2,988
Views
53
CrossRef citations to date
0
Altmetric
Research Papers

DNA vaccines, electroporation and their applications in cancer treatment

, &
Pages 1889-1900 | Received 01 Dec 2014, Accepted 25 Mar 2015, Published online: 11 Aug 2015

References

  • Kuhober A, Pudollek HP, Reifenberg K, Chisari FV, Schlicht HJ, Reimann J, Schirmbeck R. DNA immunization induces antibody and cytotoxic T cell responses to hepatitis B core antigen in H-2b mice. J Immunol 1996; 156:3687-95; PMID:8621903
  • Wang B, Ugen KE, Srikantan V, Agadjanyan MG, Dang K, Refaeli Y, Sato A, Boyer JD, Williams WV, Weiner DB. Gene inoculation generates immune responses against human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1993; 90:4156-60; PMID:8483929; http://dx.doi.org/10.1073/pnas.90.9.4156
  • Corr M, Lee DJ, Carson DA, Tighe H. Gene vaccination with naked plasmid DNA: mechanism of CTL priming. J Exp Med 1996; 184:1555-60; PMID:8879229; http://dx.doi.org/10.1084/jem.184.4.1555
  • Casares S, Inaba K, Brumeanu TD, Steinman RM, Bona CA. Anitigen presentation by dendritic cells after immunization with DNA encoding a major histocompatibility complex class II-restricted viral epitope. J Exp Med 1997; 186:1481-6; PMID:9348305; http://dx.doi.org/10.1084/jem.186.9.1481
  • Chattergoon MA, Robinson TM, Boyer JD, Weiner DB. Specific immune induction following DNA-based immunization through in vivo transfection and activation of macrophages. J Immunol 1998; 160:5707-18; PMID:9637479
  • Fu T, Ulmer JB, Caulfield MJ, Deck RR, Friedman A, Wang S, Liu X, Donnelly JJ, Liu MA. Priming of cytotoxic T lymphocytes by DNA vaccines: requirement for professional antigen presenting cells and evidence for antigen transfer from myocytes. Mol Med 1997; 3:362-71; PMID:9234241
  • Iwasaki A, Torres CA, Ohashi PS, Robinson HL, Barber BH. The dominant role of bone marrow-derived cells in CTL induction following plasmid DNA immunization at different sites. J Immunol 1997; 159:11-4; PMID:9200432
  • Condon C, Watkins S, Celluzzi CM, Thompson K, Faldo L Jr. DNA-based immunization by in vivo transfection of dendritic cells. Nature Med 1996; 2:1122-8; PMID:8837611; http://dx.doi.org/10.1038/nm1096-1122
  • Liu M, Ulmer JB. Human clinical trials of plasmid DNA vaccines. Adv Genet 2005; 55:25-40; PMID:16291211; http://dx.doi.org/10.1016/S0065-2660(05)55002-8
  • Atkinson EA, Bleackley RC. Mechanisms of lysis by cytotoxic T cells. Crit Rev Immunol 1995; 15:359-84; PMID:8834456; http://dx.doi.org/10.1615/CritRevImmunol.v15.i3-4.90
  • Groscurth P, Filgueira L. Killing mechanisms of cytotoxic T lymphocytes. News Physiol Sci 1998; 13:17-21; PMID:11390753
  • Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71:907-20; PMID:12050175
  • Wolff JA, Malone RW, Williams P, Chong W, Acsadi G, Jani A, Felgner PL. Direct gene transfer into mouse muscle in vivo. Science 1990; 247:1465-8; PMID:1690918; http://dx.doi.org/10.1126/science.1690918
  • Ulmer JB, Donnelly J, Parker SE, Rhodes GH, Felgner PL, Dwarki VL, Gromkowski SH, Deck R, DeVitt CM, Friedman A, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259:1745-9; PMID:8456302; http://dx.doi.org/10.1126/science.8456302
  • Raz E, Carson DA, Parker SE, Parr TB, Abai AM, Aichinger G, Gromkowski SH, Singh M, Lew D, Yankauckas MA, et al. Intradermal gene immunization: the possible role of DNA uptake in the induction of cellular immunity to viruses. Proc Natl Acad Sci U S A 1994; 91:9519-23; PMID:7937799; http://dx.doi.org/10.1073/pnas.91.20.9519
