77
Views
0
CrossRef citations to date
0
Altmetric
Research Article

No effects of temporal cortex modulation on rotator cuff fatigue: a randomized, double-blind, sham-controlled, crossover clinical trial

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 16 Dec 2023, Accepted 24 May 2024, Published online: 14 Jun 2024

References

  • Bauer J, Hagen M, Weisz N, et al. The influence of fatigue on throwing and YBT-UQ performance in male adolescent handball players. Front Sports Act Living [Internet]. 2020;2; doi:10.3389/fspor.2020.00081
  • Wan J-J, Qin Z, Wang P-Y, et al. Muscle fatigue: general understanding and treatment. Exp Mol Med [Internet]. 2017;49:e384, doi:10.1038/emm.2017.194
  • McDonald AC, Mulla DM, Keir PJ. Using EMG amplitude and frequency to calculate a multimuscle fatigue score and evaluate global shoulder fatigue. Hum Factors [Internet]. 2019;61:526–536. doi:10.1177/0018720818794604
  • Aranha L, Eapen C, Patel VD, et al. Muscle fatigue response of rotator cuff muscles in different postures. Arch Orthop Trauma Surg [Internet]. 2023;143:3191–3199. doi:10.1007/s00402-022-04650-8
  • Clarsen B, Bahr R, Andersson SH, et al. Reduced glenohumeral rotation, external rotation weakness and scapular dyskinesis are risk factors for shoulder injuries among elite male handball players: a prospective cohort study. Br J Sports Med [Internet]. 2014;48:1327–1333. doi:10.1136/bjsports-2014-093702
  • Chinzara TT, Buckingham G, Harris DJ. Transcranial direct current stimulation and sporting performance: a systematic review and meta-analysis of transcranial direct current stimulation effects on physical endurance, muscular strength and visuomotor skills. Eur J Neurosci [Internet]. 2022;55:468–486. doi:10.1111/ejn.15540
  • Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol [Internet]. 2000;527(Pt 3):633–639. doi:10.1111/j.1469-7793.2000.t01-1-00633.x
  • Woods AJ, Antal A, Bikson M, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol [Internet]. 2016;127:1031–1048. doi:10.1016/j.clinph.2015.11.012
  • Meron D, Hedger N, Garner M, et al. Transcranial direct current stimulation (tDCS) in the treatment of depression: systematic review and meta-analysis of efficacy and tolerability. Neurosci Biobehav Rev [Internet]. 2015;57:46–62. doi:10.1016/j.neubiorev.2015.07.012
  • Vaseghi B, Zoghi M, Jaberzadeh S. Does anodal transcranial direct current stimulation modulate sensory perception and pain? A meta-analysis study. Clin Neurophysiol [Internet]. 2014;125:1847–1858. doi:10.1016/j.clinph.2014.01.020
  • Conde-Antón Á, Hernando-Garijo I, Jiménez-Del-Barrio S, et al. Efectos de la estimulación transcraneal por corriente directa y de la estimulación magnética transcraneal en pacientes con fibromialgia. Revisión sistemática. Neurologia [Internet]. 2020; doi:10.1016/j.nrl.2020.07.024
  • Gong Q, Yan R, Chen H, et al. Effects of cerebellar transcranial direct current stimulation on rehabilitation of upper limb motor function after stroke. Front Neurol [Internet]. 2023;14:1044333, doi:10.3389/fneur.2023.1044333
  • Broeder S, Vandendoorent B, Hermans P, et al. Transcranial direct current stimulation enhances motor learning in Parkinson’s disease: a randomized controlled trial. J Neurol [Internet]. 2023;270:3442–3450. doi:10.1007/s00415-023-11669-3
  • Loreti EH, Freire AM, Alexandre da Silva A, et al. Effects of anodal transcranial direct current stimulation on the primary motor cortex in women With fibromyalgia: a randomized, triple-blind clinical trial. Neuromodulation [Internet]. 2023;26:767–777. doi:10.1016/j.neurom.2022.11.007
  • Molero-Chamizo A, Nitsche MA, Barroso RTA, et al. Non-Invasive electric and magnetic brain stimulation for the treatment of fibromyalgia. Biomedicines [Internet]. 2023: 954, doi:10.3390/biomedicines11030954
  • Muñoz-Paredes I, Herrero AJ, Román-Nieto N, et al. Influence of Transcranial Direct Current Stimulation and Exercise on Fatigue and Quality of Life in Multiple Sclerosis. Healthcare (Basel) [Internet]. 2022;11; doi:10.3390/healthcare11010084
