1,923
Views
10
CrossRef citations to date
0
Altmetric
Articles

The paradigm of complex probability and Monte Carlo methods

ORCID Icon
Pages 407-451 | Received 15 May 2019, Accepted 07 Nov 2019, Published online: 24 Nov 2019

References

  • Abou Jaoude, A. (2004, August 1). Ph.D. Thesis in Applied Mathematics: Numerical Methods and Algorithms for Applied Mathematicians. Bircham International University. Retrieved from http://www.bircham.edu
  • Abou Jaoude, A. (2005, October). Ph.D. Thesis in Computer Science: Computer Simulation of Monté Carlo Methods and Random Phenomena. Bircham International University. Retrieved from http://www.bircham.edu
  • Abou Jaoude, A. (2007, 27 April). Ph.D. Thesis in Applied Statistics and Probability: Analysis and Algorithms for the Statistical and Stochastic Paradigm. Bircham International University. Retrieved from http://www.bircham.edu
  • Abou Jaoude, A. (2013a). The complex statistics paradigm and the law of large numbers. Journal of Mathematics and Statistics, Science Publications, 9(4), 289–304.
  • Abou Jaoude, A. (2013b). The theory of complex probability and the first order reliability method. Journal of Mathematics and Statistics, Science Publications, 9(4), 310–324.
  • Abou Jaoude, A. (2014). Complex probability theory and prognostic. Journal of Mathematics and Statistics, Science Publications, 10(1), 1–24.
  • Abou Jaoude, A. (2015a). The complex probability paradigm and analytic linear prognostic for vehicle suspension systems. American Journal of Engineering and Applied Sciences, Science Publications, 8(1), 147–175.
  • Abou Jaoude, A. (2015b). The paradigm of complex probability and the Brownian motion. Systems Science and Control Engineering, Taylor and Francis Publishers, 3(1), 478–503.
  • Abou Jaoude, A. (2016a). The paradigm of complex probability and Chebyshev’s inequality. Systems Science and Control Engineering, Taylor and Francis Publishers, 4(1), 99–137.
  • Abou Jaoude, A. (2016b). The paradigm of complex probability and analytic nonlinear prognostic for vehicle suspension systems. Systems Science and Control Engineering, Taylor and Francis Publishers, 4(1), 99–137.
  • Abou Jaoude, A. (2017a). The paradigm of complex probability and analytic linear prognostic for unburied petrochemical pipelines. Systems Science and Control Engineering, Taylor and Francis Publishers, 5(1), 178–214.
  • Abou Jaoude, A. (2017b). The paradigm of complex probability and Claude Shannon’s information theory. Systems Science and Control Engineering, Taylor and Francis Publishers, 5(1), 380–425.
  • Abou Jaoude, A. (2017c). The paradigm of complex probability and analytic nonlinear prognostic for unburied petrochemical pipelines. Systems Science and Control Engineering, Taylor and Francis Publishers, 5(1), 495–534.
  • Abou Jaoude, A. (2018). The paradigm of complex probability and Ludwig Boltzmann's entropy. Systems Science and Control Engineering, Taylor and Francis Publishers, 6(1), 108–149.
  • Abou Jaoude, A. (2019a). The computer simulation of Monté Carlo methods and random phenomena. United Kingdom: Cambridge Scholars Publishing.
  • Abou Jaoude, A. (2019b). The analysis of selected algorithms for the stochastic paradigm. United Kingdom: Cambridge Scholars Publishing.
  • Abou Jaoude, A., El-Tawil, K., & Kadry, S. (2010). Prediction in complex dimension using Kolmogorov’s set of axioms. Journal of Mathematics and Statistics, Science Publications, 6(2), 116–124.
  • Assaraf, R., Caffarel, M., & Khelif, A. (2000). Diffusion Monte Carlo methods with a fixed number of walkers. Physical Review E, 61(4), 4566–4575. doi:10.1103/physreve.61.4566. Bibcode:2000PhRvE..61.4566A. Archived from the original (PDF) on 2014-11-07.
  • Barricelli, N. A. (1954). Esempi numerici di processi di evoluzione. Methodos, 1, 45–68.
  • Barricelli, N. A. (1957). Symbiogenetic evolution processes realized by artificial methods. Methodos, 9, 143–182.
  • Barrow, J. (1992). Pi in the sky. Oxford: Oxford University Press.
  • Bell, E. T. (1992). The development of mathematics. New York: Dover Publications, Inc., United States of America.
  • Benton, W. (1966a). Probability, encyclopedia Britannica (Vol. 18, pp. 570–574). Chicago: Encyclopedia Britannica Inc.
