314
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stability analysis of low-voltage direct current system with time-varying delay

&
Article: 2293918 | Received 20 Oct 2023, Accepted 06 Dec 2023, Published online: 01 Jan 2024

References

  • Castillo-Calzadilla, T., Cuesta, M. A., Olivares-Rodriguez, C., Macarulla, A. M., Legarda, J., & Borges, C. E. (2022). Is it feasible a massive deployment of low voltage direct current microgrids renewable-based? A technical and social sight. Renewable and Sustainable Energy Reviews, 161, 112198. https://doi.org/10.1016/j.rser.2022.112198
  • Castro, L. M. (2022). Simulation framework for automatic load frequency control studies of VSC-based AC/DC power grids. International Journal of Electrical Power & Energy Systems, 141, 108187. https://doi.org/10.1016/j.ijepes.2022.108187
  • Chen, G., & Zhao, Z. (2018). Delay effects on consensus-based distributed economic dispatch algorithm in microgrid. IEEE Transactions on Power Systems, 33(1), 602–612. https://doi.org/10.1109/TPWRS.2017.2702179
  • Chia, Y. Y., Lee, L. H., Shafiabady, N., & Isa, D. (2015). A load predictive energy management system for supercapacitor-battery hybrid energy storage system in solar application using the Support Vector Machine. Applied Energy, 137, 588–602. https://doi.org/10.1016/j.apenergy.2014.09.026
  • Coelho, E. A., Wu, D., Guerrero, J. M., Vasquez, J. C., Dragicˇević, T., Stefanović, C., & Popovski, P. (2016). Small-signal analysis of the microgrid secondary control considering a communication time delay. IEEE Transactions on Industrial Electronics, 63(10), 6257–6269. https://doi.org/10.1109/TIE.2016.2581155
  • Deng, W., Pei, W., & Li, L. (2018). Active stabilization control of multi-terminal AC/DC hybrid system based on flexible low-voltage DC power distribution. Energies, 11(3), 502. https://doi.org/10.3390/en11030502
  • Deng, W., Pei, W., Wu, Q., & Zhuang, Y. (2022). Analysis of interactive behavior and stability of low-voltage multiterminal DC System under droop control modes. IEEE Transactions on Industrial Electronics, 69(7), 6948–6959. https://doi.org/10.1109/TIE.2021.3095803
  • Deng, W., Pei, W., Wu, Q., Zhuang, Y., & Li, Y. (2023). An improved additional control method for extending stable operating region of multi-terminal LVDC system. IEEE Transactions on Smart Grid. doi:10.1109/TSG.2023.3307930
  • Du, W., Zhang, J., Zhang, Y., & Qian, Z. (2013). Stability criterion for cascaded system with constant power load. IEEE Transactions on Power Electronics, 28(4), 1843–1851. https://doi.org/10.1109/TPEL.2012.2211619
  • Gerber, D. L., Ghatpande, O. A., & Nazir, M. (2022). Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings. Applied Energy, 308, 118308. https://doi.org/10.1016/j.apenergy.2021.118308
  • Hallemans, L., Ravyts, S., & Govaerts, G. (2022). A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids. Applied Energy, 310, 118420. https://doi.org/10.1016/j.apenergy.2021.118420
  • Heydari, R., Dragicevic, T., & Blaabjerg, F. (2019). High-bandwidth secondary voltage and frequency control of VSC-based AC microgrid. IEEE Transactions on Power Electronics, 34(11), 11320–11331. https://doi.org/10.1109/TPEL.2019.2896955
  • Hong, J. S., Ha, J. I., Cui, S., & Hu, J. (2023). Topology and control of an enhanced dual-active bridge converter with inherent bipolar operation capability for LVDC distribution systems. IEEE Transactions on Power Electronics, 38(10), 12774–12789. https://doi.org/10.1109/TPEL.2023.3297389
  • Hussain, M. N., Mishra, R., & Agarwal, V. (2018). A frequency-dependent virtual impedance for voltage-regulating converters feeding constant power loads in a DC microgrid. IEEE Transactions on Industry Applications, 54(6), 5630–5639. https://doi.org/10.1109/TIA.2018.2846637
  • Lin, W., He, Y., Zhang, C., Wu, M., & Shen, J. (2019). Extended dissipativity analysis for Markovian jump neural networks with time-varying delay via delay-product-type functionals. IEEE Transactions on Neural Networks and Learning Systems, 30(8), 2528–2537. https://doi.org/10.1109/TNNLS.2018.2885115
  • Liu, Y., Deng, W., Yang, P., Teng, Y., Zhang, X., Yang, Y., & Pei, W. (2023). Dispatchable droop control strategy for DC microgrid. Energy Reports, 9, 98–102. https://doi.org/10.1016/j.egyr.2023.09.158
  • Long, F., Jiang, L., He, Y., & Wu, M. (2019). Stability analysis of systems with time-varying delay via novel augmented Lyapunov–Krasovskii functionals and an improved integral inequality. Applied Mathematics and Computation, 357, 325–337. https://doi.org/10.1016/j.amc.2019.04.004
  • Luo, H., & Hu, Z. C. (2022). Stability analysis of sampled-data load frequency control systems with multiple delays. IEEE Transactions on Control Systems Technology, 30(1), 434–442. https://doi.org/10.1109/TCST.2021.3061556
  • Lv, Z., Zhou, M., Wang, Q., & Hu, W. (2021). Small-signal stability analysis for multi-terminal LVDC distribution network based on distributed secondary control strategy. Electronics, 10(13), 1575. https://doi.org/10.3390/electronics10131575
