4,127
Views
2
CrossRef citations to date
0
Altmetric
Review

A review: state estimation based on hybrid models of Kalman filter and neural network

, , , , &
Article: 2173682 | Received 26 Oct 2022, Accepted 24 Jan 2023, Published online: 09 Feb 2023

References

  • Abbaspour, A., Sargolzaei, A., Forouzannezhad, P., Yen, K. K., & Sarwat, A. I. (2019). Resilient control design for load frequency control system under false data injection attacks. IEEE Transactions on Industrial Electronics, 67(9), 7951–7962. https://doi.org/10.1109/TIE.41
  • Abdeljaber, O., Avci, O., & Inman, D. J. (2016). Active vibration control of flexible cantilever plates using piezoelectric materials and artificial neural networks. Journal of Sound and Vibration, 363(0022-460X), 33–53. https://doi.org/10.1016/j.jsv.2015.10.029.
  • Ahmed, R., & Paul, Y. (2015). Hardware/software implementation of fuzzy-neural-network self-learning control methods for brushless DC motor drives. IEEE Transactions on Industry Applications, 52(1), 414–424. https://doi.org/10.1109/TIA.2015.2468191
  • Alanis, A. Y. (2018). Electricity prices forecasting using artificial neural networks. IEEE Latin America Transactions, 16(1), 105–111. https://doi.org/10.1109/TLA.2018.8291461
  • Alonge, F., Cirrincione, M., D'Ippolito, F., Pucci, M., Sferlazza, A., & Vitale, G. (2014). Descriptor-type kalman filter and TLS EXIN speed estimate for sensorless control of a linear induction motor. IEEE Transactions on Industry Applications, 50(6), 3754–3766. https://doi.org/10.1109/TIA.2014.2316367
  • Alsaadi, F. E., Liu, Y., & Alharbi, N. S. (2022). Design of robust H∞ state estimator for delayed polytopic uncertain genetic regulatory networks: Dealing with finite-time boundedness. Neurocomputing, 497(0925-2312), 170–181. https://doi.org/10.1016/j.neucom.2022.05.018.
  • Arasaratnam, I., & Haykin, S. (2009). Cubature kalman filters. IEEE Transactions on Automatic Control, 54(6), 1254–1269. https://doi.org/10.1109/TAC.2009.2019800
  • Armando, L. Ó., Bernardino, C., Laura, M., Consuelo, V., & Kenia, P. (2013). An algorithm for on-line detection of high frequency oscillations related to epilepsy. Computer Methods and Programs in Biomedicine, 110(3), 354–360. https://doi.org/10.1016/j.cmpb.2013.01.014
  • Asl, R. M., Hagh, Y. S., & Palm, R. (2017). Robust control by adaptive Non-singular terminal sliding mode. Engineering Applications of Artificial Intelligence, 59(0952-1976), 205–217. https://doi.org/10.1016/j.engappai.2017.01.005.
  • Bai, G., Wang, P., Hu, C., & Pecht, M. (2014). A generic model-free approach for lithium-ion battery health management. Applied Energy, 135(0306-2619), 247–260. https://doi.org/10.1016/j.apenergy.2014.08.059.
  • Bai, Y., Wang, X., Jin, X., Zhao, Z., & Zhang, B. (2020). A neuron-based Kalman filter with nonlinear autoregressive mode. Sensors, 20(1), 299. https://doi.org/10.3390/s20010299
  • Brown, K. M., & Dennis, J. E. (1971). Derivative free analogues of the Levenberg–Marquardt and gauss algorithms for nonlinear least squares approximation. Numerische Mathematik, 18(4), 289–297. https://doi.org/10.1007/BF01404679
  • Caliskan, F., & Hajiyev, C. (2013). A review of in-flight detection and identification of aircraft icing and reconfigurable control. Progress in Aerospace Sciences, 60(0376-0421), 12–34. https://doi.org/10.1016/j.paerosci.2012.11.001.
