1,711
Views
10
CrossRef citations to date
0
Altmetric
Original Research

Anti-tumoral potential of a human granulysin-based, CEA-targeted cytolytic immunotoxin

, , , , , , , , , , & show all
Article: 1641392 | Received 19 Mar 2019, Accepted 03 Jul 2019, Published online: 22 Jul 2019

References

  • Peña SV, Hanson DA, Carr BA, Goralski TJ, Krensky AM. Processing, subcellular localization, and function of 519 (granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins. J Immunol. 1997;158:1–11.
  • Clayberger C, Finn MW, Wang T, Saini R, Wilson C, Barr VA, Sabatino M, Castiello L, Stroncek D, Krensky AM. 15 kDa granulysin causes differentiation of monocytes to dendritic cells but lacks cytotoxic activity. J Immunol. 2012;188:6119–6126. doi:10.4049/jimmunol.1200570.
  • Wei H, Lin L, Wang C, Lee Y, Chen Y, Antimicrobial LY. Properties of an immunomodulator – 15 kDa human granulysin. PLoS One. 2016;11:e0156321. doi:10.1371/journal.pone.0156321.
  • Lettau M, Dietz M, Dohmen K, Leippe M, Kabelitz D, Janssen O. Granulysin species segregate to different lysosome-related effector vesicles (LREV) and get mobilized by either classical or non-classical degranulation. Mol Immunol. 2019;107:44–53. doi:10.1016/j.molimm.2018.12.031.
  • Stenger S, Hanson DA, Teitelbaum R, Dewan P, Niazi KR, Froelich CJ, Ganz T, Thoma-Uszynski S, Melián A, Bogdan C, et al. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science. 1998;282:121–125. doi:10.1126/science.282.5386.121.
  • Dotiwala F, Mulik S, Polidoro R, Ansara J, Burleigh B, Walch M, Gazzinelli RT, Lieberman J. Killer lymphocytes use granulysin, perforin and granzymes to kill intracellular parasites. Nature Med. 2016;22:210–216. doi:10.1038/nm.4023.
  • Walch M, Dotiwala F, Mulik S, Thiery J, Kirchhausen T, Clayberger C, Krensky AM, Martinvalet D, Lieberman J. Cytotoxic cells kill intracellular bacteria through granulysin-mediated delivery of granzymes. Cell. 2014;157:1309–1323. doi:10.1016/j.cell.2014.03.040.
  • Aporta A, Catalán E, Galán-Malo P, Ramírez-Labrada A, Pérez M, Azaceta G, Palomera L, Naval J, Marzo I, Pardo J, et al. Granulysin induces apoptotic cell death and cleavage of the autophagy regulator Atg5 in human hematological tumors. Biochem Pharmacol. 2014;87:410–423. doi:10.1016/j.bcp.2013.10.001.
  • Gamen S, Hanson DA, Kaspar A, Naval J, Krensky AM, Anel A. Granulysin-induced apoptosis. I. Involvement of at least two distinct pathways. J Immunol. 1998;161:1758–1764.
  • Pardo J, Pérez-Galán P, Gamen S, Marzo I, Monleón I, Kaspar AA, Susín SA, Kroemer G, Krensky AM, Naval J, Anel A. A role of the mitochondrial apoptosis-inducing factor (AIF) in granulysin-induced apoptosis. J Immunol. 2001;167:1222–1229. doi:10.4049/jimmunol.167.3.1222.
  • Al-Wasaby S, de Miguel D, Aporta A, Naval J, Conde B, Martínez-Lostao L, Anel A. In vivo potential of recombinant granulysin against human tumors. OncoImmunol. 2015;4:e1036213. doi:10.1080/2162402X.2015.1036213.
  • Martinez-Lostao L, de Miguel D, Al-Wasaby S, Gallego-Lleyda A, Anel A. Death ligands and granulysin: mechanisms of tumor cell death induction and therapeutic opportunities. Immunotherapy. 2015;7:883–892. doi:10.2217/imt.15.56.
  • Pastan I, Hassan R, Fitzgerald D, Kreitman R. Immunotoxin therapy of cancer. Naure Rev Cancer. 2006;6:559–565. doi:10.1038/nrc1891.
  • Chowdhury P, Viner J, Beers R, Pastan I. Isolation of a high-affinity stable single-chain Fv specific for mesothelin from DNA-immunized mice by phage display and construction of a recombinant immunotoxin with anti-tumor activity. Proc Natl Acad Sci USA. 1998;95:669–674. doi:10.1073/pnas.95.2.669.
  • Deckert P. Current constructs and targets in clinical development for antibody-based cancer therapy. Curr Drug Targets. 2009;10:158–175. doi:10.2174/138945009787354502.
