YC, Carmichael B, Brown DD, HogenEsch H. Formulation of aluminum hydroxide adjuvant with TLR agonists poly(I:C) and CpG enhances the magnitude and avidity of the humoral immune response. Vaccine. 2019;37:1945–1953. doi:10.1016/j.vaccine.2019.02.033.
  • Oreskovic Z, Nechvatalova K, Krejci J, Kummer V, Faldyna M. Aspects of intradermal immunization with different adjuvants: the role of dendritic cells and Th1/Th2 response. PLoS One. 2019;14:e0211896. doi: 10.1371/journal.pone.0211896.
  • Baert T, Garg AD, Vindevogel E, VAN HOYLANDT AVANH, VERBIST G, AGONISTINIS P, VERGOTE I, COOSEMANS ANP. In Vitro Generation of Murine Dendritic Cells for Cancer Immunotherapy: an Optimized Protocol. Anticancer Research. 2016;36:5793–5802. doi:10.21873/anticanres.11163.
  • Luty J, Ruckemann-Dziurdzinska K, Witkowski JM, Bryl E. Immunological aspects of autoimmune thyroid disease - Complex interplay between cells and cytokines. Cytokine. 2019;116:128–133. doi:10.1016/j.cyto.2019.01.003.
  • Vieyra-Garcia P, Crouch JD, O’Malley JT, Seger EW, Yang CH, Teague JE, Vromans AM, Gehad A, Win TS, Yu Z, et al. Benign T cells drive clinical skin inflammation in cutaneous T cell lymphoma. JCI Insight. 2019:4. doi: 10.1172/jci.insight.124233.
  • Steinman RM. Decisions about dendritic cells: past, present, and future. Annual Review of Immunology. 2012;30:1–22. doi:10.1146/annurev-immunol-100311-102839.
  • Maldonado-Lopez R, De Smedt T, Michel P, Godfroid J, Pajak B, Heirman C, Thielemans K, Leo O, Urbain J, Moser M. CD8α + and CD8α − Subclasses of Dendritic Cells Direct the Development of Distinct T Helper Cells In Vivo. J Exp Med. 1999;189:587–592. doi:10.1084/jem.189.3.587.
  • Pulendran B, Smith JL, Caspary G, Brasel K, Pettit D, Maraskovsky E, Maliszewski CR. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A. 1999;96:1036–1041. doi:10.1073/pnas.96.3.1036.
  • Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee H-W, Park CG, et al. Differential antigen processing by dendritic cell subsets in vivo. Science. 2007;315:107–111. doi:10.1126/science.1136080.
  • Rao S, Gharib K, Han A. Cancer Immunosurveillance by T Cells. International Review of Cell and Molecular Biology. 2019;342:149–173.
  • Chalmin F, Humblin E, Ghiringhelli F, Vegran F. Transcriptional Programs Underlying Cd4 T Cell Differentiation and Functions. International Review of Cell and Molecular Biology. 2018;341:1–61. doi:10.1016/bs.ircmb.2018.07.002.
  • Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Research. 2017;27:74–95. doi:10.1038/cr.2016.157.
  • Bol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic Cell-Based Immunotherapy: state of the Art and Beyond. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2016;22:1897–1906. doi:10.1158/1078-0432.CCR-15-1399.
  • Anguille S, Smits EL, Lion E, van Tendeloo VF, Berneman ZN. Clinical use of dendritic cells for cancer therapy. The Lancet Oncology. 2014;15:e257–67. doi:10.1016/S1470-2045(13)70585-0.
  • Palucka K, Banchereau J. Dendritic-cell-based therapeutic cancer vaccines. Immunity. 2013;39:38–48. doi:10.1016/j.immuni.2013.07.004.
  • Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA Sensing in Organismal Tumor Control. Cancer Cell. 2018;34:361–378. doi:10.1016/j.ccell.2018.05.013.
  • Romero P, Banchereau J, Bhardwaj N, Cockett M, Disis ML, Dranoff G, Gilboa E, Hammond SA, Hershberg R, Korman AJ, et al. The Human Vaccines Project: A roadmap for cancer vaccine development. Science Translational Medicine. 2016;8:334ps9. doi:10.1126/scitranslmed.aaf0685.
  • Truxova I, Hensler M, Skapa P, Halaska MJ, Laco J, Ryska A, Spisek R, Fucikova J. Rationale for the Combination of Dendritic Cell-Based Vaccination Approaches With Chemotherapy Agents. International Review of Cell and Molecular Biology. 2017;330:115–156.
  • Gilboa E. DC-based cancer vaccines. The Journal of Clinical Investigation. 2007;117:1195–1203. doi:10.1172/JCI31205.
  • Tacken PJ, de Vries IJ, Torensma R, Figdor CG. Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nature Reviews Immunology. 2007;7:790–802. doi:10.1038/nri2173.
  • Satoh Y, Esche C, Gambotto A, Shurin GV, Yurkovetsky ZR, Robbins PD, Watkins SC, Todo S, Herberman RB, Lotze MT, et al. Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol. 2002;2:337–349. doi:10.1046/j.1359-4117.2002.01050.x.
  • Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res. 1999;59:4035–4041.
  • Hu J, Yuan X, Belladonna ML, Ong JM, Wachsmann-Hogiu S, Farkas DL, Black KL, Yu JS. Induction of potent antitumor immunity by intratumoral injection of interleukin 23-transduced dendritic cells. Cancer Res. 2006;66:8887–8896. doi:10.1158/0008-5472.CAN-05-3448.
  • Endo H, Saito T, Kenjo A, Hoshino M, Terashima M, Sato T, Anazawa T, Kimura T, Tsuchiya T, Irisawa A, et al. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK-432 for resectable pancreatic cancer patients. J Hepatobiliary Pancreat Sci. 2012;19:465–475. doi:10.1007/s00534-011-0457-7.
  • Galluzzi L, Vanpouille-Box C, Bakhoum SF, Demaria S. SnapShot: CGAS-STING Signaling. Cell. 2018;173:276- e1. doi:10.1016/j.cell.2018.03.015.
  • Nair SK, Snyder D, Rouse BT, Gilboa E. Regression of tumors in mice vaccinated with professional antigen-presenting cells pulsed with tumor extracts. Int J Cancer. 1997;70:706–718. doi:10.1002/(sici)1097-0215(19970317)70:6<706::aid-ijc13>3.0.co;2-7.
  • DeMatos P, Abdel-Wahab Z, Vervaert C, Hester D, Seigler H. Pulsing of dendritic cells with cell lysates from either B16 melanoma or MCA-106 fibrosarcoma yields equally effective vaccines against B16 tumors in mice. J Surg Oncol. 1998;68:79–91. doi:10.1002/(sici)1096-9098(199806)68:2<79::aid-jso3>3.0.co;2-h.
  • DeMatos P, Abdel-Wahab Z, Vervaert C, Seigler HF. Vaccination with dendritic cells inhibits the growth of hepatic metastases in B6 mice. Cell Immunol. 1998;185:65–74. doi:10.1006/cimm.1998.1277.
  • Fields RC, Shimizu K, Mule JJ. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc Natl Acad Sci U S A. 1998;95:9482–9487. doi:10.1073/pnas.95.16.9482.
  • Chen Z, Moyana T, Saxena A, Warrington R, Jia Z, Xiang J. Efficient antitumor immunity derived from maturation of dendritic cells that had phagocytosed apoptotic/necrotic tumor cells. Int J Cancer. 2001;93:539–548. doi:10.1002/ijc.1365.
  • Paczesny S, Beranger S, Salzmann JL, Klatzmann D, Colombo BM. Protection of mice against leukemia after vaccination with bone marrow-derived dendritic cells loaded with apoptotic leukemia cells. Cancer Res. 2001;61:2386–2389.
  • Kokhaei P, Choudhury A, Mahdian R, Lundin J, Moshfegh A, Osterborg A, Mellstedt H. Apoptotic tumor cells are superior to tumor cell lysate, and tumor cell RNA in induction of autologous T cell response in B-CLL. Leukemia. 2004;18:1810–1815. doi:10.1038/sj.leu.2403517.
  • Kokhaei P, Rezvany MR, Virving L, Choudhury A, Rabbani H, Osterborg A, Mellstedt H. Dendritic cells loaded with apoptotic tumour cells induce a stronger T-cell response than dendritic cell-tumour hybrids in B-CLL. Leukemia. 2003;17:894–899. doi:10.1038/sj.leu.2402913.
  • Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998;392:86–89. doi:10.1038/32183.
  • Albert ML, Pearce SF, Francisco LM, Sauter B, Roy P, Silverstein RL, Bhardwaj N. Immature Dendritic Cells Phagocytose Apoptotic Cells via α v β 5 and CD36, and Cross-present Antigens to Cytotoxic T Lymphocytes. J Exp Med. 1998;188:1359–1368. doi:10.1084/jem.188.7.1359.
  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD, Melief CJ, Ildstad ST, Kast WM, Deleo AB, et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nature Medicine. 1995;1:1297–1302. doi:10.1038/nm1295-1297.
  • Mayordomo JI, Loftus DJ, Sakamoto H, De Cesare CM, Appasamy PM, Lotze MT, Storkus WJ, Appella E, DeLeo AB. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-based vaccines. J Exp Med. 1996;183:1357–1365. doi:10.1084/jem.183.4.1357.
