459
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Approximate optimal iterative approach for a class of oscillatory neuron models

&
Pages 518-527 | Received 21 Jan 2018, Accepted 10 Nov 2018, Published online: 16 Nov 2018

References

  • Banks, S. P. (1986). On the optimal control of nonlinear systems. Systems & Control Letters, 6(5), 337–343. doi: 10.1016/0167-6911(86)90129-5
  • Barbu, V., Cordoni, F., & Di Persio, L. (2016). Optimal control of stochastic FitzHugh–Nagumo equation. International Journal of Control, 89(4), 746–756. doi: 10.1080/00207179.2015.1096023
  • Beard, R. W., Saridis, G. N., & Wen, J. T. (1997). Galerkin approximations of the generalized Hamilton–Jacobi–Bellman equation. Automatica, 33(12), 2159–2177. doi: 10.1016/S0005-1098(97)00128-3
  • Cebubar, W. A., & Costanza, V. (1984). Approximation procedures for the optimal control of bilinear and nonlinear systems. Journal of Optimization Theory and Applications, 43(4), 615–627. doi: 10.1007/BF00935009
  • Chavarette, F. R., Balthazar, J. M., Peruzzi, N. J., & Rafikov, M. (2009). On non-linear dynamics and control designs applied to the ideal and non-ideal variants of the Fitzhugh–Nagumo (FN) mathematical model. Communications in Nonlinear Science and Numerical Simulation, 14, 892–905. doi: 10.1016/j.cnsns.2007.10.016
  • Çimen, T., & Banks, S. (2004). Global optimal feedback control for general nonlinear systems with nonquadratic performance criteria. Systems & Control Letters, 53, 327–346. doi: 10.1016/j.sysconle.2004.05.008
  • Ciszak, M., Euzzor, S., Geltrude, A., Al-Naimee, K., Arecchi, F. T., & Meucci, R. (2017). Control of chaos in driven Fitzhugh–Nagumo circuit by means of filtered feedback. Cybernetics and Physics, 1(1), 22–27.
  • Danzl, P., Hespanha, J., & Moehlis, J. (2009). Event-based minimum-time control of oscillatory neuron models: phase randomization, maximal spike rate increase, and desynchronization. Biological Cybernetics, 101, 387–399. doi: 10.1007/s00422-009-0344-3
  • Dasanayake, I., & Li, J. S. (2011). Optimal design of minimum-power stimuli for phase models of neuron oscillators. Physical Review E, 83, 061916. doi: 10.1103/PhysRevE.83.061916
  • Dasanayake, I., & Li, J. S. (2015). Charge-balanced minimum-power controls for spiking neuron oscillators. Systems & Control Letters, 75, 124–130. doi: 10.1016/j.sysconle.2014.09.011
  • FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1(6), 445–466. doi: 10.1016/S0006-3495(61)86902-6
  • Gao, D. X., Zhang, W. W., & Zhang, B. L. (2008). Approximate optimal iterative approach for bilinear systems with disturbances. The 20th Chinese control and decision conference, 2–4 July (pp. 5090–5094). Shandong, China: Yantai.
  • Handa, H., & Sharma, B. B. (2016). Synchronization of a set of coupled chaotic FitzHugh–Nagumo and Hindmarsh–Rose neurons with external electrical stimulation. Nonlinear Dynamics, 85(3), 1517–1532. doi: 10.1007/s11071-016-2776-3
  • Hilhorst, D., & Rybka, P. (2010). Stabilization of solutions to a FitzHugh–Nagumo type system. Journal of Statistical Physics, 138(1-3), 291–304. doi: 10.1007/s10955-009-9886-y
  • Huntington, G. T., & Rao, A. V. (2008). Optimal reconfiguration of spacecraft formations using the gauss pseudospectral method. Journal of Guidance, Control, and Dynamics, 31(3), 689–698. doi: 10.2514/1.31083
  • Keener, J., & Sneyd, J.. (2008). Mathematical Physiology. 2nd ed. New York, NY: Springer.
  • Kim, Y. J., Kim, B. S., & Lim, M. T. (2005). Finite-time composite control for a class of singularly perturbed nonlinear systems via successive Galerkin approximation. IEE Proceedings: Control Theory and Applications, 152(5), 507–512.
  • Lindner, B., García-Ojalvo, J., Neiman, A., & Schimansky-Geier, L. (2004). Effects of noise in excitable systems. Physics Reports, 392(6), 321–424. doi: 10.1016/j.physrep.2003.10.015
  • Liu, J. J., & Wang, J. M. (2017). Boundary stabilization of a cascade of ODE-wave systems subject to boundary control matched disturbance. International Journal of Robust and Nonlinear Control, 27(2), 252–280. doi: 10.1002/rnc.3572