  • Che, G., Peter.B, L., Laurent.D, M., & Zhiyi, C. (2013). Hybrid Kalman filters for very short-term load forecasting and prediction interval estimation. IEEE Transactions on Power Systems, 28(4), 3806–3817. https://doi.org/10.1109/TPWRS.2013.2264488
  • Chen, C., Liu, L., Qiu, T., Ren, Z., Hu, J., & Ti, F. (2018). Driver's intention identification and risk evaluation at intersections in the internet of vehicles. IEEE Internet of Things Journal, 5(3), 1575–1587. https://doi.org/10.1109/JIOT.2017.2788848
  • Chen, C., Xiong, R., Yang, R., Shen, W., & Sun, F. (2019). State-of-charge estimation of lithium-ion battery using an improved neural network model and extended Kalman filter. Journal of Cleaner Production, 234(0959-6526), 1153–1164. https://doi.org/10.1016/j.jclepro.2019.06.273.
  • Chen, K., & Yu, J. (2014). Short-term wind speed prediction using an unscented Kalman filter based state–space support vector regression approach. Applied Energy, 113(0306-2619), 690–705. https://doi.org/10.1016/j.apenergy.2013.08.025.
  • Chen, M., Challita, U., Saad, W., Yin, C., & Debbah, M. (2019). Artificial neural networks-based machine learning for wireless networks: A tutorial. IEEE Communications Surveys & Tutorials, 21(4), 3039–3071. https://doi.org/10.1109/COMST.9739
  • Cseko, L. H., Kvasnica, M., & Lantos, B. (2015). Explicit MPC-based RBF neural network controller design with discrete-time actual Kalman filter for semiactive suspension. IEEE Transactions on Control Systems Technology, 23(5), 1736–1753. https://doi.org/10.1109/TCST.2014.2382571
  • Dan, S. (2006). Optimal state estimation: Kalman H and nonlinear approaches. Wiley-Interscience.
  • Dini, D. H., Mandic, D. P., & Julier, S. J. (2011). A widely linear complex unscented Kalman filter. IEEE Signal Processing Letters, 18(11), 623–626. https://doi.org/10.1109/LSP.2011.2166259
  • Dong, H., Hou, N., Wang, Z., & Ren, W. (2018). Variance-constrained state estimation for complex networks with randomly varying topologies. IEEE Transactions on Neural Networks and Learning Systems, 29(7), 2757–2768. https://doi.org/10.1109/TNNLS.2017.2700331
  • Gauterin, E., Kammerer, P., Kühn, M., & Schulte, H. (2016). Effective wind speed estimation: Comparison between Kalman filter and Takagi–Sugeno observer techniques. ISA Transactions, 62(0019-0578), 60–72. https://doi.org/10.1016/j.isatra.2015.11.016.
  • Hannan, M. A., Hoque, Md. M., Hussain, A., Yusof, Y., & Ker, P. J. (2018). State-of-the-art and energy management system of lithium-ion batteries in electric vehicle applications: Issues and recommendations. IEEE access, 6, 19362–19378. https://doi.org/10.1109/Access.6287639
  • Hannan, M. A., Lipu, M. S. H., Hussain, A., & Mohamed, A. (2017). A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations. Renewable and Sustainable Energy Reviews, 78(1364-0321), 834–854. https://doi.org/10.1016/j.rser.2017.05.001.
  • He, W., Williard, N., Chen, C., & Pecht, M. (2014). State of charge estimation for li-ion batteries using neural network modeling and unscented Kalman filter-based error cancellation. International Journal of Electrical Power & Energy Systems, 62(0142-0615), 783–791. https://doi.org/10.1016/j.ijepes.2014.04.059.
  • Hu, C., Wang, Z., Taghavifar, H., Na, J., Qin, Y., Guo, J., & Wei, C. (2019). MME-EKF-based path-tracking control of autonomous vehicles considering input saturation. IEEE Transactions on Vehicular Technology, 68(6), 5246–5259. https://doi.org/10.1109/TVT.25
  • Hu, Z., Shi, P., & Wu, L. (2022). Preserving state and control privacies in networked systems with tokenized polytopic transforms. IEEE Transactions on Circuits and Systems II: Express Briefs, 69(1), 104–108. 10.1109/TCSII.2021.3075471
  • Ji, D., Wang, C., Li, J., & Dong, H. (2021). A review: Data driven-based fault diagnosis and RUL prediction of petroleum machinery and equipment. Systems Science & Control Engineering, 9(1), 724–747. https://doi.org/10.1080/21642583.2021.1992684
  • Jia, C., Hu, J., Chen, D., Cao, Z., Huang, J., & Tan, H. (2022). Adaptive event-triggered state estimation for a class of stochastic complex networks subject to coding-decoding schemes and missing measurements. Neurocomputing, 494(0925-2312), 297–307. https://doi.org/10.1016/j.neucom.2022.04.096.