  • Paglia P. Murine dendritic cells loaded in vitro with soluble protein prime cytotoxic T lymphocytes against tumor antigen in vivo. J Exp Med. 1996;183:317–322. doi:10.1084/jem.183.1.317.
  • Mackey MF, Gunn JR, Maliszewsky C, Kikutani H, Noelle RJ, Barth RJ Jr. Dendritic cells require maturation via CD40 to generate protective antitumor immunity. J Immunol. 1998;161:2094–2098.
  • Zitvogel L, Mayordomo JI, Tjandrawan T, DeLeo AB, Clarke MR, Lotze MT, Storkus WJ. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med. 1996;183:87–97. doi:10.1084/jem.183.1.87.
  • Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Garcia&hyphen;Prats MD, DeLeo AB, Lotze MT. Bone Marrow&hyphen;Derived Dendritic Cells Serve as Potent Adjuvants for Peptide&hyphen;Based Antitumor Vaccines. Stem Cells. 2009;15:94–103. doi:10.1002/stem.150094.
  • Fernandez NC, Lozier A, Flament C, Ricciardi-Castagnoli P, Bellet D, Suter M, Perricaudet M, Tursz T, Maraskovsky E, Zitvogel L, et al. Dendritic cells directly trigger NK cell functions: cross-talk relevant in innate anti-tumor immune responses in vivo. Nature Medicine. 1999;5:405–411. doi:10.1038/7403.
  • Boczkowski D. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med. 1996;184:465–472. doi:10.1084/jem.184.2.465.
  • Ashley DM, Faiola B, Nair S, Hale LP, Bigner DD, Gilboa E. Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med. 1997;186:1177–1182. doi:10.1084/jem.186.7.1177.
  • Boczkowski D, Nair SK, Nam JH, Lyerly HK, Gilboa E. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells. Cancer Res. 2000;60:1028–1034.
  • Irvine AS, Trinder PK, Laughton DL, Ketteringham H, McDermott RH, Reid SC, Haines AMR, Amir A, Husain R, Doshi R, et al. Efficient nonviral transfection of dendritic cells and their use for in vivo immunization. Nat Biotechnol. 2000;18:1273–1278. doi:10.1038/82383.
  • Manickan E, Kanangat S, Rouse RJ, Yu Z, Rouse BT. Enhancement of immune response to naked DNA vaccine by immunization with transfected dendritic cells. J Leukoc Biol. 1997;61:125–132. doi:10.1002/jlb.61.2.125.
  • Song W, Kong H-L, Carpenter H, Torii H, Granstein R, Rafii S, Moore MAS, Crystal RG. Dendritic cells genetically modified with an adenovirus vector encoding the cDNA for a model antigen induce protective and therapeutic antitumor immunity. J Exp Med. 1997;186:1247–1256. doi:10.1084/jem.186.8.1247.
  • Tuting T, DeLeo AB, Lotze MT, Storkus WJ. Genetically modified bone marrow-derived dendritic cells expressing tumor-associated viral or “self” antigens induce antitumor immunity in vivo. Eur J Immunol. 1997;27:2702–2707. doi:10.1002/eji.1830271033.
  • Wan Y, Bramson J, Carter R, Graham F, Gauldie J. Dendritic cells transduced with an adenoviral vector encoding a model tumor-associated antigen for tumor vaccination. Hum Gene Ther. 1997;8:1355–1363. doi:10.1089/hum.1997.8.11-1355.
  • McArthur JG, Mulligan RC. Induction of protective anti-tumor immunity by gene-modified dendritic cells. J Immunother. 1998;21:41–47. doi:10.1097/00002371-199801000-00005.
  • Ishida I, Chada C, Stipanov S, Nadaf N, Ciernik C, Gabrilovich G, Carbone DP. Dendritic cells transduced with wild-type p53 gene elicit potent anti-tumour immune responses. Clin Exp Immunol. 1999;117:244–251. doi:10.1046/j.1365-2249.1999.00913.x.
  • Tuting T, Steitz J, Bruck J, Gambotto A, Steinbrink K, DeLeo AB, Robbins P, Knop J, Enk AH. Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J Gene Med. 1999;1:400–406. doi:10.1002/(SICI)1521-2254(199911/12)1:6<400::AID-JGM68>3.0.CO;2-D.
  • Wan Y, Emtage P, Zhu Q, Foley R, Pilon A, Roberts B, Gauldie J. Enhanced immune response to the melanoma antigen gp100 using recombinant adenovirus-transduced dendritic cells. Cell Immunol. 1999;198:131–138. doi:10.1006/cimm.1999.1585.
  • Klein C, Bueler H, Mulligan RC. Comparative analysis of genetically modified dendritic cells and tumor cells as therapeutic cancer vaccines. J Exp Med. 2000;191:1699–1708. doi:10.1084/jem.191.10.1699.
  • Ribas A, Butterfield LH, Hu B, Dissette VB, Chen AY, Koh A, Amarnani SN, Glaspy JA, McBride WH, Economou JS, et al. Generation of T-cell immunity to a murine melanoma using MART-1-engineered dendritic cells. J Immunother. 2000;23:59–66. doi:10.1097/00002371-200001000-00008.
  • Okada N, Saito T, Masunaga Y, Tsukada Y, Nakagawa S, Mizuguchi H, Mori K, Okada Y, Fujita T, Hayakawa T, et al. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res. 2001;61:7913–7919.
  • Koido S, Kashiwaba M, Chen D, Gendler S, Kufe D, Gong J. Induction of antitumor immunity by vaccination of dendritic cells transfected with MUC1 RNA. J Immunol. 2000;165:5713–5719. doi:10.4049/jimmunol.165.10.5713.
  • Nair SK, Heiser A, Boczkowski D, Majumdar A, Naoe M, Lebkowski JS, Vieweg J, Gilboa E. Induction of cytotoxic T cell responses and tumor immunity against unrelated tumors using telomerase reverse transcriptase RNA transfected dendritic cells. Nature Medicine. 2000;6:1011–1017. doi:10.1038/79519.
  • Yamanaka R, Zullo SA, Tanaka R, Blaese M, Xanthopoulos KG. Enhancement of antitumor immune response in glioma models in mice by genetically modified dendritic cells pulsed with Semliki forest virus-mediated complementary DNA. J Neurosurg. 2001;94:474–481. doi:10.3171/jns.2001.94.3.0474.
  • Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M. A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Research. 2002;22:613–621.
  • Van Meirvenne S, Straetman L, Heirman C, Dullaers M, De Greef C, Van Tendeloo V, Thielemans K. Efficient genetic modification of murine dendritic cells by electroporation with mRNA. Cancer Gene Ther. 2002;9:787–797. doi:10.1038/sj.cgt.7700499.
  • Minami T, Nakanishi Y, Izumi M, Harada T, Hara N. Enhancement of antigen-presenting capacity and antitumor immunity of dendritic cells pulsed with autologous tumor-derived RNA in mice. J Immunother. 2003;26:420–431. doi:10.1097/00002371-200309000-00005.
  • Schmidt T, Ziske C, Marten A, Endres S, Tiemann K, Schmitz V, Gorschlüter M, Schneider C, Sauerbruch T, Schmidt-Wolf IGH, et al. Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL/6 pancreatic murine tumor model. Cancer Res. 2003;63:8962–8967.
  • Jung CW, Kwon JH, Seol JG, Park WH, Hyun JM, Kim ES, Kim ST, Lee SJ, Kim BK, Lee YY, et al. Induction of cytotoxic T lymphocytes by dendritic cells pulsed with murine leukemic cell RNA. Am J Hematol. 2004;75:121–127. doi:10.1002/ajh.10471.
  • Liu BY, Chen XH, Gu QL, Li JF, Yin HR, Zhu ZG, YZ L. Antitumor effects of vaccine consisting of dendritic cells pulsed with tumor RNA from gastric cancer. World J Gastroenterol. 2004;10:630–633. doi:10.3748/wjg.v10.i5.630.
  • Zeis M, Siegel S, Wagner A, Schmitz M, Marget M, Kuhl-Burmeister R, Adamzik I, Kabelitz D, Dreger P, Schmitz N, et al. Generation of cytotoxic responses in mice and human individuals against hematological malignancies using survivin-RNA-transfected dendritic cells. J Immunol. 2003;170:5391–5397. doi:10.4049/jimmunol.170.11.5391.
  • Celluzzi CM, Falo LD Jr. Physical interaction between dendritic cells and tumor cells results in an immunogen that induces protective and therapeutic tumor rejection. J Immunol. 1998;160:3081–3085.
  • Wang J, Saffold S, Cao X, Krauss J, Chen W. Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol. 1998;161:5516–5524.
  • Tanaka H, Shimizu K, Hayashi T, Shu S. Therapeutic immune response induced by electrofusion of dendritic and tumor cells. Cell Immunol. 2002;220:1–12. doi:10.1016/S0008-8749(03)00009-1.
  • Orentas RJ, Schauer D, Bin Q, Johnson BD. Electrofusion of a weakly immunogenic neuroblastoma with dendritic cells produces a tumor vaccine. Cell Immunol. 2001;213:4–13. doi:10.1006/cimm.2001.1864.