  • Sanz L, Kristensen P, Blanco B, Facteau S, Russell S, Winter G, Alvarez-Vallina L. Single-chain antibody-based gene therapy: inhibition of tumor growth by in situ production of phage-derived human antibody fragments blocking functionally active sites of cell-associated matrices. Gene Ther. 2002;9:1049–1053. doi:10.1038/sj.gt.3301725.
  • Kreitman R, Stetler-Stevenso M, Jaffe E, Conlon K, Steinberg S, Wilson W, Waldmann TA, Pastan I. Complete remissions of adult T-cell leukemia with anti-CD25 recombinant immunotoxin LMB-2 and chemotherapy to block immunogenicity. Clin Cancer Res. 2016;22:310–318. doi:10.1158/1078-0432.CCR-15-1412.
  • Kreitman R, Tallman M, Robak T, Coutre S, Wilson W, Stetler-Stevenson M, Fitzgerald DJ, Lechleider R, Pastan I. Phase I trial of anti-CD22 recombinant immunotoxin moxetumomab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. J Clin Oncol. 2012;30:1822–1828. doi:10.1200/JCO.2011.38.1756.
  • Liu W, Onda M, Lee B, Kreitman R, Hassan R, Xiang L, Pastan I. Recombinant immunotoxin engineered for low immunogenicity and antigenicity by identifying and silencing human B-cell epitopes. Proc Natl Acad Sci USA. 2012;109:11782–11787.
  • Tomé-Amat J, Olombrada M, Ruiz-de-la-Herrán J, Pérez-Gómez E, Andradas C, Sánchez C, Martínez L, Martínez-del-Pozo A, Gavilanes JG, Lacadena J. Efficient in vivo antitumor effect of an immunotoxin based on ribotoxin α-sarcin in nude mice bearing human colorectal cancer xenografts. SpringerPlus. 2015;4:168. doi:10.1186/s40064-015-0943-5.
  • Kreitman R, Dearden C, Zinzani P, Delgado J, Karlin L, Robak T, Gladstone DE, le Coutre P, Dietrich S, Gotic M, et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia. 2018;32:1768–1777. doi:10.1038/s41375-018-0210-1.
  • Kowalski M, Guindon J, Brazas L, Moore C, Entwistle J, Cizeau J, Jewett MA, MacDonald GC. A phase II study of oportuzumab monatox: an immunotoxin therapy for patients with noninvasive urothelial carcinoma in situ previously treated with bacillus Calmette-Guérin. J Urol. 2012;188:1712–1718. doi:10.1016/j.juro.2012.07.020.
  • Beauchemin N, Draber P, Dveksler G, Gold P, Gray-Owen S, Grunert F, Hammarström S, Holmes KV, Karlsson A, Kuroki M, et al. Redefined nomenclature for members of the carcinoembryonic antigen family. Exp Cell Res. 1999;252:243–249. doi:10.1006/excr.1999.4610.
  • Gold P, Freedman S. Demonstration of tumor specific antigen in human colon carcinoma by immunological tolerance and absorption techniques. J Exp Med. 1965;121:439–462. doi:10.1084/jem.121.3.439.
  • Kammerer R, Zimmermann W. Coevolution of activating and inhibitory receptors within mammalian carcinoembryonic antigen families. BMC Biol. 2010;8:12. doi:10.1186/1741-7007-8-12.
  • Kuespert K, Pils S, Hauck C. CEACAMs: their role in physiology and pathophysiology. Curr Opin Cell Biol. 2006;18:565–571.
  • Javaheri A, Kruse T, Moonens K, Mejías-Luque R, Debraekeleer A, Asche C, Tegtmeyer N, Kalali B, Bach NC, Sieber SA, et al. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nature Microbiol. 2016;17:16189.
  • Kinugasa T, Kuroki M, Yamanaka T, Matsuo Y, Oikawa S, Nakazato H, Matsuoka Y. Non-proteolytic release of carcinoembryonic antigen from normal human colonic epithelial cells cultured in collagen gel. Int J Cancer. 1994;58:102–107. doi:10.1002/ijc.2910580117.
  • Duffy M, van Dalen A, Haglund C, Hansson L, Holinski-Feder E, Klapdor R, Lamerz R, Peltomaki P, Sturgeon C, Topolcan O. Clinical utility of biochemical markers in colorectal cancer: European group on tumour markers (EGTM) guidelines. Eur J Cancer. 2003;39:718–727.
  • Lutterbuese R, Raum T, Kischel R, Lutterbuese P, Schlereth B, Schaller E, Mangold S, Rau D, Meier P, Kiener PA, et al. Potent control of tumor growth by CEA/CD3-bispecific single-chain antibody constructs that are not competitively inhibited by soluble CEA. J Immunother. 2009;32:341–352. doi:10.1097/CJI.0b013e31819b7c70.