  • Benton, W. (1966b). Mathematical probability, encyclopedia Britannica. (Vol. 18, pp. 574-579). Chicago: Encyclopedia Britannica Inc.
  • Bidabad, B. (1992). Complex probability and markov stochastic processes. Proceeding first Iranian statistics conference, Tehran, Isfahan University of Technology.
  • Bogdanov, I., & Bogdanov, G. (2009). Au commencement du Temps. Paris: Flammarion.
  • Bogdanov, I., & Bogdanov, G. (2010). Le Visage de Dieu. Paris: Editions Grasset et Fasquelle.
  • Bogdanov, I., & Bogdanov, G. (2012). La Pensée de Dieu. Paris: Editions Grasset et Fasquelle.
  • Bogdanov, I., & Bogdanov, G. (2013). La Fin du Hasard. Paris: Editions Grasset et Fasquelle.
  • Boursin, J.-L. (1986). Les Structures du Hasard. Paris: Editions du Seuil.
  • Caffarel, M., Ceperley, D., & Kalos, M. (1993). Comment on Feynman–Kac path-integral calculation of the ground-state energies of atoms. Physical Review Letters, 71(13), 2159. Bibcode:1993PhRvL..71.2159C. doi:10.1103/physrevlett.71.2159. PMID 10054598.
  • Carvalho, H., Del Moral, P., Monin, A., & Salut, G. (1997, July). Optimal non-linear filtering in GPS/INS integration. IEEE Transactions on Aerospace and Electronic Systems, 33(3), 835–850.
  • Chan Man Fong, C. F., De Kee, D., & Kaloni, P. N. (1997). Advanced mathematics for applied and pure sciences. Amsterdam: Gordon and Breach Science Publishers, The Netherlands.
  • Cox, D. R. (1955). A use of complex probabilities in the theory of stochastic processes. Mathematical Proceedings of the Cambridge Philosophical Society, 51, 313–319.
  • Crisan, D., Del Moral, P., & Lyons, T. (1999). Discrete filtering using branching and interacting particle systems. Markov Processes and Related Fields, 5(3), 293–318.
  • Crisan, D., Gaines, J., & Lyons, T. (1998). Convergence of a branching particle method to the solution of the Zakai. SIAM Journal on Applied Mathematics, 58(5), 1568–1590. doi: 10.1137/s0036139996307371
  • Crisan, D., & Lyons, T. (1997). Nonlinear filtering and measure-valued processes. Probability Theory and Related Fields, 109(2), 217–244. doi: 10.1007/s004400050131
  • Crisan, D., & Lyons, T. (1999). A particle approximation of the solution of the Kushner–stratonovitch equation. Probability Theory and Related Fields, 115(4), 549–578. doi: 10.1007/s004400050249
  • Dacunha-Castelle, D. (1996). Chemins de l’Aléatoire. Paris: Flammarion.
  • Dalmedico-Dahan, A., Chabert, J.-L., & Chemla, K. (1992). Chaos Et déterminisme. Paris: Edition du Seuil.
  • Dalmedico-Dahan, A., & Peiffer, J. (1986). Une Histoire des Mathématiques. Paris: Edition du Seuil.
  • Davies, P. (1993). The mind of god. London: Penguin Books.
  • Del Moral, P. (1996). Nonlinear filtering: Interacting particle solution. Markov Processes and Related Fields, 2(4), 555–580.
  • Del Moral, P. (1998). Measure valued processes and interacting particle systems. Application to nonlinear filtering problems. Annals of Applied Probability (Publications du Laboratoire de Statistique et Probabilités, 96–15 (1996) ed.), 8 (2), 438–495. CiteSeerX 10.1.1.55.5257. doi: 10.1214/aoap/1028903535
  • Del Moral, P. (2003). Particle approximations of Lyapunov exponents connected to Schrödinger operators and Feynman–Kac semigroups. ESAIM Probability & Statistics, 7, 171–208. doi: 10.1051/ps:2003001
  • Del Moral, P. (2004). Feynman–Kac formulae. Genealogical and interacting particle approximations. Berlin: Springer. pp. 575. Series: Probability and Applications.
  • Del Moral, P., & Guionnet, A. (1999). On the stability of measure valued processes with applications to filtering. Comptes Rendus de L'Académie des Sciences - Series I - Mathematics, 329(1), 429–434.