  • Kjaergaard J, Shimizu K, Shu S. Electrofusion of syngeneic dendritic cells and tumor generates potent therapeutic vaccine. Cell Immunol. 2003;225:65–74. doi:10.1016/j.cellimm.2003.09.005.
  • Sukhorukov VL, Reuss R, Endter JM, Fehrmann S, Katsen-Globa A, Gessner P, Steinbach A, Müller KJ, Karpas A, Zimmermann U, et al. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochem Biophys Res Commun. 2006;346:829–839. doi:10.1016/j.bbrc.2006.05.193.
  • Cathelin D, Nicolas A, Bouchot A, Fraszczak J, Labbe J, Bonnotte B. Dendritic cell-tumor cell hybrids and immunotherapy: what’s next?. Cytotherapy. 2011;13:774–785. doi:10.3109/14653249.2011.553593.
  • Errington F, Jones J, Merrick A, Bateman A, Harrington K, Gough M, O’Donnell D, Selby P, Vile R, Melcher A, et al. Fusogenic membrane glycoprotein-mediated tumour cell fusion activates human dendritic cells for enhanced IL-12 production and T-cell priming. Gene Ther. 2006;13:138–149. doi:10.1038/sj.gt.3302609.
  • Chevalier MF, Bobisse S, Costa-Nunes C, Cesson V, Jichlinski P, Speiser DE, Harari A, Coukos G, Romero P, Nardelli-Haefliger D, et al. High-throughput monitoring of human tumor-specific T-cell responses with large peptide pools. OncoImmunology. 2015;4:e1029702. doi:10.1080/2162402X.2015.1029702.
  • Fromm PD, Papadimitrious MS, Hsu JL, Van Kooten Losio N, Verma ND, Lo TH, Silveira PA, Bryant CE, Turtle CJ, Prue RL, et al. CMRF-56+ blood dendritic cells loaded with mRNA induce effective antigen-specific cytotoxic T-lymphocyte responses. OncoImmunology. 2016;5:e1168555. doi:10.1080/2162402X.2016.1168555.
  • Bonifaz LC, Bonnyay DP, Charalambous A, Darguste DI, Fujii S, Soares H, Brimnes MK, Moltedo B, Moran TM, Steinman RM, et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med. 2004;199:815–824. doi:10.1084/jem.20032220.
  • Bonifaz L, Bonnyay D, Mahnke K, Rivera M, Nussenzweig MC, Steinman RM. Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J Exp Med. 2002;196:1627–1638. doi:10.1084/jem.20021598.
  • Hawiger D, Inaba K, Dorsett Y, Guo M, Mahnke K, Rivera M, Ravetch JV, Steinman RM, Nussenzweig MC. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med. 2001;194:769–780. doi:10.1084/jem.194.6.769.
  • Adotevi O, Vingert B, Freyburger L, Shrikant P, Lone Y-C, Quintin-Colonna F, Haicheur N, Amessou M, Herbelin A, Langlade-Demoyen P, et al. B Subunit of Shiga Toxin-Based Vaccines Synergize with α-Galactosylceramide to Break Tolerance against Self Antigen and Elicit Antiviral Immunity. J Immunol. 2007;179:3371–3379. doi:10.4049/jimmunol.179.5.3371.
  • Berraondo P, Nouze C, Preville X, Ladant D, Leclerc C. Eradication of large tumors in mice by a tritherapy targeting the innate, adaptive, and regulatory components of the immune system. Cancer Res. 2007;67:8847–8855. doi:10.1158/0008-5472.CAN-07-0321.
  • Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP, Faas SJ, Punt CJA, Torensma R, Adema GJ, et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood. 2005;106:1278–1285. doi:10.1182/blood-2005-01-0318.
  • Klechevsky E, Flamar A-L, Cao Y, Blanck J-P, Liu M, O’Bar A, Agouna-Deciat O, Klucar P, Thompson-Snipes L, Zurawski S, et al. Cross-priming CD8+ T cells by targeting antigens to human dendritic cells through DCIR. Blood. 2010;116:1685–1697. doi:10.1182/blood-2010-01-264960.
  • Cruz LJ, Tacken PJ, Pots JM, Torensma R, Buschow SI, Figdor CG. Comparison of antibodies and carbohydrates to target vaccines to human dendritic cells via DC-SIGN. Biomaterials. 2012;33:4229–4239. doi:10.1016/j.biomaterials.2012.02.036.
  • Schreibelt G, Klinkenberg LJ, Cruz LJ, Tacken PJ, Tel J, Kreutz M, Adema GJ, Brown GD, Figdor CG, de Vries IJM, et al. The C-type lectin receptor CLEC9A mediates antigen uptake and (cross-)presentation by human blood BDCA3+ myeloid dendritic cells. Blood. 2012;119:2284–2292. doi:10.1182/blood-2011-08-373944.
  • Tacken PJ, Ginter W, Berod L, Cruz LJ, Joosten B, Sparwasser T, Figdor CG, Cambi A. Targeting DC-SIGN via its neck region leads to prolonged antigen residence in early endosomes, delayed lysosomal degradation, and cross-presentation. Blood. 2011;118:4111–4119. doi:10.1182/blood-2011-04-346957.
  • Tacken PJ, Ter Huurne M, Torensma R, Figdor CG. Antibodies and carbohydrate ligands binding to DC-SIGN differentially modulate receptor trafficking. Eur J Immunol. 2012;42:1989–1998. doi:10.1002/eji.201142258.
  • Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-kuijer MA, van de Glind G, Fokkink RG, Lambeck AJA, Figdor CG. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood. 2011;118:6836–6844. doi:10.1182/blood-2011-07-367615.
  • Hammerich L, Bhardwaj N, Kohrt HE, Brody JD. In situ vaccination for the treatment of cancer. Immunotherapy. 2016;8:315–330. doi:10.2217/imt.15.120.
  • Fotaki G, Jin C, Kerzeli IK, Ramachandran M, Martikainen -M-M, Karlsson-Parra A, Yu D, Essand M. Cancer vaccine based on a combination of an infection-enhanced adenoviral vector and pro-inflammatory allogeneic DCs leads to sustained antigen-specific immune responses in three melanoma models. Oncoimmunology. 2018;7:e1397250. doi:10.1080/2162402X.2017.1397250.
  • Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nature Medicine. 1998;4:594–600. doi:10.1038/nm0598-594.
  • Thery C, Regnault A, Garin J, Wolfers J, Zitvogel L, Ricciardi-Castagnoli P, Raposo G, Amigorena S. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J Cell Biol. 1999;147:599–610. doi:10.1083/jcb.147.3.599.
  • Viaud S, Thery C, Ploix S, Tursz T, Lapierre V, Lantz O, Zitvogel L, Chaput N. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next?. Cancer Res. 2010;70:1281–1285. doi:10.1158/0008-5472.CAN-09-3276.
  • Van Deun J, Mestdagh P, Agostinis P, Akay Ö, Anand S, Anckaert J, Martinez ZA, Baetens T, Beghein E, Bertier L, et al. EV-TRACK: transparent reporting and centralizing knowledge in extracellular vesicle research. Nature Methods. 2017;14:228–232. doi:10.1038/nmeth.4185.
  • Muller L, Simms P, Hong C-S, Nishimura MI, Jackson EK, Watkins SC, Whiteside TL. Human tumor-derived exosomes (TEX) regulate Treg functions via cell surface signaling rather than uptake mechanisms. Oncoimmunology. 2017;6:e1261243. doi:10.1080/2162402X.2016.1261243.
  • Fotaki G, Jin C, Ramachandran M, Kerzeli IK, Karlsson-Parra A, Yu D, Essand M. Pro-inflammatory allogeneic DCs promote activation of bystander immune cells and thereby license antigen-specific T-cell responses. Oncoimmunology. 2018;7:e1395126. doi:10.1080/2162402X.2017.1395126.
  • Fucikova J, Rozkova D, Ulcova H, Budinsky V, Sochorova K, Pokorna K, Bartůňková J, Špíšek R. Poly I: C-activated dendritic cells that were generated in CellGro for use in cancer immunotherapy trials. Journal of Translational Medicine. 2011;9:223. doi:10.1186/1479-5876-9-223.
  • Fucikova J, Kralikova P, Fialova A, Brtnicky T, Rob L, Bartunkova J, Spisek R. Human tumor cells killed by anthracyclines induce a tumor-specific immune response. Cancer Res. 2011;71:4821–4833. doi:10.1158/0008-5472.CAN-11-0950.
  • Bercovici N, Haicheur N, Massicard S, Vernel-Pauillac F, Adotevi O, Landais D, Gorin I, Robert C, Miles Prince H, Grob -J-J, et al. Analysis and characterization of antitumor T-cell response after administration of dendritic cells loaded with allogeneic tumor lysate to metastatic melanoma patients. J Immunother. 2008;31:101–112. doi:10.1097/CJI.0b013e318159f5ba.
  • Li M, You S, Ge W, Ma S, Ma N, Zhao C. Induction of T-cell immunity against leukemia by dendritic cells pulsed with total RNA isolated from leukemia cells. Chin Med J (Engl). 2003;116:1655–1661.
  • Lee J, Boczkowski D, Nair S. Programming human dendritic cells with mRNA. Methods in Molecular Biology. 2013;969:111–125.