  • Jiang, B., Dong, H., Shen, Y., & Mu, S. (2022). Encoding-decoding-based recursive filtering for fractional-order systems. IEEE/CAA Journal of Automatica Sinica, 9(6), 1103–1106. https://doi.org/10.1109/JAS.2022.105644
  • Jondhale, S. R., & Deshpande, R. S. (2019). GRNN and KF framework based real time target tracking using PSOC BLE and smartphone. Ad Hoc Networks, 84(1570-8705), 19–28. https://doi.org/10.1016/j.adhoc.2018.09.017.
  • Julier, S. J., & Uhlmann, J. K. (1997). New extension of the Kalman filter to nonlinear systems. Signal Processing, Sensor Fusion, and Target Recognition VI, 3068, 182–193. https://doi.org/10.1117/12.280797
  • Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35–45. https://doi.org/10.1115/1.3662552
  • Kim Geok, T., Zar Aung, K., Sandar Aung, M., Thu Soe, M., Abdaziz, A., Pao Liew, C., Hossain, F., Tso, C. P., & Yong, W. H. (2020). Review of indoor positioning: Radio wave technology. Applied Sciences, 11(1), 279. https://doi.org/10.3390/app11010279
  • Koley, E., Shukla, S. K., Ghosh, S., & Mohanta, D. K. (2017). Protection scheme for power transmission lines based on SVM and ANN considering the presence of non-linear loads. IET Generation, Transmission & Distribution, 11(9), 2333–2341. https://doi.org/10.1049/gtd2.v11.9
  • Larbi, D., Edgar, S. N., & Mohammed, B. (2019). Real-time neural sliding mode field oriented control for a DFIG-based wind turbine under balanced and unbalanced grid conditions. IET Renewable Power Generation, 13(4), 618–632. https:\\doi-org-443.webvpn.bjmu.edu.cn/10.1016\j.conengprac.2018.10.021
  • Li, C., Wang, Z., Song, W., Zhao, S., Wang, J., & Shan, J. (2023). Resilient unscented Kalman filtering fusion with dynamic event-triggered scheme: applications to multiple unmanned aerial vehicles. IEEE Transactions on Control Systems Technology, 31(1), 370–381. https://doi.org/10.1109/TCST.2022.3180942
  • Li, G., Geng, E., Ye, Z., Xu, Y., Lin, J., & Pang, Y. (2018). Indoor positioning algorithm based on the improved RSSI distance mode. Sensors, 18(9), 2820. https://doi.org/10.3390/s18092820
  • Li, G., Liu, T., Yi, J., Wang, H., Li, J., & Inoue, Y. (2016). The lower limbs kinematics analysis by wearable sensor shoes. IEEE Sensors Journal, 16(8), 2627–2638. https://doi.org/10.1109/JSEN.2016.2515101
  • Li, J., Wang, Z., Dong, H., & Ghinea, G. (2021). Outlier-resistant remote state estimation for recurrent neural networks with mixed time delays. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 2266–2273. https://doi.org/10.1109/TNNLS.2020.2991151
  • Li, X., Feng, S., Hou, N., Wang, R., Li, H., Gao, M., & Li, S. (2022). Surface microseismic data denoising based on sparse autoencoder and Kalman filter. Systems Science & Control Engineering, 10(1), 616–628. https://doi.org/10.1080/21642583.2022.2087786
  • Li, X., Han, F., Hou, N., Dong, H., & Liu, H. (2020). Set-membership filtering for piecewise linear systems with censored measurements under Round-Robin protocol. International Journal of Systems Science, 51(9), 1578–1588. https://doi.org/10.1080/00207721.2020.1768453
  • Li, X., Wang, Z., & Zhang, L. (2019). Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles. Energy, 174(0360-5442), 33–44. https://doi.org/10.1016/j.energy.2019.02.147.
  • Lim, B., & Zohren, S. (2021). Time-series forecasting with deep learning: a survey. Philosophical Transactions of the Royal Society A, 379(2194), 20200209. https://doi.org/10.1098/rsta.2020.0209
  • Lin, N., Chen, D., & Du, J. (2021). Partial-nodes-based state estimation for linear complex networks with randomly occurring sensor delay and stochastic coupling strength. Systems Science & Control Engineering, 9(1), 219–231. https://doi.org/10.1080/21642583.2021.1895003
  • Liu, C., Dou, Y., & Ran, C. (2019). Kalman estimator based on BP algorithm for the system with colored and correlated noises, In 2019 IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC) pp. 1184–1188.