  • MacGregor RR, Boyer JD, Ugen KE, Lacy KE, Gluckman SJ, Bagarazzi ML, Chattergoon MA, Baine Y, Higgins TJ, Ciccarelli RB, et al. First human trial of a DNA-based vaccine for treatment of human immunodeficiency virus-1 infection: safety and host response. J Infect Dis 1998; 178:92-100; PMID:9652427; http://dx.doi.org/10.1086/515613
  • Wang R, Doolan DL, Le TP, Hedstrom RC, Coonan KM, Charoenvit Y, Jones TR, Hobart P, Margalith M, Ng J, et al. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 1998; 282:476-80; PMID:9774275; http://dx.doi.org/10.1126/science.282.5388.476
  • Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, Pardoll D, Wu TC. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 2009; 15:361-7; PMID:19118066; http://dx.doi.org/10.1158/1078-0432.CCR-08-1725
  • Aurisicchio L, Mennuni C, Giannetti P, Calvaruso F, Nuzzo M, Cipriani B, Palombo F, Monaci P, Ciliberto G, La Monica N. Immunogenicity and safety of a DNA prime/adenovirus boost vaccine against rhesus CEA in nonhuman primates. Int J Cancer 2007; 120:2290-300; PMID:17304509; http://dx.doi.org/10.1002/ijc.22555
  • Weber J, Boswell W, Smith J, Hersh E, Snively J, Diaz M, Miles S, Liu X, Obrocea M, Qiu Z, et al. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother 2008; 31:215-23; PMID:18481391; http://dx.doi.org/10.1097/CJI.0b013e3181611420
  • Weber J, Vogelzang NJ, Ernstoff MS, Goodman OB, Cranmer LD, Marshall JL, Miles S, Rosario D, Diamond DC, Qiu Z, et al. A phase 1 study of a vaccine targeting preferentially expressed antigen in melanoma and prostate-specific membrane antigen in patients with advanced solid tumors. J Immunother 2011; 34:556-67; PMID:21760528; http://dx.doi.org/10.1097/CJI.0b013e3182280db1
  • Greenland J, Letvin NL. Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007; 25:3731-41; PMID:17350735; http://dx.doi.org/10.1016/j.vaccine.2007.01.120
  • Han DJ, Weiner DB, Sin JI. DNA vaccines against infectious diseases and cancer. Biomol Ther 2010; 18:1-15; http://dx.doi.org/10.4062/biomolther.2010.18.1.001
  • Quaak S, van den Berg JH, Toebes M, Schumacher TN, Haanen JB, Beijnen JH, Nuijen B. GMP production of pDERMATT for vaccination against melanoma in a phase I clinical trial. Eur J Pharm Biopharm 2008; 70:429-38; PMID:18606527; http://dx.doi.org/10.1016/j.ejpb.2008.05.002
  • Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, Norley S, Lipp M, Walther W, Pezzutto A, et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2012; 1:1537-45; PMID:23264900; http://dx.doi.org/10.4161/onci.22563
  • Trimble C, Lin CT, Hung CF, Pai S, Juang J, He L, Gillison M, Pardoll D, Wu L, Wu TC. Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine 2003; 21:4036-42; PMID:12922140; http://dx.doi.org/10.1016/S0264-410X(03)00275-5
  • Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med 1998; 188:1075-82; PMID:9743526; http://dx.doi.org/10.1084/jem.188.6.1075
  • Best S, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, Wu TC, Pai SI. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 2009; 27:5450-9; PMID:19622402; http://dx.doi.org/10.1016/j.vaccine.2009.07.005
  • Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16:867-70; PMID:9743122; http://dx.doi.org/10.1038/nbt0998-867
  • Rizzuto G, Cappelletti M, Maione D, Savino R, Lazzaro D, Costa P, Mathiesen I, Cortese R, Ciliberto G, Laufer R, et al. Efficient and regulated erythropoietin production by naked DNA injection and muscle electroporation. Proc Natl Acad Sci USA 1999; 96:6417-22; PMID:10339602; http://dx.doi.org/10.1073/pnas.96.11.6417