  • Garg NK, Dwivedi P, Prabha P, Tyagi RK. RNA pulsed dendritic cells: an approach for cancer immunotherapy. Vaccine. 2013;31:1141–1156. doi:10.1016/j.vaccine.2012.12.027.
  • Sayour EJ, De Leon G, Pham C, Grippin A, Kemeny H, Chua J, Huang J, Sampson JH, Sanchez-Perez L, Flores C, et al. Systemic activation of antigen-presenting cells via RNA-loaded nanoparticles. Oncoimmunology. 2017;6:e1256527. doi:10.1080/2162402X.2016.1256527.
  • He J, Zheng R, Zhang Z, Tan J, Zhou C, Zhang G, Jiang X, Sun Q, Zhou S, Zheng D, et al. Collagen I enhances the efficiency and anti-tumor activity of dendritic-tumor fusion cells. Oncoimmunology. 2017;6:e1361094. doi:10.1080/2162402X.2017.1361094.
  • Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, Tyler PC, Davies NM. Liposomal delivery of antigen to human dendritic cells. Vaccine. 2003;21:883–890. doi:10.1016/S0264-410X(02)00536-4.
  • van Broekhoven CL, Parish CR, Demangel C, Britton WJ, Altin JG. Targeting dendritic cells with antigen-containing liposomes: a highly effective procedure for induction of antitumor immunity and for tumor immunotherapy. Cancer Res. 2004;64:4357–4365. doi:10.1158/0008-5472.CAN-04-0138.
  • Badiee A, Davies N, McDonald K, Radford K, Michiue H, Hart D, Kato M. Enhanced delivery of immunoliposomes to human dendritic cells by targeting the multilectin receptor DEC-205. Vaccine. 2007;25:4757–4766. doi:10.1016/j.vaccine.2007.04.029.
  • Yang L, Yang H, Rideout K, Cho T, Joo KI, Ziegler L, Elliot A, Walls A, Yu D, Baltimore D, et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol. 2008;26:326–334. doi:10.1038/nbt1390.
  • Hangalapura BN, Oosterhoff D, de Groot J, Boon L, Tuting T, van den Eertwegh AJ, Gerritsen WR, van Beusechem VW, Pereboev A, Curiel DT, et al. Potent antitumor immunity generated by a CD40-targeted adenoviral vaccine. Cancer Res. 2011;71:5827–5837. doi:10.1158/0008-5472.CAN-11-0804.
  • Thacker EE, Nakayama M, Smith BF, Bird RC, Muminova Z, Strong TV, Timares L, Korokhov N, O’Neill AM, de Gruijl TD, et al. A genetically engineered adenovirus vector targeted to CD40 mediates transduction of canine dendritic cells and promotes antigen-specific immune responses in vivo. Vaccine. 2009;27:7116–7124. doi:10.1016/j.vaccine.2009.09.055.
  • Korokhov N, de Gruijl TD, Aldrich WA, Triozzi PL, Banerjee PT, Gillies SD, Curiel TJ, Douglas JT, Scheper RJ, Curiel DT, et al. High efficiency transduction of dendritic cells by adenoviral vectors targeted to DC-SIGN. Cancer Biology & Therapy. 2005;4:289–294. doi:10.4161/cbt.4.3.1499.
  • Apostolopoulos V, Thalhammer T, Tzakos AG, Stojanovska L. Targeting antigens to dendritic cell receptors for vaccine development. Journal of Drug Delivery. 2013;2013:869718.
  • Cauwels A, Van Lint S, Garcin G, Bultinck J, Paul F, Gerlo S, Van der Heyden J, Bordat Y, Catteeuw D, De Cauwer L, et al. A safe and highly efficient tumor-targeted type I interferon immunotherapy depends on the tumor microenvironment. Oncoimmunology. 2018;7:e1398876. doi:10.1080/2162402X.2017.1398876.
  • Tel J, Aarntzen EH, Baba T, Schreibelt G, Schulte BM, Benitez-Ribas D, Boerman OC, Croockewit S, Oyen WJG, van Rossum M, et al. Natural human plasmacytoid dendritic cells induce antigen-specific T-cell responses in melanoma patients. Cancer Res. 2013;73:1063–1075. doi:10.1158/0008-5472.CAN-12-2583.
  • Schreibelt G, Bol KF, Westdorp H, Wimmers F, Aarntzen EH, Duiveman-de Boer T, van de Rakt MWMM, Scharenborg NM, de Boer AJ, Pots JM, et al. Effective Clinical Responses in Metastatic Melanoma Patients after Vaccination with Primary Myeloid Dendritic Cells. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2016;22:2155–2166. doi:10.1158/1078-0432.CCR-15-2205.
  • Chung DJ, Carvajal RD, Postow MA, Sharma S, Pronschinske KB, Shyer JA, Singh-Kandah S, Dickson MA, D’Angelo SP, Wolchok JD, et al. Langerhans-type dendritic cells electroporated with TRP-2 mRNA stimulate cellular immunity against melanoma: results of a phase I vaccine trial. Oncoimmunology. 2018;7:e1372081. doi:10.1080/2162402X.2017.1372081.
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. The New England Journal of Medicine. 2010;363:411–422. doi:10.1056/NEJMoa1001294.
  • Higano CS, Small EJ, Schellhammer P, Yasothan U, Gubernick S, Kirkpatrick P, Kantoff PW. Sipuleucel-T. Nat Rev Drug Discov. 2010;9:513–514. doi:10.1038/nrd3220.
  • Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2011;17:3520–3526. doi:10.1158/1078-0432.CCR-10-3126.
  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: oncolytic viruses for cancer therapy. Oncoimmunology. 2013;2:e24612. doi:10.4161/onci.24612.
  • Galluzzi L, Chan TA, Kroemer G, Wolchok JD, Lopez-Soto A. The hallmarks of successful anticancer immunotherapy. Science Translational Medicine. 2018;10.
  • Martins F, Sofiya L, Sykiotis GP, Lamine F, Maillard M, Fraga M, Shabafrouz K, Ribi C, Cairoli A, Guex-Crosier Y, et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nature Reviews Clinical Oncology. 2019;16:563–580. doi:10.1038/s41571-019-0218-0.
  • Hendriks D, Choi G, de Bruyn M, Wiersma VR, Bremer E. Antibody-Based Cancer Therapy: successful Agents and Novel Approaches. International Review of Cell and Molecular Biology. 2017;331:289–383.
  • de la Cruz-merino L, Chiesa M, Caballero R, Rojo F, Palazon N, Carrasco FH, et al. Breast Cancer Immunology and Immunotherapy: current Status and Future Perspectives. International Review of Cell and Molecular Biology. 2017;331:1–53.
  • Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nature Reviews Cancer. 2019;19:133–150. doi:10.1038/s41568-019-0116-x.
  • O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-based immunotherapy. Nature Reviews Clinical Oncology. 2019;16:151–167.DOI: 10.1038/s41571-018-0142-8.
  • Gardner JK, Mamotte CDS, Jackaman C, Nelson DJ. Modulation of dendritic cell and T cell cross-talk during aging: the potential role of checkpoint inhibitory molecules. Ageing Research Reviews. 2017;38:40–51. doi:10.1016/j.arr.2017.07.002.
  • Zhao Y, Qiao G, Wang X, Song Y, Zhou X, Jiang N, Zhou L, Huang H, Zhao J, Morse MA, et al. Combination of DC/CIK adoptive T cell immunotherapy with chemotherapy in advanced non-small-cell lung cancer (NSCLC) patients: a prospective patients’ preference-based study (PPPS). Clinical & Translational Oncology: Official Publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico. 2019;21:721–728. doi:10.1007/s12094-018-1968-3.
  • Turgeon G-A, Weickhardt A, Azad AA, Solomon B, Siva S. Radiotherapy and immunotherapy: a synergistic effect in cancer care. The Medical Journal of Australia. 2019;210:47–53. doi:10.5694/mja2.12046.
  • Liu Y, Bewersdorf JP, Stahl M, Zeidan AM. Immunotherapy in acute myeloid leukemia and myelodysplastic syndromes: the dawn of a new era?. Blood Reviews. 2019;34:67–83. doi:10.1016/j.blre.2018.12.001.
  • Kongsted P, Borch TH, Ellebaek E, Iversen TZ, Andersen R, Met Ö, Hansen M, Lindberg H, Sengeløv L, Svane IM, et al. Dendritic cell vaccination in combination with docetaxel for patients with metastatic castration-resistant prostate cancer: A randomized phase II study. Cytotherapy. 2017;19:500–513. doi:10.1016/j.jcyt.2017.01.007.
  • Hansen M. The role of dendritic cells in cancer. Mediators of Inflammation. 2017;39:307–316.
  • Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape. Trends Immunol. 2017;38:577–593. doi:10.1016/j.it.2017.05.006.
  • Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017;6:e1328341. doi:10.1080/2162402X.2017.1328341.
  • Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology. 2014;3:e27297. doi:10.4161/onci.27297.
  • Nimanong S, Ostroumov D, Wingerath J, Knocke S, Woller N, Gurlevik E, Falk CS, Manns MP, Kühnel F, Wirth TC, et al. CD40 Signaling Drives Potent Cellular Immune Responses in Heterologous Cancer Vaccinations. Cancer Res. 2017;77:1918–1926. doi:10.1158/0008-5472.CAN-16-2089.
