1,280
Views
0
CrossRef citations to date
0
Altmetric
Original Research

TNBC-derived Gal3BP/Gal3 complex induces immunosuppression through CD45 receptor

ORCID Icon, , , &
Article: 2246322 | Received 16 May 2023, Accepted 07 Aug 2023, Published online: 14 Aug 2023

References

  • Liu C, Li Y, Xing X, Zhuang J, Wang J, Wang C, Zhang L, Liu L, Feng F, Li H, et al. Immunogenomic landscape analyses of immune molecule signature-based risk panel for patients with triple-negative breast cancer. Mol Ther Nucleic Acids. 2022;28:670–10. doi:10.1016/j.omtn.2022.04.034.
  • Howard FM, Pearson AT, Nanda R. Clinical trials of immunotherapy in triple-negative breast cancer. Breast Cancer Res Treat. 2022;195(1):1–15. doi:10.1007/s10549-022-06665-6.
  • Valencia GA, Rioja P, Morante Z, Ruiz R, Fuentes H, Castaneda CA, Vidaurre T, Neciosup S, Gomez HL. Immunotherapy in triple-negative breast cancer: a literature review and new advances. World J Clin Oncol. 2022;13(3):219–236. doi:10.5306/wjco.v13.i3.219.
  • Al Barashdi MA, Ali A, McMullin MF, Mills K. Protein tyrosine phosphatase receptor type C (PTPRC or CD45). J Clin Pathol. 2021;74(9):548–552. doi:10.1136/jclinpath-2020-206927.
  • Courtney AH, Shvets AA, Lu W, Griffante G, Mollenauer M, Horkova V, Lo W-L, Yu S, Stepanek O, Chakraborty AK, et al. CD45 functions as a signaling gatekeeper in T cells. Sci Signal. 2019;12(604):eaaw8151. doi:10.1126/scisignal.aaw8151.
  • Raiter A, Zlotnik O, Lipovetsky J, Mugami S, Dar S, Lubin I, Sharon E, Cohen CJ, Yerushalmi R. A novel role for an old target: CD45 for breast cancer immunotherapy. Oncoimmunology. 2021;10(1):1929725. doi:10.1080/2162402X.2021.1929725.
  • Alon D, Paitan Y, Robinson E, Ganor N, Lipovetsky J, Yerushalmi R, Cohen CJ, Raiter A. Downregulation of CD45 signaling in COVID-19 patients is reversed by C24D, a novel CD45 targeting peptide. Front Med. 2021;8:675963. doi:10.3389/fmed.2021.675963.
  • Fukumori T, Takenaka Y, Yoshii T, Choi Kim H-R, Hogan V, Inohara H, Kagawa S, Raz A. CD29 and CD7 mediate Galectin-3-Induced type II T-Cell apoptosis. Cancer Res. 2003;63:8302–8311.
  • Ruvolo PP. Galectin 3 as a guardian of the tumor microenvironment. Biochimica et Biophysica Acta (BBA). 2016;1863:427–437. doi:10.1016/j.bbamcr.2015.08.008.
  • Chen HY, Fermin A, Vardhana S, Weng I-C, Lo KFR, Chang E-Y, Maverakis E, Yang R-Y, Hsu DK, Dustin ML, et al. Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proc Natl Acad Sci U S A. 2009;106(34):14496–14501. doi:10.1073/pnas.0903497106.
  • de Oliveira FL, Gatto M, Bassi N, Luisetto R, Ghirardello A, Punzi L, Doria A. Galectin-3 in autoimmunity and autoimmune diseases. Exp Biol Med (Maywood). 2015;240(8):1019–1028. doi:10.1177/1535370215593826.
  • Martinez-Bosch N, Vinaixa J, Navarro P. Immune evasion in pancreatic cancer: from mechanisms to therapy. Cancers Basel. 2018;10(1):6. doi:10.3390/cancers10010006.
  • Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater. 2021;6(11):3705–3743. doi:10.1016/j.bioactmat.2021.03.015.
  • Gao Y, Qin Y, Wan C, Sun Y, Meng J, Huang J, Hu Y, Jin H, Yang K. Small extracellular vesicles: a novel avenue for cancer management. Front Oncol. 2021;11:638357. doi:10.3389/fonc.2021.638357.
  • Marar C, Starich B, Wirtz D. Extracellular vesicles in immunomodulation and tumor progression. Nat Immunol. 2021;22(5):560–570. doi:10.1038/s41590-021-00899-0.
  • Wang M, Tian F, Ying W, Qian X. Quantitative proteomics reveal the anti-tumour mechanism of the carbohydrate recognition domain of Galectin-3 in Hepatocellular carcinoma. Sci Rep. 2017;7(1):5189. doi:10.1038/s41598-017-05419-5.
  • Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7(1):1535750. doi:10.1080/20013078.2018.1535750.
  • Al-Mugotir M, Kolar C, Vance K, Kelly DL, Natarajan A, Borgstahl GEO. A simple fluorescent assay for the discovery of protein-protein interaction inhibitors. Anal Biochem. 2019;569:46–52. doi:10.1016/j.ab.2019.01.010.
  • Baba M, Yong Ma B, Nonaka M, Matsuishi Y, Hirano M, Nakamura N, Kawasaki N, Kawasaki N, Kawasaki T. Glycosylation-dependent interaction of Jacalin with CD45 induces T lymphocyte activation and Th1/Th2 cytokine secretion. J Leukoc Biol. 2007;81(4):1002–1011. doi:10.1189/jlb.1106660.
  • Farhad M, Rolig AS, Redmond WL. The role of Galectin-3 in modulating tumor growth and immunosuppression within the tumor microenvironment. Oncoimmunology. 2018;7(6):e1434467. doi:10.1080/2162402X.2018.1434467.