  • Linnhoff S, Haghikia A, Zaehle T. Effects of repetitive twice-weekly transcranial direct current stimulations on fatigue and fatigability in people with multiple sclerosis. Sci Rep [Internet]. 2023;13:5878, doi:10.1038/s41598-023-32779-y
  • Santana K, França E, Sato J, et al. Non-invasive brain stimulation for fatigue in post-acute sequelae of SARS-CoV-2 (PASC). Brain Stimul [Internet]. 2023;16:100–107. doi:10.1016/j.brs.2023.01.1672
  • Banissy MJ, Muggleton NG. Transcranial direct current stimulation in sports training: potential approaches. Front Hum Neurosci [Internet]. 2013;7:129, doi:10.3389/fnhum.2013.00129
  • Angius L, Pageaux B, Hopker J, et al. Transcranial direct current stimulation improves isometric time to exhaustion of the knee extensors. Neuroscience [Internet]. 2016;339:363–375. doi:10.1016/j.neuroscience.2016.10.028
  • Hazime FA, da Cunha RA, Soliaman RR, et al. Anodal transcranial direct current stimulation (tdcs) increases isometric strength of shoulder rotators muscles in handball players. Int J Sports Phys Ther [Internet]. 2017;12:402–407. Available from: https://www.ncbi.nlm.nih.gov/pubmed/28593094.
  • Vitor-Costa M, Okuno NM, Bortolotti H, et al. Improving cycling performance: transcranial direct current stimulation increases time to exhaustion in cycling. PLoS One [Internet]. 2015;10:e0144916, doi:10.1371/journal.pone.0144916
  • Kamali A-M, Saadi ZK, Yahyavi S-S, et al. Transcranial direct current stimulation to enhance athletic performance outcome in experienced bodybuilders. PLoS One [Internet]. 2019;14:e0220363, doi:10.1371/journal.pone.0220363
  • Machado DdS, Farias Junior Ld, Nascimento Pd, et al. Can interoceptive accuracy influence maximal performance, physiological and perceptual responses to exercise? Physiol Behav [Internet]. 2019;204:234–240. Available from: https://www.sciencedirect.com/science/article/pii/S0031938419300162.
  • Alix-Fages C, Romero-Arenas S, Castro-Alonso M, et al. Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production. A systematic review and meta-analysis. J Clin Med [Internet]. 2019;8:536, doi:10.3390/jcm8040536
  • Shyamali Kaushalya F, Romero-Arenas S, García-Ramos A, et al. Acute effects of transcranial direct current stimulation on cycling and running performance. A systematic review and meta-analysis. EJSS (Champaign) [Internet]. 2022;22:113–125. doi:10.1080/17461391.2020.1856933
  • Okano AH, Machado DGS, Oliveira Neto L, et al. Can transcranial direct current stimulation modulate psychophysiological response in sedentary Men during vigorous aerobic exercise? Int J Sports Med [Internet]. 2017;38:493–500. doi:10.1055/s-0042-121897
  • Penna EM, Filho E, Campos BT, et al. No effects of mental fatigue and cerebral stimulation on physical performance of master swimmers. Front Psychol [Internet]. 2021;12:656499, doi:10.3389/fpsyg.2021.656499
  • To WT, De Ridder D, Hart J, et al. Changing brain networks through non-invasive neuromodulation. Front Hum Neurosci [Internet]. 2018;12:128, doi:10.3389/fnhum.2018.00128
  • Okano AH, Fontes EB, Montenegro RA, et al. Brain stimulation modulates the autonomic nervous system, rating of perceived exertion and performance during maximal exercise. Br J Sports Med [Internet]. 2015;49:1213–1218. doi:10.1136/bjsports-2012-091658
  • Faul F, Erdfelder E, Lang A-G, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods [Internet]. 2007;39:175–191. doi:10.3758/BF03193146
  • Herwig U, Satrapi P, Schönfeldt-Lecuona C. Using the international 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr [Internet]. 2003;16:95–99. doi:10.1023/B:BRAT.0000006333.93597.9d
  • Antal A, Alekseichuk I, Bikson M, et al. Low intensity transcranial electric stimulation: safety, ethical, legal regulatory and application guidelines. Clin Neurophysiol [Internet]. 2017;128:1774–1809. doi:10.1016/j.clinph.2017.06.001
  • Borg G. Borg’s perceived exertion and pain scales [internet]. Human Kinetics; 1998. Available from: https://play.google.com/store/books/details?id=l_zQwAEACAAJ.