  • Moreno Ayala MA, Gottardo MF, Imsen M, Asad AS, Bal de Kier JE, Casares N, Lasarte JJ, Seilicovich A, Candolfi M. Therapeutic blockade of Foxp3 in experimental breast cancer models. Breast Cancer Research and Treatment. 2017;166:393–405. doi:10.1007/s10549-017-4414-2.
  • Liu H, Chen L, Liu J, Meng H, Zhang R, Ma L, Wu L, Yu S, Shi F, Li Y, et al. Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Letters. 2017;411:182–190. doi:10.1016/j.canlet.2017.09.022.
  • Escriba-Garcia L, Alvarez-Fernandez C, Tellez-Gabriel M, Sierra J, Briones J. Dendritic cells combined with tumor cells and α-galactosylceramide induce a potent, therapeutic and NK-cell dependent antitumor immunity in B cell lymphoma. Journal of Translational Medicine. 2017;15:115. doi:10.1186/s12967-017-1219-3.
  • Heine A, Held SAE, Schulte-Schrepping J, Wolff JFA, Klee K, Ulas T, Schmacke NA, Daecke SN, Riethausen K, Schultze JL, et al. Generation and functional characterization of MDSC-like cells. Oncoimmunology. 2017;6:e1295203. doi:10.1080/2162402X.2017.1295203.
  • Vo M-C, Nguyen-Pham T-N, Lee H-J, Jaya Lakshmi T, Yang S, Jung S-H, Kim H-J, Lee -J-J. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget. 2017;8:27252–27262. doi:10.18632/oncotarget.15917.
  • Merry TL, Brooks AES, Masson SW, Adams SE, Jaiswal JK, Jamieson SMF, Shepherd PR. The CSF1 receptor inhibitor pexidartinib (PLX3397) reduces tissue macrophage levels without affecting glucose homeostasis in mice. International Journal of Obesity. 2019. doi:10.1038/s41366-019-0355-7.
  • Lee J-H, Chen TW, Hsu C-H, Yen Y-H, Yang JC, Cheng A-L, Sasaki S-I, Chiu L, Sugihara M, Ishizuka T, et al. A phase I study of pexidartinib, a colony-stimulating factor 1 receptor inhibitor, in Asian patients with advanced solid tumors. Investigational New Drugs. 2019. doi:10.1007/s10637-019-00745-z.
  • Dammeijer F, Lievense LA, Kaijen-Lambers ME, van Nimwegen M, Bezemer K, Hegmans JP, van Hall T, Hendriks RW, Aerts JG. Depletion of Tumor-Associated Macrophages with a CSF-1R Kinase Inhibitor Enhances Antitumor Immunity and Survival Induced by DC Immunotherapy. Cancer Immunology Research. 2017;5:535–546. doi:10.1158/2326-6066.CIR-16-0309.
  • Moreno Ayala MA, Gottardo MF, Gori MS, Nicola Candia AJ, Caruso C, De Laurentiis A, Imsen M, Klein S, Bal de Kier Joffé E, Salamone G, et al. Dual activation of Toll-like receptors 7 and 9 impairs the efficacy of antitumor vaccines in murine models of metastatic breast cancer. J Cancer Res Clin Oncol. 2017;143:1713–1732. doi:10.1007/s00432-017-2421-7.
  • Vacchelli E, Aranda F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology. 2014;3:e27878. doi:10.4161/onci.27878.
  • Galluzzi L, Kroemer G. Calreticulin and type I interferon: an unsuspected connection. Oncoimmunology. 2017;6:e1288334. doi:10.1080/2162402X.2017.1288334.
  • Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6:e1386829. doi:10.1080/2162402X.2017.1386829.
  • Antonios JP, Soto H, Everson RG, Moughon D, Orpilla JR, Shin NP, Sedighim S, Treger J, Odesa S, Tucker A, et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol. 2017;19:796–807. doi:10.1093/neuonc/now287.
  • Arab S, Kheshtchin N, Ajami M, Ashurpoor M, Safvati A, Namdar A, Mirzaei R, Mousavi Niri N, Jadidi-Niaragh F, Ghahremani MH, et al. Increased efficacy of a dendritic cell-based therapeutic cancer vaccine with adenosine receptor antagonist and CD73 inhibitor. Tumour Biol. 2017;39:1010428317695021. doi:10.1177/1010428317695021.
  • Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology. 2016;5:e1115641. doi:10.1080/2162402X.2015.1115641.
  • Pol J, Bloy N, Obrist F, Eggermont A, Galon J, Cremer I, Erbs P, Limacher J-M, Preville X, Zitvogel L, et al. Trial Watch:: oncolytic viruses for cancer therapy. Oncoimmunology. 2014;3:e28694. doi:10.4161/onci.28694.
  • Komorowski M, Tisonczyk J, Kolakowska A, Drozdz R, Kozbor D. Modulation of the Tumor Microenvironment by CXCR4 Antagonist-Armed Viral Oncotherapy Enhances the Antitumor Efficacy of Dendritic Cell Vaccines against Neuroblastoma in Syngeneic Mice. Viruses. 2018;10. doi: 10.3390/v10090455.
  • Stefanski HE, Jonart L, Goren E, Mule JJ, Blazar BR, Labrecque N. A novel approach to improve immune effector responses post transplant by restoration of CCL21 expression. PLoS One. 2018;13:e0193461. doi:10.1371/journal.pone.0193461.
  • Van Woensel M, Mathivet T, Wauthoz N, Rosiere R, Garg AD, Agostinis P, Mathieu V, Kiss R, Lefranc F, Boon L, et al. Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep. 2017;7:1217. doi:10.1038/s41598-017-01279-1.
  • Huang F, Wan J, Hao S, Deng X, Chen L, Ma L. TGF-β1-silenced leukemia cell-derived exosomes target dendritic cells to induce potent anti-leukemic immunity in a mouse model. Cancer Immunology, Immunotherapy: CII. 2017;66:1321–1331. doi:10.1007/s00262-017-2028-5.
  • Lu Z, Zuo B, Jing R, Gao X, Rao Q, Liu Z, Qi H, Guo H, Yin H. Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. Journal of Hepatology. 2017;67:739–748. doi:10.1016/j.jhep.2017.05.019.
  • Bryson PD, Han X, Truong N, Wang P. Breast cancer vaccines delivered by dendritic cell-targeted lentivectors induce potent antitumor immune responses and protect mice from mammary tumor growth. Vaccine. 2017;35:5842–5849. doi:10.1016/j.vaccine.2017.09.017.
  • Liu L, Wang Y, Miao L, Liu Q, Musetti S, Li J, Huang L. Combination Immunotherapy of MUC1 mRNA Nano-vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol Ther. 2018;26:45–55. doi:10.1016/j.ymthe.2017.10.020.
  • Oberli MA, Reichmuth AM, Dorkin JR, Mitchell MJ, Fenton OS, Jaklenec A, Anderson DG, Langer R, Blankschtein D. Lipid Nanoparticle Assisted mRNA Delivery for Potent Cancer Immunotherapy. Nano Letters. 2017;17:1326–1335. doi:10.1021/acs.nanolett.6b03329.
  • Wennhold K, Weber TM, Klein-Gonzalez N, Thelen M, Garcia-Marquez M, Chakupurakal G, Fiedler A, Schlösser HA, Fischer R, Theurich S, et al. CD40-activated B cells induce anti-tumor immunity in vivo. Oncotarget. 2017;8:27740–27753. doi:10.18632/oncotarget.7720.
  • Wculek SK, Amores-Iniesta J, Conde-Garrosa R, Khouili SC, Melero I, Sancho D. Effective cancer immunotherapy by natural mouse conventional type-1 dendritic cells bearing dead tumor antigen. J Immunother Cancer. 2019;7:100. doi: 10.1186/s40425-019-0565-5.
  • Yang M, Li C, Zhu S, Cao L, Kroemer G, Zeh H, Tang D, Kang R. TFAM is a novel mediator of immunogenic cancer cell death. Oncoimmunology. 2018;7:e1431086. doi:10.1080/2162402X.2018.1431086.
  • Castoldi F, Vacchelli E, Zitvogel L, Maiuri MC, Pietrocola F, Kroemer G. Systemic autophagy in the therapeutic response to anthracycline-based chemotherapy. Oncoimmunology. 2019;8:e1498285. doi: 10.1080/2162402X.2018.1498285.
  • Roselli E, Araya P, Nunez NG, Gatti G, Graziano F, Sedlik C, Benaroch P, Piaggio E, Maccioni M. TLR3 Activation of Intratumoral CD103+ Dendritic Cells Modifies the Tumor Infiltrate Conferring Anti-tumor Immunity. Frontiers in Immunology. 2019;10:503. doi:10.3389/fimmu.2019.00503.
  • Cancel J-C, Crozat K, Dalod M, Mattiuz R. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?. Frontiers in Immunology. 2019;10:9. doi:10.3389/fimmu.2019.00009.
  • Huang F-Y, Lei J, Sun Y, Yan F, Chen B, Zhang L, Lu Z, Cao R, Lin -Y-Y, Wang -C-C, et al. Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes. Oncoimmunology. 2018;7:e1446720. doi:10.1080/2162402X.2018.1446720.