  • Gronevik E, von Steyern FV, Kalhovde JM, Tjelle TE, Mathiesen I. Gene expression and immune response kinetics using electroporation-mediated DNA delivery to muscle. J Gene Med 2005; 7:218-27; PMID:15515140; http://dx.doi.org/10.1002/jgm.650
  • Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, Otten GR, Ulmer JB, Donnelly JJ, Ott G, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165:2850-8; PMID:10946318; http://dx.doi.org/10.4049/jimmunol.165.5.2850
  • Ahlén G, Söderholm J, Tjelle T, Kjeken R, Frelin L, Höglund U, Blomberg P, Fons M, Mathiesen I, Sällberg M. In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J Immunol 2007; 179:4741-53; http://dx.doi.org/10.4049/jimmunol.179.7.4741
  • Bagarazzi ML, Yan J, Morrow MP, Shen X, Parker RL, Lee JC, Giffear M, Pankhong P, Khan AS, Broderick KE, et al. Immunotherapy against HPV16/18 generates potent TH1 and cytotoxic cellular immune responses. Science Transl Med 2012; 4:155ra38; http://dx.doi.org/10.1126/scitranslmed.3004414
  • Kulkarni V, Rosati M, Bear J, Pilkington GR, Jalah R, Bergamaschi C, Singh AK, Alicea C, Chowdhury B, Zhang GM, et al. Comparison of intradermal and intramuscular delivery followed by in vivo electroporation of SIV Env DNA in macaques. Hum Vaccin Immunother 2013; 9:2081-94; PMID:23811579; http://dx.doi.org/10.4161/hv.25473
  • Lucas ML, Heller L, Coppola D, Heller R. IL-12 plasmid delivery by in vivo electroporation for the successful treatment of established subcutaneous B16.F10 melanoma. Mol Ther 2002; 5:668-75
  • Ugen KE, Kutzler MA, Marrero B, Westover J, Coppola D, Weiner DB, Heller R. Regression of subcutaneous B16 melanoma tumors after intratumoral delivery of an IL-15-expressing plasmid followed by in vivo electroporation. Cancer Gene Ther 2006; 13:969-74; PMID:16763607; http://dx.doi.org/10.1038/sj.cgt.7700973
  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26:5896-903; PMID:19029422; http://dx.doi.org/10.1200/JCO.2007.13.9048
  • Sin JI, Park JB, Lee IH, Park D, Choi YS, Choe J, Celis E. Intratumoral electroporation of IL-12 cDNA eradicates established melanomas by Trp2180-188-specific CD8+ CTLs in a perforin/granzyme-mediated and IFN-g dependent manner: application of Trp2180-188 peptides. Cancer Immunol Immunother 2012; 61:1671-82; PMID:22382361; http://dx.doi.org/10.1007/s00262-012-1214-8
  • Kim H, Sin JI. Electroporation driven delivery of both an IL-12 expressing plasmid and cisplatin synergizes to inhibit B16 melanoma tumor growth through an NK cell mediated tumor killing mechanism. Hum Vaccin Immunother 2012; 8:1714-21; PMID:23151450; http://dx.doi.org/10.4161/hv.22346
  • Kim MS, Sin JI. Both antigen optimization and lysosomal targeting are required for enhanced anti-tumour protective immunity in a human papillomavirus E7-expressing animal tumour model. Immunol 2005; 116:255-66; http://dx.doi.org/10.1111/j.1365-2567.2005.02219.x
  • Hsu KF, Hung CF, Cheng WF, He L, Slater LA, Ling M, Wu TC. Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Ther 2001; 8:376-83; PMID:11313814; http://dx.doi.org/10.1038/sj.gt.3301408
  • Yan J, Reichenbach DK, Corbitt N, Hokey DA, Ramanathan MP, McKinney KA, Weiner DB, Sewell D. Induction of antitumor immunity in vivo following delivery of a novel HPV-16 DNA vaccine encoding an E6/E7 fusion antigen. Vaccine 2009; 27:431-40; PMID:19022315; http://dx.doi.org/10.1016/j.vaccine.2008.10.078
  • Low L, Mander A, McCann K, Dearnaley D, Tjelle T, Mathiesen I, Stevenson F, Ottensmeier CH. DNA vaccination with electroporation induces increased antibody responses in patients with prostate cancer. Hum Gene Ther 2009; 20:1269-78; PMID:19619001; http://dx.doi.org/10.1089/hum.2009.067