  • Del Moral, P., & Guionnet, A. (2001). On the stability of interacting processes with applications to filtering and genetic algorithms. Annales de L'Institut Henri Poincaré, 37(2), 155–194. Bibcode:2001AnIHP..37..155D. doi: 10.1016/s0246-0203(00)01064-5
  • Del Moral, P., & Miclo, L. (2000a). Branching and interacting particle systems approximations of Feynman–Kac formulae with applications to non-linear filtering. In Séminaire de Probabilités, XXXIV. Lecture Notes in mathematics. 1729 (pp. 1–145). Berlin: Springer. doi:10.1007/BFb0103798. ISBN 978-3-540-67314-9. MR 1768060.
  • Del Moral, P., & Miclo, L. (2000b). A Moran particle system approximation of Feynman–Kac formulae. Stochastic Processes and Their Applications, 86(2), 193–216. doi: 10.1016/S0304-4149(99)00094-0
  • Del Moral, P., Noyer, J.-C., Rigal, G., & Salut, G. (1992c, December). Particle filters in radar signal processing: detection, estimation and air targets recognition. LAAS-CNRS, Toulouse, Research report no. 92495.
  • Del Moral, P., Rigal, G., & Salut, G. (1991, April). Estimation and nonlinear optimal control: A unified framework for particle solutions. LAAS-CNRS, Toulouse, Research Report no. 91137, DRET-DIGILOG- LAAS/CNRS contract.
  • Del Moral, P., Rigal, G., & Salut, G. (1991, September). Nonlinear and non-Gaussian particle filters applied to inertial platform repositioning. LAAS-CNRS, Toulouse, Research Report no. 92207, STCAN/DIGILOG-LAAS/CNRS Convention STCAN no. A.91.77.013, (94pp.).
  • Del Moral, P., Rigal, G., & Salut, G. (1992, January). Estimation and nonlinear optimal control: Particle resolution in filtering and estimation. Experimental results. Convention DRET no. 89.34.553.00.470.75.01, Research report no.2 (54pp.).
  • Del Moral, P., Rigal, G., & Salut, G. (1992, October). Estimation and nonlinear optimal control: Particle resolution in filtering and estimation. Theoretical results Convention DRET no. 89.34.553.00.470.75.01, Research report no.3 (123pp.).
  • Del Moral, P., Rigal, G., & Salut, G. (1993, January). Estimation and nonlinear optimal control: Particle resolution in filtering and estimation. Studies on: Filtering, optimal control, and maximum likelihood estimation. Convention DRET no. 89.34.553.00.470.75.01. Research report no.4 (210pp.).
  • Eckhardt, R. (1987). Stan Ulam, John von Neumann, and the Monte Carlo method. Los Alamos Science, 1(15), 131–137.
  • Ekeland, I. (1991). Au Hasard. La chance, la science et Le Monde. Paris: Editions du Seuil.
  • Fagin, R., Halpern, J., & Megiddo, N. (1990). A logic for reasoning about probabilities. Information and Computation, 87, 78–128.
  • Feller, W. (1968). An introduction to probability theory and its applications (3rd ed.). New York: Wiley.
  • Fermi, E., & Richtmyer, R. D. (1948). Note on census-taking in Monte Carlo calculations. LAM, 805(A), 1–33, Declassified report Los Alamos Archive.
  • Freund, J. E. (1973). Introduction to probability. New York: Dover Publications.
  • Gentle, J. (2003). Random number generation and Monté Carlo methods (2nd ed). Sydney: Springer.
  • Gillies, D. (2000). Philosophical theories of probability. London: Routledge. ISBN 978-0415182768.
  • Gleick, J. (1997). Chaos, making a new science. New York: Penguin Books.
  • Gordon, N. J., Salmond, D. J., & Smith, A. F. M. (1993, April). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceedings F Radar and Signal Processing, 140(2), 107–113. doi:10.1049/ip-f-2.1993.0015. ISSN 0956-375X.
  • Guillen, M. (1995). Initiation Aux Mathématiques. Paris: Albin Michel.
  • Gullberg, J. (1997). Mathematics from the birth of numbers. New York: W.W. Norton & Company.
  • Hawking, S. (2002). On the shoulders of giants. London: Running Press.
  • Hawking, S. (2005). God created the integers. London: Penguin Books.
  • Hawking, S. (2011). The dreams that stuff is made of. London: Running Press.
  • Herman, K., & Theodore, H. E. (1951). Estimation of particle transmission by random sampling. Natl. Bur. Stand. Appl. Math. Ser, 12, 27–30.
  • Hetherington, J. H. (1984). Observations on the statistical iteration of matrices. Physical Review A, 30(2713), 2713–2719. Bibcode:1984PhRvA..30.2713H. doi: 10.1103/PhysRevA.30.2713
  • Kitagawa, G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5(1), 1–25. doi:10.2307/1390750. JSTOR 1390750.