  • Bottcher JP, Reis ESC. The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity. Trends in Cancer. 2018;4:784–792. doi:10.1016/j.trecan.2018.09.001.
  • Hotblack A, Holler A, Piapi A, Ward S, Stauss HJ, Bennett CL. Tumor-Resident Dendritic Cells and Macrophages Modulate the Accumulation of TCR-Engineered T Cells in Melanoma. Mol Ther. 2018;26:1471–1481. doi:10.1016/j.ymthe.2018.03.011.
  • Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, Weilbaecher KN, Hawkins WG, Ma C, Fields RC, et al. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun. 2018;9:1250. doi:10.1038/s41467-018-03600-6.
  • Giglio P, Gagliardi M, Tumino N, Antunes F, SmailiSu SJ, Cotella D, Santoro C, Bernardini R, Mattei M, Piacentini M, et al. PKR and GCN2 stress kinases promote an ER stress-independent eIF2alpha phosphorylation responsible for calreticulin exposure in melanoma cells. Oncoimmunology. 2018;7:e1466765. doi:10.1080/2162402X.2018.1466765.
  • Bottcher JP, Bonavita E, Chakravarty P, Blees H, Cabeza-Cabrerizo M, Sammicheli S, Rogers NC, Sahai E, Zelenay S, Reis E Sousa C, et al. NK Cells Stimulate Recruitment of cDC1 into the Tumor Microenvironment Promoting Cancer Immune Control. Cell. 2018;172:1022–37 e14. doi:10.1016/j.cell.2018.01.004.
  • Sanchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Perez-Gracia JL, Sanchez-Arraez A, Sancho D, Melero I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Annals of Oncology: Official Journal of the European Society for Medical Oncology. 2017;28:xii44–xii55. doi:10.1093/annonc/mdx237.
  • Santegoets SJ, Stam AG, Lougheed SM, Gall H, Jooss K, Sacks N, Hege K, Lowy I, Scheper RJ, Gerritsen WR, et al. Myeloid derived suppressor and dendritic cell subsets are related to clinical outcome in prostate cancer patients treated with prostate GVAX and ipilimumab. J Immunother Cancer. 2014;2:31. doi:10.1186/s40425-014-0031-3.
  • Bezu L, Sauvat A, Humeau J, Leduc M, Kepp O, Kroemer G. eIF2α phosphorylation: A hallmark of immunogenic cell death. Oncoimmunology. 2018;7:e1431089. doi:10.1080/2162402X.2018.1431089.
  • Wang L, Fan J, Ye W, Han J, Zhang Y, Zhao L, Duan J, Yin D, Yi Y. The Expression of ILT4 in Myeloid Dendritic Cells in Patients with Hepatocellular Carcinoma. Immunological Investigations. 2019:1–15. doi: 10.1080/08820139.2019.1571507.
  • Rajendran M, Looney S, Singh N, Elashiry M, Meghil MM, El-Awady AR, Tawfik O, Susin C, Arce RM, Cutler CW, et al. Systemic Antibiotic Therapy Reduces Circulating Inflammatory Dendritic Cells and Treg-Th17 Plasticity in Periodontitis. J Immunol. 2019;202:2690–2699. doi:10.4049/jimmunol.1900046.
  • Stankovic B, Bjorhovde HAK, Skarshaug R, Aamodt H, Frafjord A, Muller E, Hammarström C, Beraki K, Bækkevold ES, Woldbæk PR, et al. Immune Cell Composition in Human Non-small Cell Lung Cancer. Frontiers in Immunology. 2019;9:3101. doi:10.3389/fimmu.2018.03101.
  • Ventura A, Vassall A, Robinson E, Filler R, Hanlon D, Meeth K, Ezaldein H, Girardi M, Sobolev O, Bosenberg MW, et al. Extracorporeal Photochemotherapy Drives Monocyte-to-Dendritic Cell Maturation to Induce Anticancer Immunity. Cancer Res. 2018;78:4045–4058. doi:10.1158/0008-5472.CAN-18-0171.
  • Wei XX, Perry J, Chang E, Zhang L, Hiatt RA, Ryan CJ, Small EJ, Fong L. Clinical Variables Associated With Overall Survival in Metastatic Castration-Resistant Prostate Cancer Patients Treated With Sipuleucel-T Immunotherapy. Clinical Genitourinary Cancer. 2018;16:184–90 e2. doi:10.1016/j.clgc.2017.12.004.
  • Hijikata Y, Okazaki T, Tanaka Y, Murahashi M, Yamada Y, Yamada K, Takahashi A, Inoue H, Kishimoto J, Nakanishi Y, Oda Y. A phase I clinical trial of RNF43 peptide-related immune cell therapy combined with low-dose cyclophosphamide in patients with advanced solid tumors. PLoS One. 2018;13:e0187878. doi: 10.1371/journal.pone.0187878.
  • Yanagisawa R, Koizumi T, Koya T, Sano K, Koido S, Nagai K, Kobayashi M, Okamoto M, Sugiyama H, Shimodaira S, et al. WT1-pulsed Dendritic Cell Vaccine Combined with Chemotherapy for Resected Pancreatic Cancer in a Phase I Study. Anticancer Research. 2018;38:2217–2225. doi:10.21873/anticanres.12464.
  • Ogasawara M, Miyashita M, Ota S. Vaccination of Urological Cancer Patients With WT1 Peptide-Pulsed Dendritic Cells in Combination With Molecular Targeted Therapy or Conventional Chemotherapy Induces Immunological and Clinical Responses. Ther Apher Dial. 2018;22:266–277. doi:10.1111/1744-9987.12694.
  • Antonarakis ES, Kibel AS, Yu EY, Karsh LI, Elfiky A, Shore ND, Vogelzang NJ, Corman JM, Millard FE, Maher JC, et al. Sequencing of Sipuleucel-T and Androgen Deprivation Therapy in Men with Hormone-Sensitive Biochemically Recurrent Prostate Cancer: A Phase II Randomized Trial. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2017;23:2451–2459. doi:10.1158/1078-0432.CCR-16-1780.
  • Oostvogels R, Kneppers E, Minnema MC, Doorn RC, Franssen LE, Aarts T, Emmelot ME, Spierings E, Slaper-Cortenbach I, Westinga K, et al. Efficacy of host-dendritic cell vaccinations with or without minor histocompatibility antigen loading, combined with donor lymphocyte infusion in multiple myeloma patients. Bone Marrow Transplant. 2017;52:228–237. doi:10.1038/bmt.2016.250.
  • Davis ID, Quirk J, Morris L, Seddon L, Tai TY, Whitty G, Cavicchiolo T, Ebert L, Jackson H, Browning J, et al. A pilot study of peripheral blood BDCA-1 (CD1c) positive dendritic cells pulsed with NY-ESO-1 ISCOMATRIX™ adjuvant.. Immunotherapy. 2017;9:249–259. doi:10.2217/imt-2016-0132.
  • Wimmers F, de Haas N, Scholzen A, Schreibelt G, Simonetti E, Eleveld MJ, Brouwers HMLM, Beldhuis-Valkis M, Joosten I, de Jonge MI, et al. Monitoring of dynamic changes in Keyhole Limpet Hemocyanin (KLH)-specific B cells in KLH-vaccinated cancer patients. Sci Rep. 2017;7:43486. doi:10.1038/srep43486.
  • Mehrotra S, Britten CD, Chin S, Garrett-Mayer E, Cloud CA, Li M, Scurti G, Salem ML, Nelson MH, Thomas MB, et al. Vaccination with poly(IC:LC) and peptide-pulsed autologous dendritic cells in patients with pancreatic cancer. J Hematol Oncol. 2017;10:82. doi:10.1186/s13045-017-0459-2.
  • Franssen LE, Roeven MWH, Hobo W, Doorn R, Oostvogels R, Falkenburg JHF, van de Donk NW, Kester MGD, Fredrix H, Westinga K, et al. A phase I/II minor histocompatibility antigen-loaded dendritic cell vaccination trial to safely improve the efficacy of donor lymphocyte infusions in myeloma. Bone Marrow Transplant. 2017;52:1378–1383. doi:10.1038/bmt.2017.118.
  • Shen J, Wang L-F, Zou Z-Y, Kong -W-W, Yan J, Meng F-Y, Chen F-J, Du J, Shao J, Xu Q-P, et al. Phase I clinical study of personalized peptide vaccination combined with radiotherapy for advanced hepatocellular carcinoma. World J Gastroenterol. 2017;23:5395–5404. doi:10.3748/wjg.v23.i29.5395.
  • Lowenfeld L, Mick R, Datta J, Xu S, Fitzpatrick E, Fisher CS, Fox KR, DeMichele A, Zhang PJ, Weinstein SP, et al. Dendritic Cell Vaccination Enhances Immune Responses and Induces Regression of HER2 pos DCIS Independent of Route: results of Randomized Selection Design Trial. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2017;23:2961–2971. doi:10.1158/1078-0432.CCR-16-1924.
  • Fukuda K, Funakoshi T, Sakurai T, Nakamura Y, Mori M, Tanese K, Tanikawa A, Taguchi J, Fujita T, Okamoto M, et al. Peptide-pulsed dendritic cell vaccine in combination with carboplatin and paclitaxel chemotherapy for stage IV melanoma. Melanoma Res. 2017;27:326–334. doi:10.1097/CMR.0000000000000342.