  • Kamper SJ, Maher CG, Mackay G. Global rating of change scales: a review of strengths and weaknesses and considerations for design. J Man Manip Ther [Internet]. 2009;17:163–170. doi:10.1179/jmt.2009.17.3.163
  • Toonstra J, Mattacola CG. Test-retest reliability and validity of isometric knee-flexion and -extension measurement using 3 methods of assessing muscle strength. J Sport Rehabil [Internet]. 2013;22; doi:10.1123/jsr.2013.TR7
  • Ribeiro DC, de Castro MP, Sole G, et al. The initial effects of a sustained glenohumeral postero-lateral glide during elevation on shoulder muscle activity: a repeated measures study on asymptomatic shoulders. Man Ther [Internet]. 2016;22:101–108. doi:10.1016/j.math.2015.10.014
  • Cogiamanian F, Marceglia S, Ardolino G, et al. Improved isometric force endurance after transcranial direct current stimulation over the human motor cortical areas. Eur J Neurosci [Internet]. 2007;26:242–249. doi:10.1111/j.1460-9568.2007.05633.x
  • Tornero-Aguilera JF, Jimenez-Morcillo J, Rubio-Zarapuz A, et al. Central and peripheral fatigue in physical exercise explained: a narrative review. Int J Environ Res Public Health [Internet]. 2022;19; doi:10.3390/ijerph19073909
  • Williamson JW, McColl R, Mathews D, et al. Activation of the insular cortex is affected by the intensity of exercise. J Appl Physiol [Internet]. 1999;87:1213–1219. doi:10.1152/jappl.1999.87.3.1213
  • Hilty L, Langer N, Pascual-Marqui R, et al. Fatigue-induced increase in intracortical communication between mid/anterior insular and motor cortex during cycling exercise. Eur J Neurosci [Internet]. 2011;34:2035–2042. doi:10.1111/j.1460-9568.2011.07909.x
  • Vergallito A, Feroldi S, Pisoni A, et al. Inter-individual variability in tDCS effects: a narrative review on the contribution of stable, variable, and contextual factors. Brain Sci [Internet]. 2022;12:522, doi:10.3390/brainsci12050522
  • Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci [Internet]. 2015;9:181, doi:10.3389/fncel.2015.00181
  • Hilty L, Jäncke L, Luechinger R, et al. Diffusion tensor imaging reliably differentiates patients with schizophrenia from healthy volunteers. Hum Brain Mapp [Internet]. 2011;32:2151–2160. https://onlinelibrary.wiley.com/doi/abs/10.1002hbm.21177?casa_token=JC8ci43uxvYAAAAA:1nvX1aCAe1pLnRqDzejQn7q-wjv1lahYmJrfI9oq1YwgHh1GOGgfx80DUnn7EGMTYq9RqMclHUcXx8Y.
  • Abdelmoula A, Baudry S, Duchateau J. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Neuroscience [Internet]. 2016;322:94–103. doi:10.1016/j.neuroscience.2016.02.025
  • Williams PS, Hoffman RL, Clark BC. Preliminary evidence that anodal transcranial direct current stimulation enhances time to task failure of a sustained submaximal contraction. PLoS One [Internet]. 2013;8:e81418, doi:10.1371/journal.pone.0081418
  • Kan B, Dundas JE, Nosaka K. Effect of transcranial direct current stimulation on elbow flexor maximal voluntary isometric strength and endurance. Appl Physiol Nutr Metab [Internet]. 2013;38:734–739. doi:10.1139/apnm-2012-0412
  • Muthalib M, Kan B, Nosaka K, et al. Advances in experimental medicine and biology. Adv Exp Med Biol [Internet]. 2013;789:73–79. doi:10.1007/978-1-4614-7411-1_11
  • Angius L, Hopker JG, Marcora SM, et al. The effect of transcranial direct current stimulation of the motor cortex on exercise-induced pain. Eur J Appl Physiol [Internet]. 2015;115:2311–2319. doi:10.1007/s00421-015-3212-y
  • Workman CD, Kamholz J, Rudroff T. Increased leg muscle fatigability during 2 mA and 4 mA transcranial direct current stimulation over the left motor cortex. Exp Brain Res [Internet]. 2020;238:333–343. doi:10.1007/s00221-019-05721-w
  • Krishnan C, Ranganathan R, Kantak SS, et al. Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimul [Internet]. 2014;7:443–450. doi:10.1016/j.brs.2014.01.057
  • Vargas VZ, Baptista AF, Pereira GOC, et al. Modulation of isometric quadriceps strength in soccer players With transcranial direct current stimulation: a crossover study. J Strength Cond Res [Internet]. 2018;32:1336–1341. doi:10.1519/JSC.0000000000001985

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.