  • Chudley L, McCann K, Mander A, Tjelle T, Campos-Perez J, Godeseth R, Creak A, Dobbyn J, Johnson B, Bass P, et al. DNA fusion-gene vaccination in patients with prostate cancer induces high-frequency CD8(+) T-cell responses and increases PSA doubling time. Cancer Immunol Immunother 2012; 61:2161-70; PMID:22729556; http://dx.doi.org/10.1007/s00262-012-1270-0
  • Gold JS, Ferrone CR, Guevara-Patiño JA, Hawkins WG, Dyall R, Engelhorn ME, Wolchok JD, Lewis JJ, Houghton AN. A single heteroclitic epitope determines cancer immunity after xenogeneic DNA immunization against a tumor differentiation antigen. J Immunol 2003; 170:5188-94; PMID:12734366; http://dx.doi.org/10.4049/jimmunol.170.10.5188
  • Bergman PJ, Camps-Palau MA, McKnight JA, Leibman NF, Craft DM, Leung C, Liao J, Riviere I, Sadelain M, Hohenhaus AE, et al. Development of a xenogeneic DNA vaccine program for canine malignant melanoma at the Animal Medical Center. Vaccine 2006; 24:4582-5; PMID:16188351; http://dx.doi.org/10.1016/j.vaccine.2005.08.027
  • Liao J, Gregor P, Wolchok JD, Orlandi F, Craft D, Leung C, Houghton AN, Bergman PJ. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun 2006; 6:8; PMID:16626110
  • Peggs KS, Quezada SA, Allison JP. Cancer immunotherapy: co-stimulatory agonists and co-inhibitory antagonists. Clin Exp Immunol 2009; 157:9-19; PMID:19659765; http://dx.doi.org/10.1111/j.1365-2249.2009.03912.x
  • Pentcheva-Hoang T, Corse E, Allison JP. Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev 2009; 229:67-87; PMID:19426215; http://dx.doi.org/10.1111/j.1600-065X.2009.00763.x
  • Sin JI, Kim H, Ahn E, Jeon YH, Park WS, Lee SY, Kwon B. Combined stimulation of TLR9 and 4.1BB augments Trp2 peptide vaccine-mediated melanoma rejection by increasing Ag-specific CTLs and their infiltration into tumor sites. Cancer Lett 2013; 330:190-9; PMID:23219755; http://dx.doi.org/10.1016/j.canlet.2012.11.045
  • Kim H, Kwon B, Sin JI. Combined stimulation of IL-2 and 4-1BB receptors augments the antitumor activity of E7 DNA vaccines by increasing Ag-specific CTL responses. PLoS One 2013; 8:e83765; PMID:24391824; http://dx.doi.org/10.1371/journal.pone.0083765
  • Cuadros C, Dominguez AL, Lollini PL, Croft M, Mittler RS, Borgström P, Lustgarten J. Vaccination with dendritic cells pulsed with apoptotic tumors in combination with anti-OX40 and anti-4-1BB monoclonal antibodies induces T cell-mediated protective immunity in Her-2/neu transgenic mice. Int J Cancer 2005; 116:934-43; PMID:15856473; http://dx.doi.org/10.1002/ijc.21098
  • Cohen AD, Diab A, Perales MA, Wolchok JD, Rizzuto G, Merghoub T, Huggins D, Liu C, Turk MJ, Restifo NP, et al. Agonist anti-GITR antibody enhances vaccine-induced CD8(+) T-cell responses and tumor immunity. Cancer Res 2006; 66:4904-12; PMID:16651447; http://dx.doi.org/10.1158/0008-5472.CAN-05-2813
  • van Elsas A, Hurwitz AA, Allison JP. Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 1999; 190:355-66; PMID:10430624; http://dx.doi.org/10.1084/jem.190.3.355
  • Quezada SA, Peggs KS, Curran MA, Allison JP. CTLA4 blockade and GM-CSF combination immunotherapy alters the intratumor balance of effector and regulatory T cells. J Clin Invest 2006; 116:1935-45; PMID:16778987; http://dx.doi.org/10.1172/JCI27745
  • Gregor PD, Wolchok JD, Ferrone CR, Buchinshky H, Guevara-Patiño JA, Perales MA, Mortazavi F, Bacich D, Heston W, Latouche JB, et al. CTLA-4 blockade in combination with xenogeneic DNA vaccines enhances T-cell responses, tumor immunity and autoimmunity to self antigens in animal and cellular model systems. Vaccine 2004; 22:1700-8; PMID:15068853; http://dx.doi.org/10.1016/j.vaccine.2003.10.048
  • Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363:711-23; PMID:20525992; http://dx.doi.org/10.1056/NEJMoa1003466
  • Kvistborg P, Philips D, Kelderman S, Hageman L, Ottensmeier C, Joseph-Pietras D, Welters MJ, van der Burg S, Kapiteijn E, Michielin O, et al. Anti-CTLA-4 therapy broadens the melanoma-reactive CD8+ T cell response. Sci Transl Med 2014; 6:254ra128; http://dx.doi.org/10.1126/scitranslmed.3008918
  • Roos AK, Pavlenko M, Charo J, Egevad L, Pisa P. Induction of PSA-specific CTLs and anti-tumor immunity by a genetic prostate cancer vaccine. Prostate 2005; 62:217-23; PMID:15389792; http://dx.doi.org/10.1002/pros.20135
  • Song K, Chang Y, Prud'homme GJ. IL-12 plasmid-enhanced DNA vaccination against carcinoembryonic antigen (CEA) studied in immune-gene knockout mice. Gene Ther 2000; 7:1527-35; PMID:11021590; http://dx.doi.org/10.1038/sj.gt.3301274
  • Sin JI. Suppression of antitumor protective cytotoxic T lymphocyte responses to a human papillomavirus 16 E7 DNA vaccine by coinjection of interleukin-12 cDNA: involvement of nitric oxide in immune suppression. Immunology 2009; 128:e707-e17; PMID:19740332; http://dx.doi.org/10.1111/j.1365-2567.2009.03068.x
  • Ahn E, Kim H, Han KT, Sin JI. A loss of antitumor therapeutic activity of CEA DNA vaccines is associated with the lack of tumor cells' antigen presentation to Ag-specific CTLs in a colon cancer model. Cancer Lett 2015; 356:676-85; PMID:25449428; http://dx.doi.org/10.1016/j.canlet.2014.10.019
  • Kim TW, Hung CF, Ling M, Juang J, He L, Hardwick JM, Kumar S, Wu TC. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest 2003; 112:109-17; PMID:12840065; http://dx.doi.org/10.1172/JCI200317293
  • Kim TW, Hung CF, Boyd DA, He L, Lin CT, Kaiserman D, Bird PI, Wu TC. Enhancement of DNA vaccine potency by coadministration of a tumor antigen gene and DNA encoding serine protease inhibitor-6. Cancer Res 2004; 64:400-5; PMID:14729651; http://dx.doi.org/10.1158/0008-5472.CAN-03-1475
  • Perales MA, Yuan J, Powel S, Gallardo HF, Rasalan TS, Gonzalez C, Manukian G, Wang J, Zhang Y, Chapman PB, et al. Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. Mol Ther 2008; 16:2022-9; PMID:18797450; http://dx.doi.org/10.1038/mt.2008.196
  • Timmerman JM, Singh G, Hermanson G, Hobart P, Czerwinski DK, Taidi B, Rajapaksa R, Caspar CB, Van Beckhoven A, Levy R. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res 2002; 62:5845-52; PMID:12384547
  • Mennuni C, Calvaruso F, Facciabene A, Aurisicchio L, Storto M, Scarselli E, Ciliberto G, La Monica N. Efficient induction of T-cell responses to carcinoembryonic antigen by a heterologous prime-boost regimen using DNA and adenovirus vectors carrying a codon usage optimized cDNA. Int J Cancer 2005; 117:444-55; PMID:15906358; http://dx.doi.org/10.1002/ijc.21188
  • Facciabene A, Aurisicchio L, Elia L, Palombo F, Mennuni C, Ciliberto G, La Monica N. DNA and adenoviral vectors encoding carcinoembryonic antigen fused to immunoenhancing sequences augment antigen-specific immune response and confer tumor protection. Hum Gene Ther 2006; 17:81-92; PMID:16409127; http://dx.doi.org/10.1089/hum.2006.17.81
  • Diaz-Montero CM, Chiappori A, Aurisicchio L, Bagchi A, Clark J, Dubey S, Fridman A, Fabregas JC, Marshall J, Scarselli E, et al. Phase 1 studies of the safety and immunogenicity of electroporated HER2/CEA DNA vaccine followed by adenoviral boost immunization in patients with solid tumors. J Transl Med 2013; 11:62; PMID:23497415; http://dx.doi.org/10.1186/1479-5876-11-62