  • Saka H, Kitagawa C, Ichinose Y, Takenoyama M, Ibata H, Kato T, Takami K, Yamashita M, Maeda T, Takeo S, et al. A randomized phase II study to assess the effect of adjuvant immunotherapy using α-GalCer-pulsed dendritic cells in the patients with completely resected stage II–IIIA non-small cell lung cancer: study protocol for a randomized controlled trial. Trials. 2017;18:429. doi:10.1186/s13063-017-2103-4.
  • Gasser O, Sharples KJ, Barrow C, Williams GM, Bauer E, Wood CE, Mester B, Dzhelali M, Caygill G, Jones J, et al. A phase I vaccination study with dendritic cells loaded with NY-ESO-1 and α-galactosylceramide: induction of polyfunctional T cells in high-risk melanoma patients. Cancer Immunology, Immunotherapy: CII. 2018;67:285–298. doi:10.1007/s00262-017-2085-9.
  • Ge C, Li R, Song H, Geng T, Yang J, Tan Q, Song L, Wang Y, Xue Y, Li Z, et al. Phase I clinical trial of a novel autologous modified-DC vaccine in patients with resected NSCLC. BMC Cancer. 2017;17:884. doi:10.1186/s12885-017-3859-3.
  • Yao Y, Luo F, Tang C, Chen D, Qin Z, Hua W, Xu M, Zhong P, Yu S, Chen D, et al. Molecular subgroups and B7-H4 expression levels predict responses to dendritic cell vaccines in glioblastoma: an exploratory randomized phase II clinical trial. Cancer Immunology, Immunotherapy: CII. 2018;67:1777–1788. doi:10.1007/s00262-018-2232-y.
  • Zhang W, Lu X, Cui P, Piao C, Xiao M, Liu X, Wang Y, Wu X, Liu J, Yang L, et al. Phase I/II clinical trial of a Wilms’ tumor 1-targeted dendritic cell vaccination-based immunotherapy in patients with advanced cancer. Cancer Immunology, Immunotherapy: CII. 2019;68:121–130. doi:10.1007/s00262-018-2257-2.
  • Geskin LJ, Damiano JJ, Patrone CC, Butterfield LH, Kirkwood JM, Falo LD. Three antigen-loading methods in dendritic cell vaccines for metastatic melanoma. Melanoma Res. 2018;28:211–221. doi:10.1097/CMR.0000000000000441.
  • Palma M, Hansson L, Mulder TA, Adamson L, Nasman-Glaser B, Eriksson I, Heimersson K, Ryblom H, Mozaffari F, Svensson A, et al. Lenalidomide as immune adjuvant to a dendritic cell vaccine in chronic lymphocytic leukemia patients. Eur J Haematol. 2018;101:68–77. doi:10.1111/ejh.13065.
  • Jung S-H, Lee H-J, Lee Y-K, Yang D-H, Kim H-J, Rhee JH, Emmrich F, Lee -J-J. A phase I clinical study of autologous dendritic cell therapy in patients with relapsed or refractory multiple myeloma. Oncotarget. 2017;8:41538–41548. doi:10.18632/oncotarget.14582.
  • Inoges S, Tejada S, de Cerio AL, Gallego Perez-Larraya J, Espinos J, Idoate MA, Domínguez PD, de Eulate RG, Aristu J, Bendandi M, et al. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. Journal of Translational Medicine. 2017;15:104. doi:10.1186/s12967-017-1202-z.
  • Miwa S, Nishida H, Tanzawa Y, Takeuchi A, Hayashi K, Yamamoto N, Mizukoshi E, Nakamoto Y, Kaneko S, Tsuchiya H, et al. Phase 1/2 study of immunotherapy with dendritic cells pulsed with autologous tumor lysate in patients with refractory bone and soft tissue sarcoma. Cancer. 2017;123:1576–1584. doi:10.1002/cncr.30606.
  • Herbert GS, Vreeland TJ, Clifton GT, Greene JM, Jackson DO, Hardin MO, Hale DF, Berry JS, Nichol P, Yin S, et al. Initial phase I/IIa trial results of an autologous tumor lysate, particle-loaded, dendritic cell (TLPLDC) vaccine in patients with solid tumors. Vaccine. 2018;36:3247–3253. doi:10.1016/j.vaccine.2018.04.078.
  • Anguille S, Van de Velde AL, Smits EL, Van Tendeloo VF, Juliusson G, Cools N, Nijs G, Stein B, Lion E, Van Driessche A, et al. Dendritic cell vaccination as postremission treatment to prevent or delay relapse in acute myeloid leukemia. Blood. 2017;130:1713–1721. doi:10.1182/blood-2017-04-780155.
  • Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, Norberg P, Xie W, Herndon JE, Healy P, et al. Long-term Survival in Glioblastoma with Cytomegalovirus pp65-Targeted Vaccination. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2017;23:1898–1909. doi:10.1158/1078-0432.CCR-16-2057.
  • Khoury HJ, Collins RH Jr., Blum W, Stiff PS, Elias L, Lebkowski JS, Reddy A, Nishimoto KP, Sen D, Wirth ED, et al. Immune responses and long-term disease recurrence status after telomerase-based dendritic cell immunotherapy in patients with acute myeloid leukemia. Cancer. 2017;123:3061–3072. doi:10.1002/cncr.30696.
  • Reap EA, Suryadevara CM, Batich KA, Sanchez-Perez L, Archer GE, Schmittling RJ, Norberg PK, Herndon JE, Healy P, Congdon KL, et al. Dendritic Cells Enhance Polyfunctionality of Adoptively Transferred T Cells That Target Cytomegalovirus in Glioblastoma. Cancer Res. 2018;78:256–264. doi:10.1158/0008-5472.CAN-17-0469.
  • Sonpavde G, McMannis JD, Bai Y, Seethammagari MR, Bull JMC, Hawkins V, Dancsak TK, Lapteva N, Levitt JM, Moseley A, et al. Phase I trial of antigen-targeted autologous dendritic cell-based vaccine with in vivo activation of inducible CD40 for advanced prostate cancer. Cancer Immunology, Immunotherapy: CII. 2017;66:1345–1357. doi:10.1007/s00262-017-2027-6.
  • Lee JM, Lee M-H, Garon E, Goldman JW, Salehi-Rad R, Baratelli FE, Schaue D, Wang G, Rosen F, Yanagawa J, et al. Phase I Trial of Intratumoral Injection of CCL21 Gene–modified Dendritic Cells in Lung Cancer Elicits Tumor-Specific Immune Responses and CD8 + T-cell Infiltration. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2017;23:4556–4568. doi:10.1158/1078-0432.CCR-16-2821.
  • Laurell A, Lonnemark M, Brekkan E, Magnusson A, Tolf A, Wallgren AC, Andersson B, Adamson L, Kiessling R, Karlsson-Parra A, et al. Intratumorally injected pro-inflammatory allogeneic dendritic cells as immune enhancers: a first-in-human study in unfavourable risk patients with metastatic renal cell carcinoma. J Immunother Cancer. 2017;5:52. doi:10.1186/s40425-017-0255-0.
  • van de Loosdrecht AA, van Wetering S, Santegoets S, Singh SK, Eeltink CM, den Hartog Y, Koppes M, Kaspers J, Ossenkoppele GJ, Kruisbeek AM, et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunology, Immunotherapy: CII. 2018;67:1505–1518. doi:10.1007/s00262-018-2198-9.
  • Chen C-L, Pan Q-Z, Weng D-S, Xie C-M, Zhao -J-J, Chen M-S, Peng R-Q, Li -D-D, Wang Y, Tang Y, et al. Safety and activity of PD-1 blockade-activated DC-CIK cells in patients with advanced solid tumors. Oncoimmunology. 2018;7:e1417721. doi:10.1080/2162402X.2017.1417721.
  • Jiang N, Qiao G, Wang X, Morse MA, Gwin WR, Zhou L, Song Y, Zhao Y, Chen F, Zhou X, et al. Dendritic Cell/Cytokine-Induced Killer Cell Immunotherapy Combined with S-1 in Patients with Advanced Pancreatic Cancer: A Prospective Study. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2017;23:5066–5073. doi:10.1158/1078-0432.CCR-17-0492.
  • Zhang B, Wu Q, Zhou YL, Guo X, Ge J, Fu J. Immune-related adverse events from combination immunotherapy in cancer patients: A comprehensive meta-analysis of randomized controlled trials. International Immunopharmacology. 2018;63:292–298. doi:10.1016/j.intimp.2018.08.014.
  • Mehta RS, Rezvani K. Chimeric Antigen Receptor Expressing Natural Killer Cells for the Immunotherapy of Cancer. Frontiers in Immunology. 2018;9:283. doi:10.3389/fimmu.2018.00283.
  • Klener Jr P Jr., Etrych T, Klener P. Biological Therapy of Hematologic Malignancies: toward a Chemotherapy- free Era. Current Medicinal Chemistry. 2019;26:1002–1018. doi:10.2174/0929867324666171006144725.