  • Lou, X., & Swamy, M. N. S. (2017). A new approach to optimal control of conductance-based spiking neurons. Neural Networks, 96, 128–136. doi: 10.1016/j.neunet.2017.08.011
  • Moehlis, J., Shea-Brown, E., & Rabitz, H. (2006). Optimal inputs for phase models of spiking neurons. Journal of Computational and Nonlinear Dynamics, 1(4), 358–367. doi: 10.1115/1.2338654
  • Nabi, A., Mirzadeh, M., Gibou, F., & Moehlis, J. (2013). Minimum energy desynchronizing control for coupled neurons. Journal of Computational Neuroscience, 34, 259–271. doi: 10.1007/s10827-012-0419-3
  • Nabi, A., Stigen, T., Moehlis, J., & Netoff, T. (2013). Minimum energy control for in vitro neurons. Journal of Neural Engineering, 10, Article No. 036005.
  • Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10), 2061–2070. doi: 10.1109/JRPROC.1962.288235
  • Niven, J. E., & Laughlin, S. B. (2008). Energy limitation as a selective pressure on the evolution of sensory systems. Journal of Experimental Biology, 211(Pt11), 1792–1804. doi: 10.1242/jeb.017574
  • Osipov, G. V., Kurths, J., & Zhou, C.. (2007). Synchronization in oscillatory networks. Berlin: Springer-Verlag.
  • Pittner, J., & Simaan, M. A. (2006). State-dependent Riccati equation approach for optimal control of a tandem cold metal rolling process. IEEE Transactions on Industry Applications, 42(3), 836–843. doi: 10.1109/TIA.2006.872948
  • Rao, A. V., Benson, D. A., Darby, C. L., Patterson, M. A., Francolin, C., Sanders, I., & Huntington, G. T. (2010). GPOPS: A Matlab software for solving multiple-phase optimal control problems using the gauss pseudospectral method. ACM Transactions on Mathematical Software, 37(2), 1–39. doi: 10.1145/1731022.1731032
  • Reddy, G., & Murthy, C. (2013). Coherence resonance in the FitzHugh–Nagumo system. University of California, San Diego, Physics 210B: Nonequilibrium Statistical Physics, Student Project.
  • Rubchinsky, L. L., Park, C., & Worth, R. M. (2012). Intermittent neural synchronization in Parkinson's disease. Nonlinear Dynamics, 68(3), 329–346. doi: 10.1007/s11071-011-0223-z
  • Sengupta, B., Stemmler, M., Laughlin, S. B., & Niven, J. E. (2010). Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Computational Biology, 6(7), e1000840. doi: 10.1371/journal.pcbi.1000840
  • Sun, L., & Fan, M. Q.. (2008). Optimal control for a class of affine nonlinear systems: An improved successive approximation approach. The 27th Chinese control and decision conference 16–18 July (pp. 490–494). Yunan, China: Kunming.
  • Sun, J., & Yang, W. L. (2016). Optimal control of the Fitzhugh–Hagumo neurons systems in general form. Pacific Journal of Optimization, 12(4), 757–774.
  • Uhlhaas, P. J., & Singer, W. (2006). Neural synchrony in brain disorders: Relevance for cognitive dysfunctions and pathophysiology. Neuron, 52, 155. doi: 10.1016/j.neuron.2006.09.020
  • Uzunca, M., Küçükseyhan, T., Yücel, H., & Karasözen, B. (2017). Optimal control of convective FitzHugh–Nagumo equation. Computers and Mathematics with Applications, 73(9), 2151–2169. doi: 10.1016/j.camwa.2017.02.028
  • Wilson, D., Holt, A. B., Netoff, T. I., & Moehlis, J. (2015). Optimal entrainment of heterogeneous noisy neurons. Frontiers in Neuroscience, 9, 1–10. Article No. 192. doi: 10.3389/fnins.2015.00192
  • Yi, G. S., Wang, J., Li, H. Y., Wei, X. L., & Deng, B. (2016). Minimum energy control for a two-compartment neuron to extracellular electric fields. Communications in Nonlinear Science and Numerical Simulation, 40, 138–150. doi: 10.1016/j.cnsns.2016.03.017
  • Zheng, J. (2015). Optimal controls of multi-dimensional modified Swift–Hohenberg equation. International Journal of Control, 88(10), 2117–2125. doi: 10.1080/00207179.2015.1038587
  • Zheng, J. (2016). The bang-bang principle of time optimal controls for the Kuramoto–Sivashinsky–KdV equation with internal control. International Journal of Robust and Nonlinear Control, 26(8), 1667–1685. doi: 10.1002/rnc.3373