  • U'Ren L, Kedl R, Dow S. Vaccination with liposome-DNA complexes elicits enhanced antitumor immunity. Cancer Gene Ther 2006; 13:1033-44; PMID:16841080; http://dx.doi.org/10.1038/sj.cgt.7700982
  • Li A, Qin L, Wang W, Zhu R, Yu Y, Liu H, Wang S. The use of layered double hydroxides as DNA vaccine delivery vector for enhancement of anti-melanoma immune response. Biomaterials 2011; 32:469-77; PMID:20934217; http://dx.doi.org/10.1016/j.biomaterials.2010.08.107
  • Altieri DC. Survivin, cancer networks and pathway-directed drug discovery. Nat Rev Cancer 2008; 8:61-70; PMID:18075512; http://dx.doi.org/10.1038/nrc2293
  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW. Specific association of human telomerase activity with immortal cells and cancer. Science 1994; 266:2011-5; PMID:7605428; http://dx.doi.org/10.1126/science.7605428
  • Hiyama E, Hiyama K. Telomerase as tumor marker. Cancer Lett 2003; 194:221-33; PMID:12757980; http://dx.doi.org/10.1016/S0304-3835(02)00709-7
  • Zhang H, Wang Y, Liu C, Zhang L, Xia Q, Zhang Y, Wu J, Jiang C, Chen Y, Wu Y, et al. DNA and adenovirus tumor vaccine expressing truncated survivin generates specific immune responses and anti-tumor effects in a murine melanoma model. Cancer Immunol Immunother 2012; 61:1857-67; PMID:22706381; http://dx.doi.org/10.1007/s00262-012-1296-3
  • Yan J, Pankhong P, Shin TH, Obeng-Adjei N, Morrow MP, Walters JN, Khan AS, Sardesai NY, Weiner DB. Highly optimized DNA vaccine targeting human telomerase reverse transcriptase stimulates potent antitumor immunity. Cancer Immunol Res 2013; 1:179-89; PMID:24777680; http://dx.doi.org/10.1158/2326-6066.CIR-13-0001
  • Tsuboi A, Oka Y, Ogawa H, Elisseeva OA, Li H, Kawasaki K, Aozasa K, Kishimoto T, Udaka K, Sugiyama H. Cytotoxic T-lymphocyte responses elicited to Wilms' tumor gene WT1 product by DNA vaccination. J Clin Immunol 2000; 20:195-202; PMID:10941827; http://dx.doi.org/10.1023/A:1006637529995
  • Thompson J, Zimmermann W. The carcinoembryonic antigen gene family: structure, expression and evolution. Tumor Biol 1988; 9:63-83; http://dx.doi.org/10.1159/000217547
  • Thompson JA, Grunert F, Zimmermann W. Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal 1991; 5:344-66; PMID:1941355; http://dx.doi.org/10.1002/jcla.1860050510
  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244:707-12; PMID:2470152; http://dx.doi.org/10.1126/science.2470152
  • Song K, Chang Y, Prud'homme GJ. Regulation of T-helper-1 versus T-helper-2 activity and enhancement of tumor immunity by combined DNA-based vaccination and nonviral cytokine gene transfer. Gene Ther 2000; 7:481-92; PMID:10757021; http://dx.doi.org/10.1038/sj.gt.3301123
  • Aurisicchio L, Peruzzi D, Koo G, Wei WZ, La Monica N, Ciliberto G. Immunogenicity and therapeutic efficacy of a dual-component genetic cancer vaccine cotargeting carcinoembryonic antigen and HER2/neu in preclinical models. Hum Gene Ther 2014; 25:121-31; PMID:24195644; http://dx.doi.org/10.1089/hum.2013.103
  • Ruoslahti E, Seppälä M. α-Fetoprotein in cancer and fetal development. Adv Cancer Res 1979; 29:275-346; PMID:89800; http://dx.doi.org/10.1016/S0065-230X(08)60849-0
  • Meng W, Butterfield LH, Ribas A, Dissette VB, Heller JB, Miranda GA, Glaspy JA, McBride WH, Economou JS. alpha-fetoprotein-specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination. Cancer Res 2001; 61:8782-6; PMID:11751399
  • Butterfield L, Economou JS, Gamblin TC, Geller DA. Alpha fetoprotein DNA prime and adenovirus boost immunization of two hepatocellular cancer patients. J Transl Med 2014; 12:86; PMID:24708667; http://dx.doi.org/10.1186/1479-5876-12-86