  • Magne, P., Nahid-Mobarakeh, B., & Pierfederici, S. (2012). General active global stabilization of multiloads DC-power networks. IEEE Transactions on Power Electronics, 27(4), 1788–1798. https://doi.org/10.1109/TPEL.2011.2168426
  • Miranda, R. F., Salgado-Herrera, N. M., Rodríguez-Hernández, O., Rodríguez-Rodríguez, J. R., Robles, M., Ruiz-Robles, D., & Venegas-Rebollar, V. (2022). Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico. Energy, 242, 122530. https://doi.org/10.1016/j.energy.2021.122530
  • Peyghami, S., Davari, P., Mokhtari, H., & Blaabjerg, F. (2019). Decentralized droop control in DC microgrids based on a frequency injection approach. IEEE Transactions on Smart Grid, 10(6), 6782–6791. https://doi.org/10.1109/TSG.2019.2911213
  • Purgat, P., Shekhar, A., Qin, Z., & Bauer, P. (2023). Low-voltage dc system building blocks: Integrated power flow control and short circuit protection. IEEE Industrial Electronics Magazine, 17(1), 6–20. https://doi.org/10.1109/MIE.2021.3106275
  • Qian, W., Li, Y., Chen, Y., & Liu, W. (2020). L2-L∞ filtering for stochastic delayed systems with randomly occurring nonlinearities and sensor saturation. International Journal of Systems Science, 51(13), 2360–2377. https://doi.org/10.1080/00207721.2020.1794080
  • Qian, W., Lu, D., Guo, S., & Zhao, Y. (2022). Distributed state estimation for mixed delays system over sensor networks with multichannel random attacks and Markov switching topology. IEEE Transactions on Neural Networks and Learning Systems, https://doi.org/10.1109/TNNLS.2022.3230978
  • Qian, W., Xing, W., & Fei, S. (2021). H∞ state estimation for neural networks with general activation function and mixed time-varying delays. IEEE Transactions on Neural Networks and Learning Systems, 32(9), 3909–3918. https://doi.org/10.1109/TNNLS.2020.3016120
  • Seo, H. C., Gwon, G. H., & Park, K. W. (2023). New protection method considering fault section in LVDC distribution system with PV system. Journal of Electrical Engineering & Technology, 18(1), 239–248. https://doi.org/10.1007/s42835-022-01224-x
  • Seuret, A., & Gouaisbaut, F. (2018). Stability of linear systems with time-varying delays using Bessel–Legendre inequalities. IEEE Transactions on Automatic Control, 63(1), 225–232. https://doi.org/10.1109/TAC.2017.2730485
  • Shyam, A. B., Anand, S., & Sahoo, S. R. (2021). Effect of communication delay on consensus-based secondary controllers in DC microgrid. IEEE Transactions on Industrial Electronics, 68(4), 3202–3212. https://doi.org/10.1109/TIE.2020.2978719
  • Tian, Y., & Wang, Z. (2021). Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems. Applied Mathematics Letters, 120, 107252. https://doi.org/10.1016/j.aml.2021.107252
  • Vafamand, N., Khooban, M. H., Dragičević, T., Boudjadar, J., & Asemani, M. H. (2019). Time-delayed stabilizing secondary load frequency control of shipboard microgrids. IEEE Systems Journal, 13(3), 3233–3241. https://doi.org/10.1109/JSYST.2019.2892528
  • Xiong, L., Li, H., & Wang, J. (2018). LMI based robust load frequency control for time delayed power system via delay margin estimation. International Journal of Electrical Power & Energy Systems, 100, 91–103. https://doi.org/10.1016/j.ijepes.2018.02.027
  • Zeng, H. B., Lin, H. C., He, Y., Zhang, C. K., & Teo, K. L. (2020). Improved negativity condition for a quadratic function and its application to systems with time-varying delay. IET Control Theory & Applications, 14(18), 2989–2993. https://doi.org/10.1049/iet-cta.2019.1464
  • Zeng, H. B., Liu, X. G., & Wang, W. (2019). A generalized free-matrix-based integral inequality for stability analysis of time-varying delay systems. Applied Mathematics and Computation, 354, 1–8. https://doi.org/10.1016/j.amc.2019.02.009
  • Zhang, C., Wang, H., Wang, Z., & Li, Y. (2023). Active detection fault diagnosis and fault location technology for LVDC distribution networks. International Journal of Electrical Power & Energy Systems, 148, 108921. https://doi.org/10.1016/j.ijepes.2022.108921
  • Zhang, C.-K., He, Y., Jiang, L., & Wu, M. (2017). Notes on stability of time-delay systems: Bounding inequalities and augmented Lyapunov-Krasovskii functionals. IEEE Transactions on Automatic Control, 62(10), 5331–5336. https://doi.org/10.1109/TAC.2016.2635381
  • Zhang, L., Chen, K., Lyu, L., & Cai, G. (2019). Research on the operation control strategy of a low-voltage direct current microgrid based on a disturbance observer and neural network adaptive control algorithm. Energies, 12(6), 1162. https://doi.org/10.3390/en12061162
  • Zhao, D., Jiang, S., Hu, D., Wang, Y., Jin, X., & Sun, C. (2022). Summary and prospect of technology development of MVDC and LVDC distribution technology. In 2022 IEEE 5th International Electrical and Energy Conference (CIEEC) (pp. 1294–1300). Institute of Electrical and Electronics Engineers. https://doi.org/10.1109/CIEEC54735.2022.9845945