  • Liu, J.-E., & An, F.-P. (2020). Image classification algorithm based on deep learning-kernel function. Scientific Programming, 2020(3). https://doi.org/10.1155/2020/7607612. 7607612.
  • Liu, X., Chen, S. W., Liu, C., Shivakumar, S. S., Das, J., Taylor, C. J., Underwood, J., & Kumar, V. (2019). Monocular camera based fruit counting and mapping with semantic data association. IEEE Robotics and Automation Letters, 4(3), 2296–2303. https://doi.org/10.1109/LSP.2016.
  • Liu, Z., Lin, W., Yu, X., Rodríguez-Andina, J. J., & Gao, H. (2022). Approximation-free robust synchronization control for dual-linear-motors-driven systems with uncertainties and disturbances. IEEE Transactions on Industrial Electronics, 69(10), 10500–10509. https://doi.org/10.1109/TIE.2021.3137619
  • Lu, F., Qian, J., Huang, J., & Qiu, X. (2017). In-flight adaptive modeling using polynomial LPV approach for turbofan engine dynamic behavior. Aerospace Science and Technology, 64(1270-9638), 223–236. https://doi.org/10.1016/j.ast.2017.02.003.
  • Mantas, L., & Herbert, J. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3), 127–149. https://doi.org/10.1016/j.cosrev.2009.03.005
  • Marcin, M. (2013). An unscented Kalman filter in designing dynamic GMDH neural networks for robust fault detection. International Journal of Applied Mathematics and Computer Science, 23(1), 157–169.
  • McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The Bulletin of Mathematical Biophysics, 5(4), 115–133. https://doi.org/10.1007/BF02478259
  • Morse, L., Sharif Khodaei, Z., & Aliabadi, M.H. (2018). Reliability based impact localization in composite panels using Bayesian updating and the Kalman filter. Mechanical Systems and Signal Processing, 99, 107–128. https://doi.org/10.1016/J.YMSSP.2017.05.047
  • Najdan, V., & Zoran, M. (2013). A growing and pruning sequential learning algorithm of hyper basis function neural network for function approximation. Neural Networks, 46(0893-6080), 210–226. https://doi.org/10.1016/j.neunet.2013.06.004.
  • Nguyen, H.-N., Zhou, J., & Kang, H. J. (2015). A calibration method for enhancing robot accuracy through integration of an extended Kalman filter algorithm and an artificial neural network. Neurocomputing, 151(0925-2312), 996–1005. https://doi.org/10.1016/j.neucom.2014.03.085.
  • Norbert, W. (1949). Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications (vol. 113, no. 21). MIT Press.
  • Nyanteh, Y. D., Srivastava, S. K., Edrington, C. S., & Cartes, D. A. (2013). Application of artificial intelligence to stator winding fault diagnosis in permanent magnet synchronous machines. Electric Power Systems Research, 103(0378-7796), 201–213. https://doi.org/10.1016/j.epsr.2013.05.018.
  • Öztürk, A. E., & Erçelebi, E. (2021). Real UAV-bird image classification using CNN with a synthetic dataset. Applied Sciences, 11(9), 3863.
  • Paulo, G., Jorge, H., Alberto, C., Paulo, C., & António, D. (2013). Affine neural network-based predictive control applied to a distributed solar collector field. IEEE Transactions on Control Systems Technology, 22(2), 585–596. https://doi.org/10.1109/TCST.2013.2260545
  • Pedro, L., Manuel, C., & José C, R. (2021). An experimental review on deep learning architectures for time series forecasting. International Journal of Neural Systems, 31(03), 2130001. https://doi.org/10.1142/S0129065721300011
  • Peng, C., Wang, Y., & Huang, C. (2020). Artificial-Neural-Network-Based consumer behavior prediction: a survey. 2020 IEEE 2nd Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability (ECBIOS)134–136. https://doi.org/10.1109/ECBIOS50299.2020
  • Puskorius, G.V., & Feldkamp, L.A. (1994). Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2), 279–297. https://doi.org/10.1109/TNN.72
  • Rajagukguk, R. A., Ramadhan, R. A. A., & Lee, Hyun-Jin (2020). A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies, 13(24), 6623. https://doi.org/10.3390/en13246623
  • Safari, S., Shabani, F., & Simon, D. (2014). Multirate multisensor data fusion for linear systems using Kalman filters and a neural network. Aerospace Science and Technology, 39(1270-9638), 465–471. https://doi.org/10.1016/j.ast.2014.06.005.
