621
Views
3
CrossRef citations to date
0
Altmetric
Articles

Energy-based Hamiltonian approach in H controller design for n-degree of freedom mechanical systems

&
Pages 264-275 | Received 20 Jan 2019, Accepted 24 Jul 2019, Published online: 09 Aug 2019

References

  • Acho, L., Orlov, Y., & Solis, V. (2001). Non-linear measurement feedback H∞-control of time-periodic systems with application to tracking control of robot manipulators. International Journal of Control, 74(2), 190–198. doi: 10.1080/00207170150203516
  • Asadinia, M. S., & Binazadeh, T. (2019). Finite-time stabilization of descriptor time-delay systems with one-sided Lipschitz nonlinearities: Application to partial element equivalent circuit. Circuits, Systems, and Signal Processing. doi: 10.1007/s00034-019-01129-7
  • Binazadeh, T., & Shafiei, M. H. (2016). Novel approach in nonlinear autopilot design. Journal of Aerospace Engineering, 29(1), 04015017. doi: 10.1061/(ASCE)AS.1943-5525.0000500
  • Chavez Guzmán, C. A., Aguilar Bustos, L. T., & Mérida Rubio, J. O. (2015). Analysis and synthesis of global nonlinear controller for robot manipulators. Mathematical Problems in Engineering, 2015, 410873. doi: 10.1155/2015/410873
  • Chung, W., Fu, L. C., & Hsu, S. H. (2008). Motion control. London: Springer.
  • Delgado, S., & Kotyczka, P. (2016). Energy shaping for position and speed control of a wheeled inverted pendulum in reduced space. Automatica, 74, 222–229. doi: 10.1016/j.automatica.2016.07.045
  • Erol, B., & Delibaşı, A. (2018). Fixed-order H∞ controller design for MIMO systems via polynomial approach. Transactions of the Institute of Measurement and Control, 41(7), 1985–1992. doi: 10.1177/0142331218792411
  • Ge, S. S., & Harris, C. J. (1998). Adaptive neural network control of robotic manipulators. Singapore: World Scientific.
  • Gholami, H., & Binazadeh, T. (2019a). Observer-based H∞ finite-time controller for time-delay nonlinear one-sided Lipschitz systems with exogenous disturbances. Journal of Vibration and Control, 25(4), 806–819. doi: 10.1177/1077546318802422
  • Gholami, H., & Binazadeh, T. (2019b). Robust finite-time H∞ controller design for uncertain one-sided lipschitz systems with time-delay and input amplitude constraints. Circuits, Systems, and Signal Processing, 38(7), 3020–3040. doi: 10.1007/s00034-018-01018-5
  • Hakimi, A. R., & Binazadeh, T. (2017). Robust generation of limit cycles in nonlinear systems: Application on two mechanical systems. Journal of Computational and Nonlinear Dynamics, 12(4), 041013. doi: 10.1115/1.4035190
  • Kelly, R., Santibanez, V., & Loria, A. (2005). Control of robot manipulators in joint space. London: Springer.
  • Khalil, H. K. (2014). Nonlinear control. Upper Saddle River, NJ: Prentice Hall.
  • Krstic, M., & Deng, H. (1998). Stabilization of nonlinear uncertain systems. London: Springer.
  • Li, L., & Liao, F. (2018). Design of a robust H∞ preview controller for a class of uncertain discrete-time systems. Transactions of the Institute of Measurement and Control, 40(8), 2639–2650. doi: 10.1177/0142331217708239
  • Maschke, B., & Schaft, A. V. (1992). Port-controlled Hamiltonian systems: Modeling origins and system theoretic properties. IFAC Symposium on NOLCOS, 25(13), 359–365.
  • Orlov, Y. V., & Aguilar, L. T. (2004). Non-smooth H∞-position control of mechanical manipulators with frictional joints. International Journal of Control, 77(11), 1062–1069. doi: 10.1080/0020717042000273087
  • Orlov, Y. V., & Aguilar, L. T. (2014). Advanced H control: Towards nonsmooth theory and applications. New York, NY: Birkhäuser.
  • Ortega, R., Loria, A., Nicklasson, J., & Sira-Ramirez, H. (1998). Passivity-based control of Euler-lagrange systems. London: Springer.
  • Ortega, R., van der Schaft, A., Maschke, B., & Escobar, G. (2002). Interconnection and damping assignment passivity-based control of port controlled Hamiltonian systems. Automatica, 38(4), 585–596. doi: 10.1016/S0005-1098(01)00278-3
  • Sato, K., Yanagi, M., & Tsuruta, K. (2011). Adaptive H trajectory control of nonholonomic mobile robot with compensation of input uncertainty. IEEE international Conference on Control Applications (CCA), Denver, CO (pp. 699–705).
  • Shafiei, M. H., & Binazadeh, T. (2014). Movement control of a variable mass underwater vehicle based on multiple-modeling approach. Systems Science & Control Engineering: An Open Access Journal, 2(1), 335–341. doi: 10.1080/21642583.2014.901929
  • Shafiei, M. H., & Binazadeh, T. (2015). Application of neural network and genetic algorithm in identification of a model of a variable mass underwater vehicle. Ocean Engineering, 96, 173–180. doi: 10.1016/j.oceaneng.2014.12.021
  • Subbotin, A. I. (1995). Generalized solutions of first-order PDE’s—The dynamical optimization perspective. Boston, MA: Birkhäuser.
  • Valentinis, F., Donaire, A., & Perez, T. (2015). Energy-based motion control of a slender hull unmanned underwater vehicle. Ocean Engineering, 104, 604–616. doi: 10.1016/j.oceaneng.2015.05.014
  • van der Schaft, A. J. (2001). L2-gain analysis of nonlinear systems and nonlinear state feedback H∞ control. IEEE Transactions on Automatic Control, 37(6), 770–784. doi: 10.1109/9.256331
  • Wang, Y., & Ge, S. S. (2008). Augmented Hamiltonian formulation and energy-based control design of uncertain mechanical systems. IEEE Transactions on Control Systems Technology, 16(2), 202–213. doi: 10.1109/TCST.2007.903367
  • Wang, Y., Yang, X., & Yan, H. (2019). Reliable fuzzy tracking control of near-space hypersonic vehicle using aperiodic measurement information. IEEE Transactions on Industrial Electronics. doi: 10.1109/TIE.2019.2892696
  • Wu, Y., & Lu, R. (2018). Event-based control for network systems via integral quadratic constraints. IEEE Transactions on Circuits and Systems I: Regular Papers, 65(4), 1386–1394. doi: 10.1109/TCSI.2017.2748971
  • Wu, Y., Lu, R., Shi, P., Su, H., & Wu, Z. G. (2018). Analysis and design of synchronization for heterogeneous network. IEEE Transactions on Cybernetics, 48(4), 1253–1262. doi: 10.1109/TCYB.2017.2688407
  • Yang, S., & Xian, B. (2019). Energy-based nonlinear adaptive control design for the quadrotor UAV system with a suspended payload. IEEE Transactions on Industrial Electronics. doi: 10.1109/TIE.2019.2902834
  • Zheng, Z., Zhu, M., Zuo, Z., & Yan, K. (2015). Controlled Lagrangians control for a quadrotor helicopter. 27th Chinese Control and Decision Conference (CCDC), Qingdao, China (pp. 6097–6102).