  • Inoue K, Ogawa H, Sonoda Y, Kimura T, Sakabe H, Oka Y, Miyake S, Tamaki H, Oji Y, Yamagami T, et al. Aberrant overexpression of the Wilms tumor gene (WT1) in human leukemia. Blood 1997; 89:1405-12; PMID:9028964
  • Oji Y, Miyoshi S, Maeda H, Hayashi S, Tamaki H, Nakatsuka S, Yao M, Takahashi E, Nakano Y, Hirabayashi H, et al. Overexpression of the Wilms' tumor gene WT1 in de novo lung cancers. Int J Cancer 2002; 100:297-303; PMID:12115544; http://dx.doi.org/10.1002/ijc.10476
  • Koesters R, Linnebacher M, Coy JF, Germann A, Schwitalle Y, Findeisen P, von Knebel Doeberitz M. WT1 is a tumor-associated antigen in colon cancer that can be recognized by in vitro stimulated cytotoxic T cells. Int J Cancer 2004; 109:385-92; PMID:14961577; http://dx.doi.org/10.1002/ijc.11721
  • Chaise C, Buchan SL, Rice J, Marquet J, Rouard H, Kuentz M, Vittes GE, Molinier-Frenkel V, Farcet JP, Stauss HJ, et al. DNA vaccination induces WT1-specific T-cell responses with potential clinical relevance. Blood 2008; 112:2956-64; PMID:18502835; http://dx.doi.org/10.1182/blood-2008-02-137695
  • Wang M, Kuriyama M, Papsidero L, Loor R, Valenzyela L, Murphy G, Chu T. Prostate antigen of human cancer patients. Methods Cancer Res 1982; 19:179-97
  • Moul JW. Prostate specific antigen only progression of prostate cancer. J Urol 2000; 163:1632-42; PMID:10799151; http://dx.doi.org/10.1016/S0022-5347(05)67511-8
  • Schmittgen TD, Teske S, Vessella RL, True LD, Zakrajsek BA. Expression of prostate specific membrane antigen and three alternatively spliced variants of PSMA in prostate cancer patients. Int J Cancer 2003; 107:323-9; PMID:12949815; http://dx.doi.org/10.1002/ijc.11402
  • Gutman AB, Gutman EB. An acid phosphatase in the serum of patients with metastasizing carcinoma of the prostate gland. J Clin Invest 1938; 17; PMID:16694594; http://dx.doi.org/10.1172/JCI100974
  • Marshall D, San Mateo LR, Rudnick KA, McCarthy SG, Harris MC, McCauley C, Schantz A, Geng D, Cawood P, Snyder LA. Induction of Th1-type immunity and tumor protection with a prostate-specific antigen DNA vaccine. Cancer Immunol Immunother 2005; 54:1082-94; PMID:16047142; http://dx.doi.org/10.1007/s00262-005-0687-0
  • Ferraro B, Cisper NJ, Talbott KT, Philipson-Weiner L, Lucke CE, Khan AS, Sardesai NY, Weiner DB. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses. Human Vaccin 2011; 7:(Suppl):120-7; http://dx.doi.org/10.4161/hv.7.0.14574
  • Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, Bergman B, Egevad L, Hellström M, Kiessling R, et al. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 2004; 91:688-94; PMID:15280930
  • McNeel DG, Dunphy EJ, Davies JG, Frye TP, Johnson LE, Staab MJ, Horvath DL, Straus J, Alberti D, Marnocha R, et al. Safety and immunological efficacy of a DNA vaccine encoding prostatic acid phosphatase in patients with stage D0 prostate cancer. J Clin Oncol 2009; 27:4047-54; PMID:19636017; http://dx.doi.org/10.1200/JCO.2008.19.9968
  • Becker JT, Olson BM, Johnson LE, Davies JG, Dunphy EJ, McNeel DG. DNA vaccine encoding prostatic acid phosphatase (PAP) elicits long-term T-cell responses in patients with recurrent prostate cancer. J Immunother 2010; 33:639-47; PMID:20551832; http://dx.doi.org/10.1097/CJI.0b013e3181dda23e
  • Yoshida N, Abe H, Ohkuri T, Wakita D, Sato M, Noguchi D, Miyamoto M, Morikawa T, Kondo S, Ikeda H, et al. Expression of the MAGE-A4 and NY-ESO-1 cancer-testis antigens and T cell infiltration in non-small cell lung carcinoma and their prognostic significance. Int J Oncol 2006; 28:1089-98; PMID:16596224