  • Mazhdrakov, M., Benov, D., & Valkanov, N. (2018). The Monte Carlo method. Engineering applications. Cambridge, MA: ACMO Academic Press. pp. 250. ISBN 978-619-90684-3-4.
  • McKean, H. P. (1966). A class of Markov processes associated with nonlinear parabolic equations. Proceedings of the National Academy of Sciences of the United States of America, 56(6), 1907–1911. doi:10.1073/pnas.56.6.1907. Bibcode:1966PNAS … 56.1907M. PMC 220210. PMID 16591437.
  • McKean, H. P. (1967). Propagation of chaos for a class of nonlinear parabolic equations. Lecture Series in Differential Equations, Catholic University, pp. 41–57. Arlington, VA: Air Force Office Sci. Res.
  • Metropolis, N. (1987). The beginning of the Monte Carlo method. Los Alamos Science, (1987 Special Issue dedicated to Stanislaw Ulam), 1, 125–130.
  • Montgomery, D. C., & Runger, G. C. (2003). Applied statistics and probability for Engineers (3rd ed). New York: John Wiley & Sons, Inc.
  • Ognjanović, Z., Marković, Z., Rašković, M., Doder, D., & Perović, A. (2012). A probabilistic temporal logic that can model reasoning about evidence. Annals of Mathematics and Artificial Intelligence, 65, 1–24.
  • Peragine, M. (2013). The universal mind: The evolution of machine intelligence and human psychology. San Diego, CA: Xiphias Press.
  • Pickover, C. (2008). Archimedes to hawking. Oxford: Oxford University Press.
  • Rosenbluth, M. N., & Rosenbluth, A. W. (1955). Monte-Carlo calculations of the average extension of macromolecular chains. The Journal of Chemical Physics, 23(2), 356–359. Bibcode:1955JChPh..23..356R. doi: 10.1063/1.1741967
  • Science Et Vie. (1999). Le Mystère des Mathématiques. Numéro, 984.
  • Srinivasan, S. K., & Mehata, K. M. (1988). Stochastic processes (2nd ed.). New Delhi: McGraw-Hill.
  • Stepić, A. I., & Ognjanović, Z. (2014). Complex valued probability logics. Publications De L’institut Mathématique, Nouvelle Série, Tome, 95(109), 73–86. doi: 10.2298/PIM1409073I
  • Stewart, I. (1996). From here to infinity (2nd ed.). Oxford: Oxford University Press.
  • Stewart, I. (2002). Does god play dice? (2nd ed.). Oxford: Blackwell Publishing.
  • Stewart, I. (2012). In pursuit of the unknown. New York: Basic Books.
  • Turing, A. M. (1950). Computing machinery and intelligence. Mind; A Quarterly Review of Psychology and Philosophy, LIX(238), 433–460. doi: 10.1093/mind/LIX.236.433
  • Van Kampen, N. G. (2006). Stochastic processes in physics and chemistry. Revised and enlarged edition. Sydney: Elsevier.
  • Walpole, R., Myers, R., Myers, S., & Ye, K. (2002). Probability and statistics for Engineers and Scientists (7th ed). New Jersey: Prentice Hall.
  • Wei, Y., Park, J. H., Qiu, J., Wu, L., & Jung, H. Y. (2017, July). Sliding mode control for Semi-Markovian jump systems Via output feedback. Automatica, 81, 133–141.
  • Wei, Y., Qiu, J., Karimi, H. R., & Ji, W. (2017, October). A novel Memory filtering Design for Semi-Markovian Jump time-Delay systems. IEEE Transactions on systems, Man, and Cybernetics: Systems, (pp. 2229–2241).
  • Weingarten, D. (2002). Complex probabilities on RN as real probabilities on CN and an application to path integrals. Physical Review Letters, 89, 335. doi: 10.1103/PhysRevLett.89.240201
  • Wikipedia, the free encyclopedia, Monte Carlo Method. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia. Probability. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia, Probability Axioms. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia, Probability Density Function. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia, Probability Distribution. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia. Probability Interpretations. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia, Probability Measure. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia, Probability Theory. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia, Stochastic Process. Retrieved from https://en.wikipedia.org/
  • Wikipedia, the free encyclopedia, Probability Space. Retrieved from https://en.wikipedia.org/
  • Youssef, S. (1994). Quantum mechanics as complex probability theory. Modern Physics Letters A, 9, 2571–2586.