823
Views
5
CrossRef citations to date
0
Altmetric
Special Section: Chaos Fractals

Numerical analysis and circuit realization of the modified LÜ chaotic system

&
Pages 74-79 | Received 01 Sep 2013, Accepted 16 Dec 2013, Published online: 13 Feb 2014

REFERENCES

  • Arrowsmith, D. K., & Place, C. M. (1990). An introduction to dynamical systems. New York, NY: Cambridge University Press.
  • Benettin, G., Galgani, L., & Strelcyn, J.-M. (1976). Kolmogorov entropy and numerical experiments. Physical Review A, 14, 2338–2345. doi: 10.1103/PhysRevA.14.2338
  • Cafagna, D., & Grassi, G. (2003). New 3D-scroll attractors in hyperchaotic Chua's circuits forming a ring. International Journal of Bifurcation and Chaos, 13, 2889–2903. doi: 10.1142/S0218127403008284
  • Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9(7), 1465–1466. doi: 10.1142/S0218127499001024
  • Contopoulos, G. (2002). Order and chaos in dynamical astronomy. Berlin: Springer Verlag.
  • Froeschlé, C., & Lega, E. (2000). On the structure of symplectic mappings. The fast Lyapunov indicator: A very sensitive tool. Celestial Mechanics and Dynamical Astronomy, 78, 167–195.
  • Froeschlé, C., Lega, E., & Gonczi, R. (1997). Fast Lyapunov indicators. Applications to asteroidal motion. Celestial Mechanics and Dynamical Astronomy, 67, 41–62. doi: 10.1023/A:1008276418601
  • Hénon, M., & Heils, C. (1964). The applicability of the third integral of motions: Some numerical experiments. Astronomical Journal, 69, 73–79. doi: 10.1086/109234
  • Huang, G.-Q., & Wu, X. (2012). Analysis of new four-dimensional chaotic circuits with experimental and numerical methods. International Journal of Bifurcation and Chaos, 22(2), 1250042 (13 pp.). doi: 10.1142/S0218127412500423
  • Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20, 130–141. doi: 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  • Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12(3), 659–661. doi: 10.1142/S0218127402004620
  • Matsumoto, T., Chua, L. O., & Kobayashi, K. (1986). Hyperchaos: Laboratory experiment and numerical confirmation. IEEE Transactions on Circuits and Systems, 33, 1143–1147. doi: 10.1109/TCS.1986.1085862
  • Qi, G. Y., Wyk, M. A., Wyk, B. J., & Chen, G. R. (2009). A new hyperchaotic system and its circuit implementation. Chaos, Solitons and Fractals, 40, 2544–2549. doi: 10.1016/j.chaos.2007.10.053
  • Rössler, O. E. (1979). An equation for hyperchaos. Physics Letters A, 71(2,3), 155–156. doi: 10.1016/0375-9601(79)90150-6
  • Skokos, C. (2001). Alignment indices: A new, simple method for determining the ordered or chaotic nature of orbits. Journal of Physics A, 34, 10029–10043. doi: 10.1088/0305-4470/34/47/309
  • Skokos, Ch., Bountis, T., & Antonopoulos, Ch. (2007). Geometrical properties of local dynamics in Hamiltonian systems: The Generalized Alignment Index (GALI) method. Physica D, 231, 30–54. doi: 10.1016/j.physd.2007.04.004
  • Tancredi, G., Sanchez, A., & Roig, F. (2001). A comparison between methods to compute Lyapunov exponents. Astronomical Journal, 121, 1171–1179. doi: 10.1086/318732
  • Wu, X., & Xie, Y. (2007). Revisit on “Ruling out chaos in compact binary systems”. Physical Review D, 76(6), 124004D. doi: 10.1103/PhysRevD.76.124004
  • Wu, X., & Xie, Y. (2008). Resurvey of order and chaos in spinning compact binaries. Physical Review D, 77(10), 103012. doi: 10.1103/PhysRevD.77.103012