  • Gilham D, O’Neil A, Hughes C, Guest R, Kirillova N, Lehane M, Hawkins RE. Primary polyclonal human T lymphocytes targeted to carcino-embryonic antigens and neural cell adhesion molecule tumor antigens by CD3zeta-based chimeric immune receptors. J Immunother. 2002;25:139–151.
  • Begent R, Verhaar M, Chester K, Casey J, Green A, Napier M, Hope-Stone LD, Cushen N, Keep PA, Johnson CJ, et al. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nature Med. 1996;2:979–984.
  • Boehm M, Corper A, Wan T, Sohi M, Sutton B, Thornton JD, Keep PA, Chester KA, Begent RH, Perkins SJ. Crystal structure of the anti-(carcinoembryonic antigen) single-chain Fv antibody MFE-23 and a model for antigen binding based on intermolecular contacts. Biochem J. 2000;346:519–528.
  • Verhaar M, Chester K, Keep P, Robson L, Pedley R, Boden J, Hawkins RE, Begent RH. A single chain Fv derived from a filamentous phage library has distinct tumor targeting advantages over one derived from a hybridoma. Int J Cancer. 1995;61:497–501. doi:10.1002/ijc.2910610412.
  • Blanco-Toribio A, Lacadena J, Nuñez-Prado N, Álvarez-Cienfuegos A, Villate M, Compte M, Sanz L, Blanco FJ, Álvarez-Vallina L. Efficient production of single-chain fragment variable-based N-terminal trimerbodies in Pichia pastoris. Microb Cell Fact. 2014;13:116. doi:10.1186/1475-2859-13-1.
  • Bacac M, Fauti T, Sam J, Colombetti S, Weinzierl T, Ouaret D, Bodmer W, Lehmann S, Hofer T, Hosse RJ, et al. A novel carcinoembryonic antigen T-cell bispecific antibody (CEA TCB) for the treatment of solid tumors. Clin Cancer Res. 2016;22:3286–3297. doi:10.1158/1078-0432.CCR-15-1696.
  • Cuesta A, Sánchez-Martín D, Sanz L, Bonet J, Compte M, Kremer L, Blanco FJ, Oliva B, Alvarez-Vallina L. In vivo tumor targeting and imaging with engineered trivalent antibody fragments containing collagen-derived sequences. PLoS One. 2009;4:e5381. doi:10.1371/journal.pone.0005381.
  • Daly R, Hearn M. Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit. 2005;18:119–138. doi:10.1002/jmr.687.
  • Mazor R, Onda M, Pastan I. Immunogenicity of therapeutic recombinant immunotoxins. Immunol Rev. 2016;270:152–164. doi:10.1111/imr.12390.
  • Mazor R, King E, Pastan I. Strategies to reduce the immunogenicity of recombinant immunotoxins. Am J Pathol. 2018;188:1736–1743. doi:10.1016/j.ajpath.2018.04.016.
  • Mathew M, Verma R. Humanized immunotoxins: a new generation of immunotoxins for targeted cancer therapy. Cancer Sci. 2009;100:1359–1365. doi:10.1111/j.1349-7006.2009.01192.x.
  • Hlongwane P, Mungra N, Madheswaran S, Akinrinmade O, Chetty S, Barth S. Human granzyme B based targeted cytolytic fusion proteins. Biomedicines. 2018;6:E72. doi:10.3390/biomedicines6020072.
  • Chester K, Pedley B, Tolner B, Violet J, Mayer A, Sharma S, Boxer G, Green A, Nagl S, Begent RH. Engineering antibodies for clinical applications in cancer. Tumor Biol. 2004;25:91–98. doi:10.1159/000077727.
  • Boxer G, Stuart-Smith S, Flynn A, Green A, Begent R. Radioimmunoluminography: a tool for relating tissue antigen concentration to clinical outcome. Br J Cancer. 1999;80:922–926. doi:10.1038/sj.bjc.6690443.
  • Cuesta A, Sánchez-Martín D, Blanco-Toribio A, Villate M, Enciso-Álvarez K, Alvarez-Cienfuegos A, Sainz-Pastor N, Sanz L, Blanco FJ, Alvarez-Vallina L. Improved stability of multivalent antibodies containing the human collagen XV trimerization domain. MAbs. 2012;4:226–232. doi:10.4161/mabs.4.2.19140.
  • Weidner M, Taupp M, Hallam S. Expression of recombinant proteins in the methylotrophic yeast Pichia pastoris. J Vis Exp. 2010;36:e1862.
  • Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine D, Abbot BJ, Mayo JG, Shoemaker RH, Boyd MR. Sensibility of drug screening with panels of human tumor cell lines using microculture tetrazolium assay. Cancer Res. 1988;48:589–601.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.