  • Berraondo P, Sanmamed MF, Ochoa MC, Etxeberria I, Aznar MA, Perez-Gracia JL, Rodríguez-Ruiz ME, Ponz-Sarvise M, Castañón E, Melero I, et al. Cytokines in clinical cancer immunotherapy. British Journal of Cancer. 2019;120:6–15. doi:10.1038/s41416-018-0328-y.
  • Vonderheide RH. The Immune Revolution: A Case for Priming, Not Checkpoint. Cancer Cell. 2018;33:563–569. doi:10.1016/j.ccell.2018.03.008.
  • Marin-Acevedo JA, Soyano AE, Dholaria B, Knutson KL, Lou Y. Cancer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol. 2018;11:8. doi:10.1186/s13045-017-0552-6.
  • Mangsbo SM, Fletcher EAK, van Maren WWC, Redeker A, Cordfunke RA, Dillmann I, Dinkelaar J, Ouchaou K, Codee JDC, van der Marel GA, et al. Linking T cell epitopes to a common linear B cell epitope: A targeting and adjuvant strategy to improve T cell responses. Molecular Immunology. 2018;93:115–124. doi:10.1016/j.molimm.2017.11.004.
  • Brooks N, Hsu J, Esparon S, Pouniotis D, Pietersz GA. Immunogenicity of a Tripartite Cell Penetrating Peptide Containing a MUC1 Variable Number of Tandem Repeat (VNTR) and A T Helper Epitope. Molecules. 2018;23. doi: 10.3390/molecules23092233.
  • Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, et al. Trial Watch: immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology. 2015;4:e1008866. doi:10.1080/2162402X.2015.1008866.
  • Hwang WL, Pike LRG, Royce TJ, Mahal BA, Loeffler JS. Safety of combining radiotherapy with immune-checkpoint inhibition. Nature Reviews Clinical Oncology. 2018;15:477–494. doi:10.1038/s41571-018-0046-7.
  • Taylor J, Pavlick D, Yoshimi A, Marcelus C, Chung SS, Hechtman JF, Benayed R, Cocco E, Durham BH, Bitner L, et al. Oncogenic TRK fusions are amenable to inhibition in hematologic malignancies. The Journal of Clinical Investigation. 2018;128:3819–3825. doi:10.1172/JCI120787.
  • Dummer R, Ramelyte E, Schindler S, Thurigen O, Levesque MP, Koelblinger P. MEK inhibition and immune responses in advanced melanoma. Oncoimmunology. 2017;6:e1335843. doi:10.1080/2162402X.2017.1335843.
  • Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anti-cancer Agents in Medicinal Chemistry. 2016;16:101–107. doi:10.2174/1871520615666150824153523.
  • Lee S, Son B, Park G, Kim H, Kang H, Jeon J, Youn H, Youn B. Immunogenic effect of hyperthermia on enhancing radiotherapeutic efficacy. International Journal of Molecular Sciences. 2018:19. doi: 10.3390/ijms19092795.
  • Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Vandenberk L, Koks C, Verschuere T, Boon L, et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Science Translational Medicine. 2016;8:328ra27. doi:10.1126/scitranslmed.aae0105.
  • Garg AD, Vandenberk L, Van Woensel M, Belmans J, Schaaf M, Boon L, De Vleeschouwer S, Agostinis P. Preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology. 2017;6:e1295903. doi:10.1080/2162402X.2017.1295903.
  • Adams S, Gatti-Mays ME, Kalinsky K, Korde LA, Sharon E, Amiri-Kordestani L, Bear H, McArthur HL, Frank E, Perlmutter J, et al. Current Landscape of Immunotherapy in Breast Cancer: A Review. JAMA Oncol. 2019;5:1205. doi:10.1001/jamaoncol.2018.7147.
  • Le QT, Colevas AD, O’Sullivan B, Lee AWM, Lee N, Ma B, Siu LL, Waldron J, Lim C-M, Riaz N, et al. Current Treatment Landscape of Nasopharyngeal Carcinoma and Potential Trials Evaluating the Value of Immunotherapy. J Natl Cancer Inst. 2019;111:655–663. doi:10.1093/jnci/djz044.
  • Xiao Y, Ma D, Zhao S, Suo C, Shi J, Xue M-Z, Ruan M, Wang H, Zhao J, Li Q, et al. Multi-omics profiling reveals distinct microenvironment characterization and suggests immune escape mechanisms of triple-negative breast cancer. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2019;25:5002–5014. doi:10.1158/1078-0432.CCR-18-3524.
  • Kong BY, Bolton H, Kim JW, Silveira PA, Fromm PD, Clark GJ. On the Other Side: manipulating the Immune Checkpoint Landscape of Dendritic Cells to Enhance Cancer Immunotherapy. Frontiers in Oncology. 2019;9:50. doi:10.3389/fonc.2019.00050.
  • Vitale I, Sistigu A, Manic G, Rudqvist N-P, Trajanoski Z, Galluzzi L. Mutational and Antigenic Landscape in Tumor Progression and Cancer Immunotherapy. Trends Cell Biol. 2019;29:396–416. doi:10.1016/j.tcb.2019.01.003.
  • Jiang N, Schonnesen AA, Ma K-Y. Ushering in Integrated T Cell Repertoire Profiling in Cancer. Trends in Cancer. 2019;5:85–94. doi:10.1016/j.trecan.2018.11.005.
  • Pai CS, Huang JT, Lu X, Simons DM, Park C, Chang A, Tamaki W, Liu E, Roybal KT, Seagal J, et al. Clonal Deletion of Tumor-Specific T Cells by Interferon-γ Confers Therapeutic Resistance to Combination Immune Checkpoint Blockade. Immunity. 2019;50:477–92 e8. doi:10.1016/j.immuni.2019.01.006.
  • Nadal E, Massuti B, Domine M, Garcia-Campelo R, Cobo M, Felip E. Immunotherapy with checkpoint inhibitors in non-small cell lung cancer: insights from long-term survivors. Cancer Immunology, Immunotherapy: CII. 2019;68:341–352. doi:10.1007/s00262-019-02310-2.
  • Camidge DR, Doebele RC, Kerr KM. Comparing and contrasting predictive biomarkers for immunotherapy and targeted therapy of NSCLC. Nature Reviews Clinical Oncology. 2019;16:341–355. doi:10.1038/s41571-019-0173-9.
  • Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, Heth JA, Salacz M, Taylor S, D’Andre SD, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. Journal of Translational Medicine. 2018;16:142. doi:10.1186/s12967-018-1507-6.
  • Gulley JL, Mulders P, Albers P, Banchereau J, Bolla M, Pantel K, Powles T. Perspectives on sipuleucel-T: its role in the prostate cancer treatment paradigm. Oncoimmunology. 2016;5:e1107698. doi:10.1080/2162402X.2015.1107698.
  • Anselmo da Costa I, Stenzl A, Bedke J. Inmunotherapy in prostate cancer. Archivos Espanoles De Urologia. 2019;72:211–222.
  • DeMaria PJ, Bilusic M. Cancer Vaccines. hematology/oncology Clinics of North America. 2019;33:199–214. doi:10.1016/j.hoc.2018.12.001.
  • Bates JP, Derakhshandeh R, Jones L, Webb TJ. Mechanisms of immune evasion in breast cancer. BMC Cancer. 2018;18:556. doi:10.1186/s12885-018-4441-3.
  • Vitale LA, Thomas LJ, He L-Z, O’Neill T, Widger J, Crocker A, Sundarapandiyan K, Storey JR, Forsberg EM, Weidlick J, et al. Development of CDX-1140, an agonist CD40 antibody for cancer immunotherapy. Cancer Immunology, Immunotherapy: CII. 2019;68:233–245. doi:10.1007/s00262-018-2267-0.
  • Pan L, Shang N, Shangguan J, Figini M, Xing W, Wang B, Sun C, Yang J, Zhang Y, Hu S, et al. Magnetic resonance imaging monitoring therapeutic response to dendritic cell vaccine in murine orthotopic pancreatic cancer models. American Journal of Cancer Research. 2019;9:562–573.
  • Leeman H, Kaminska E, Green D, Bodman-Smith M, Gravett A, Bodman-Smith K, Copier J, Coulton G, Fusi A, Dalgleish AG, et al. Serum Apolipoprotein E and Other Inflammatory Markers Can Identify Non-Responding Patients to a Dendritic Cell Vaccine. Translational Oncology. 2019;12:397–403. doi:10.1016/j.tranon.2018.11.002.
  • Ni M, Hoffmann J-M, Schmitt M, Schmitt A. Progress of dendritic cell-based cancer vaccines for patients with hematological malignancies. Expert Opinion on Biological Therapy. 2016;16:1113–1123. doi:10.1080/14712598.2016.1196181.
  • Hsu SC, Lu LC, Chan KY, Huang CH, Cheng SL, Chan YS, Yang YS, Lai YT, Yao CL. Large-scale production and directed induction of functional dendritic cells ex vivo from serum-free expanded human hematopoietic stem cells. Cytotherapy. 2019;21:755–768. doi:10.1016/j.jcyt.2019.04.059.
  • Fennemann FL, de Vries IJM, Figdor CG, Verdoes M. Attacking Tumors From All Sides: personalized Multiplex Vaccines to Tackle Intratumor Heterogeneity. Frontiers in Immunology. 2019;10:824. doi:10.3389/fimmu.2019.00824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.