  • Sang-Hyeon, K., & Han-Lim, C. (2019). Convolutional neural network for monocular vision-based multi-target tracking. International Journal of Control, Automation and Systems, 17(9), 2284–2296. https://doi.org/10.1007/s12555-018-0134-6
  • Satish, J. R., & Rajkumar, D. S. (2018). Kalman filtering framework-based real time target tracking in wireless sensor networks using generalized regression neural networks. IEEE Sensors Journal, 19(1), 224–233. https://doi.org/10.1109/JSEN.2018.2873357
  • Shen, C., Zhang, Y., Tang, J., Cao, H., & Liu, J. (2019). Dual-optimization for a MEMS-INS/GPS system during GPS outages based on the cubature Kalman filter and neural networks. Mechanical Systems and Signal Processing, 133, 106222. 0888-3270. https://doi.org/10.1016/j.ymssp.2019.07.003.
  • Shen, Z., Zhang, Y., Lu, J., Xu, J., & Xiao, G. (2020). A novel time series forecasting model with deep learning. Neurocomputing, 396(0925-2312), 302–313. https://doi.org/10.1016/j.neucom.2018.12.084.
  • Shukur, O. B., & Lee, M. H. (2015). Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA. Renewable Energy, 76(0960-1481), 637–647. https://doi.org/10.1016/j.renene.2014.11.084.
  • Silvestro, P., Pignatti, S., Pascucci, S., Yang, H., Li, Z., Yang, G., Huang, W., & Casa, R. (2017). Estimating wheat yield in China at the field and district scale from the assimilation of satellite data into the aquacrop and simple algorithm for yield (SAFY) models. Remote Sensing, 9(5), 509. https://doi.org/10.3390/rs9050509
  • Siswantoro, J., Prabuwono, A. S., Abdullah, A., & Idrus, B. (2016). A linear model based on Kalman filter for improving neural network classification performance. Expert Systems with Applications, 49(0957-4174), 112–122. https://doi.org/10.1016/j.eswa.2015.12.012.
  • Suo, J., & Li, N. (2022). Observer-based synchronisation control for discrete-time delayed switched complex networks with coding-decoding approach. International Journal of Systems Science, 53(13), 2711–2728. https://doi.org/10.1080/00207721.2022.2083257
  • Wan, X., Wei, F., Zhang, C.-K., & Wu, M. (2022). Hybrid variables-dependent event-triggered model predictive control subject to polytopic uncertainties. International Journal of Systems Science, 53(14), 3042–3055. https://doi.org/10.1080/00207721.2022.2068694
  • Wang, C., Han, F., Zhang, Y., & Lu, J. (2020). An SAE-based resampling SVM ensemble learning paradigm for pipeline leakage detection. Neurocomputing, 403(925-2312), 237–246. https://doi.org/10.1016/j.neucom.2020.04.105
  • Wang, C., Liu, J., Chen, Y., Liu, H., Xie, L., Wang, W., He, B., & Lu, S. (2018). Multi-touch in the air: Device-free finger tracking and gesture recognition via COTS RFID, IEEE INFOCOM 2018-IEEE Conference on Computer Communications, pp. 1691–1699.
  • Wang, J., Li, X., Zhang, H., & Ma, H. (2010). Survey of nonlinear filters in the framework of recursive Bayesian estimation. Computer Science, 37(8), 21–25.
  • Wang, J. Y., Zeng, B. L. M., & Meng, Q. H. (2018). A wind estimation method with an unmanned rotorcraft for environmental monitoring tasks. Sensors, 18(12), 4504. https://doi.org/10.3390/s18124504
  • Wang, L., Liu, S., Zhang, Y., Ding, D., & Yi, X. (2022). Non-fragile l2-l∞ state estimation for time-delayed artificial neural networks: an adaptive event-triggered approach. International Journal of Systems Science, 53(10), 2247–2259. https://doi.org/10.1080/00207721.2022.2049919
  • Wang, Y., Chai, S., Khan, F., & Nguye, H. D. (2017). Unscented Kalman filter trained neural networks based rudder roll stabilization system for ship in waves. Applied Ocean Research, 68(0141-1187), 26–38. https://doi.org/10.1016/j.apor.2017.08.007.