  • Raimondo S, Pucci M, Alessandro R, Fontana S. Extracellular vesicles and tumor-immune escape: biological functions and clinical perspectives. Int J Mol Sci. 2020;21(7):2286. doi:10.3390/ijms21072286.
  • Doyle LM, Wang MZ. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 2019;8:727. doi:10.3390/cells8070727.
  • Ekström K, Crescitelli R, Pétursson HI, Johansson J, Lässer C, Olofsson Bagge R. Characterization of surface markers on extracellular vesicles isolated from lymphatic exudate from patients with breast cancer. Bmc Cancer. 2022;22(1):50. doi:10.1186/s12885-021-08870-w.
  • Shenoy GN, Bhatta M, Bankert RB. Tumor-associated exosomes: a potential therapeutic target for restoring anti-tumor t cell responses in human tumor microenvironments. Cells. 2021;10(11):3155. doi:10.3390/cells10113155.
  • Hurwitz SN, Rider MA, Bundy JL, Liu X, Singh RK, Meckes DG. Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget. 2016;7(52):86999–87015. doi:10.18632/oncotarget.13569.
  • White MJV, Roife D, Gomer RH. Galectin-3 binding protein secreted by breast cancer cells inhibits monocyte-derived fibrocyte differentiation. J Immunol. 2015;195(4):1858–1867. doi:10.4049/jimmunol.1500365.
  • Capone E, Iacobelli S, Sala G. Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med. 2021;19(1):405. doi:10.1186/s12967-021-03085-w.
  • Fusco O, Querzoli P, Nenci I, Natoli C, Brakebush C, Ullrich A, Iacobelli S. 90K (MAC-2 BP) gene expression in breast cancer and evidence for the production of 90K by peripheral-blood mononuclear cells. Int J Cancer. 1998;79:23–26. doi:10.1002/(sici)1097-0215(19980220)79:1<23.
  • Loimaranta V, Hepojoki J, Laaksoaho O, Pulliainen AT. Galectin-3-binding protein: a multitask glycoprotein with innate immunity functions in viral and bacterial infections. J Leukoc Biol. 2018;104(4):777–786. doi:10.1002/JLB.3VMR0118-036R.
  • Powell TJ, Schreck R, McCall M, Hui T, Rice A, App H, Azam M, Ullrich A, Shawver LK. A tumor-derived protein which provides T-cell costimulation through accessory cell activation. J Immunother Emphasis Tumor Immunol. 1995;17(4):209–221. doi:10.1097/00002371-199505000-00003.
  • Ullrich A, Sures I, D’Egidio M, Jallal B, Powell TJ, Herbst R, Dreps A, Azam M, Rubinstein M, Natoli C, et al. The secreted tumor-associated antigen 90K is a potent immune stimulator. J Biol Chem. 1994;269(28):18401–18407. doi:10.1016/S0021-9258(17)32322-0.
  • Iacobelli S, Scambia G, Natoli C, Panici PB, Baiocchi G, Perrone L, Mancuso S. Recombinant human leukocyte interferon-α 2b stimulates the synthesis and release of a 90k tumor-associated antigen in human breast cancer cells. Int J Cancer. 1988;42(2):182–184. doi:10.1002/ijc.2910420207.
  • Gallo V, Arienzo A, Iacobelli S, Iacobelli V, Antonini G. Gal-3BP in viral infections: an Emerging role in severe acute respiratory syndrome coronavirus 2. Int J Mol Sci. 2022 Jun 30;23(13):7314. doi:10.3390/ijms23137314.
  • Yang L, Li J, Li S, Dang W, Xin S, Long S, Zhang W, Cao P. Lu J. Extracellular vesicles regulated by viruses and antiviral strategies. Front Cell Dev Biol. 2021;9:9. doi:10.3389/fcell.2021.722020.
  • Guo Y, Shen R, Yu L, Zheng X, Cui R, Song Y, Wang D. Roles of galectin‑3 in the tumor microenvironment and tumor metabolism (Review). Oncol Rep. 2020;44:1799–1809. doi:10.3892/or.2020.7777.
  • Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, Callahan DJ, Sun Z, Sun T, Tabib T, et al. Adaptive plasticity of IL-10+ and IL-35+ Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20(6):724–735. doi:10.1038/s41590-019-0346-9.
  • Lawlor N, Nehar-Belaid D, Grassmann JDS, Stoeckius M, Smibert P, Stitzel ML, Pascual V, Banchereau J, Williams A, Ucar D, et al. Single cell analysis of blood mononuclear cells stimulated through either LPS or anti-CD3 and anti-CD28. Front Immunol. 2021;12:636720. doi:10.3389/fimmu.2021.636720.
  • Mohammed NBB, Antonopoulos A, Dell A, Haslam SM, Dimitroff CJ. Chapter six - the pleiotropic role of galectin-3 in melanoma progression: unraveling the enigma. In: Abbott KL Dimitroff CJ, editors. Advances in cancer research. Vol. 157. Academic Press; 2023. pp. 157–193. doi:10.1016/bs.acr.2022.06.001.
  • Foulds GA, Vadakekolathu J, Abdel-Fatah TMA, Nagarajan D, Reeder S, Johnson C, Hood S, Moseley PM, Chan SYT, Pockley AG, et al. Immune-phenotyping and transcriptomic profiling of peripheral blood mononuclear cells from patients with breast cancer: identification of a 3 gene signature which predicts relapse of triple negative breast cancer. Front Immunol. 2018;9:2028. doi:10.3389/fimmu.2018.02028.