  • Wang, Yafei, Liu, Yahui, Fujimoto, Hiroshi, & Hori, Yoichi. (2018). Vision-Based Lateral State Estimation for Integrated Control of Automated Vehicles Considering Multirate and Unevenly Delayed Measurements. IEEE/ASME Transactions on Mechatronics, 23(6), 2619–2627. http://dx.doi.org/10.1109/TMECH.2018.2870639
  • Wen, P., Dong, H., Huo, F., Li, J., & Lu, X. (2022). Observer-based PID control for actuator-saturated systems under binary encoding scheme. Neurocomputing, 499(0925-2312), 54–62. https://doi.org/10.1016/j.neucom.2022.05.035.
  • Xiong, R., Cao, J., Yu, Q., He, H., & Sun, F. (2017). Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access, 6, 1832–1843. https://doi.org/10.1109/ACCESS.2017.2780258
  • Xu, B., Hu, J., Jia, C., Cao, Z., & Huang, J. (2021). State estimation via prediction-based scheme for linear time-varying uncertain networks with communication transmission delays and stochastic coupling. Systems Science & Control Engineering, 9(1), 173–187. https://doi.org/10.1080/21642583.2021.1888820
  • Yang, F., Li, J., Dong, H., & Shen, Y. (2022). Proportional-integral-type estimator design for delayed recurrent neural networks under encoding–decoding mechanism. International Journal of Systems Science, 53(13), 2729–2741. https://doi.org/10.1080/00207721.2022.2063968
  • Yang, J., Ma, L., Chen, Y., & Yi, X. (2022). l2–l∞ state estimation for continuous stochastic delayed neural networks via memory event-triggering strategy. International Journal of Systems Science, 53(13), 2742–2757. https://doi.org/10.1080/00207721.2022.2055192
  • Yi, J., Chen, S., Zhong, X., Zhou, W., & He, H. (2018). Event-triggered globalized dual heuristic programming and its application to networked control systems. IEEE Transactions on Industrial Informatics, 15(3), 1383–1392. https://doi.org/10.1109/TII.2018.2850001
  • Yu, L., Liu, Y., Cui, Y., Alotaibi, N. D., & Alsaadi, F. E. (2021). Intermittent dynamic event-triggered state estimation for delayed complex networks based on partial nodes. Neurocomputing, 459(0925-2312), 59–69. https://doi.org/10.1016/j.neucom.2021.06.017
  • Yu, N., Yang, R., & Huang, M. (2022). Deep common spatial pattern based motor imagery classification with improved objective function. International Journal of Network Dynamics and Intelligence, 1(1), 73–84. https://doi.org/10.53941/ijndi0101007
  • Yu, S., Emigh, M., Santana, E., & Príncipe, J. (2017). Autoencoders trained with relevant information: Blending Shannon and Wiener's perspectives, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6115–6119.
  • Zhang, J., Song, J., Li, J., Han, F., & Zhang, H. (2021). Observer-based non-fragile H∞-consensus control for multi-agent systems under deception attacks. International Journal of Systems Science, 52(6), 1223–1236. https://doi.org/10.1080/00207721.2021.1884917
  • Zhao, G., Li, Y., & Xu, Q. (2022). From emotion AI to cognitive AI. International Journal of Network Dynamics and Intelligence, 1(1), 65–72. https://doi.org/10.53941/ijndi0101006
  • Zhao, Y., He, X., Ma, L., & Liu, H. (2022). Unbiasedness-constrained least squares state estimation for time-varying systems with missing measurements under round-robin protocol. International Journal of Systems Science, 53(9), 1925–1941. https://doi.org/10.1080/00207721.2022.2031338
  • Zhou, W., Li, X., Yi, J., & He, H. (2018). A novel UKF-RBF method based on adaptive noise factor for fault diagnosis in pumping unit. IEEE Transactions on Industrial Informatics, 15(3), 1415–1424. https://doi.org/10.1109/TII.2018.2839062
  • Zoran, M., Najdan, V., Marko, M., & Bojan, B. (2013). New hybrid vision-based control approach for automated guided vehicles. The International Journal of Advanced Manufacturing Technology, 66(1-4), 231–249. https://doi.org/10.1007/s00170-012-4321-y