  • Ma J, Sui YF, Ye J, Huang YY, Li ZS, Chen GS, Qu P, Song HP, Zhang XM. Heat shock protein 70/MAGE-3 fusion protein vaccine can enhance cellular and humoral immune responses to MAGE-3 in vivo. Cancer Immunol Immunother 2005; 54:907-14; PMID:15756604; http://dx.doi.org/10.1007/s00262-004-0660-3
  • Gnjatic S, Altorki NK, Tang DN, Tu SM, Kundra V, Ritter G, Old LJ, Logothetis CJ, Sharma P. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells. Clin Cancer Res 2009; 15:2130-9; PMID:19276258; http://dx.doi.org/10.1158/1078-0432.CCR-08-2632
  • Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Rivoltini L, Topalian SL, Miki T, Rosenberg SA. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci U S A 1994; 91:3515-9; PMID:8170938; http://dx.doi.org/10.1073/pnas.91.9.3515
  • Kawakami Y, Eliyahu S, Delgado CH, Robbins PF, Sakaguchi K, Appella E, Yannelli JR, Adema GJ, Miki T, Rosenberg SA. Identification of a human melanoma antigen recognized by tumor-infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci U S A 1994; 91:6458-62; PMID:8022805; http://dx.doi.org/10.1073/pnas.91.14.6458
  • Brichard V, Van Pel A, Wölfel T, Wölfel C, De Plaen E, Lethé B, Coulie P, Boon T. The tyrosinase gene codes for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1993; 178:489-95; PMID:8340755; http://dx.doi.org/10.1084/jem.178.2.489
  • Tanaka M, Kaneda Y, Fujii S, Yamano T, Hashimoto K, Huang SK, Hoon DS. Induction of a systemic immune response by a polyvalent melanoma-associated antigen DNA vaccine for prevention and treatment of malignant melanoma. Mol Ther 2002; 5:291-9; PMID:11863419; http://dx.doi.org/10.1006/mthe.2002.0537
  • Steitz J, Brück J, Steinbrink K, Enk A, Knop J, Tüting T. Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 2000; 86:89-94; PMID:10728600; http://dx.doi.org/10.1002/(SICI)1097-0215(20000401)86:1%3c89::AID-IJC14%3e3.0.CO;2-I
  • Rosenberg S, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ, et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther 2003; 14:709-14; PMID:12804135; http://dx.doi.org/10.1089/104303403765255110
  • Cassaday R, Sondel PM, King DM, Macklin MD, Gan J, Warner TF, Zuleger CL, Bridges AJ, Schalch HG, Kim KM, et al. A phase I study of immunization using particle-mediated epidermal delivery of genes for gp100 and GM-CSF into uninvolved skin of melanoma patients. Clin Cancer Res 2007; 13:540-9; PMID:17255276; http://dx.doi.org/10.1158/1078-0432.CCR-06-2039
  • Tagawa S, Lee P, Snively J, Boswell W, Ounpraseuth S, Lee S, Hickingbottom B, Smith J, Johnson D, Weber JS. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer 2003; 98:144-54; PMID:12833467; http://dx.doi.org/10.1002/cncr.11462
  • Sirisinha S, Eisen HN. Autoimmune-like antibodies to the ligand-binding sites of myeloma proteins. Proc Natl Acad Sci U S A 1971; 68:3130-5; PMID:4108872; http://dx.doi.org/10.1073/pnas.68.12.3130
  • Lynch RG, Graff RJ, Sirisinha S, Simms ES, Eisen HN. Myeloma proteins as tumor-specific transplantation antigens. Proc Natl Acad Sci U S A 1972; 69:1540-4; PMID:4113870; http://dx.doi.org/10.1073/pnas.69.6.1540
  • Qin H, Cha SC, Neelapu SS, Lou Y, Wei J, Liu YJ, Kwak LW. Vaccine site inflammation potentiates idiotype DNA vaccine-induced therapeutic T cell-, and not B cell-, dependent antilymphoma immunity. Blood 2009; 114:4142-9; PMID:19749091; http://dx.doi.org/10.1182/blood-2009-05-219683
  • Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 1997; 88:323-31; PMID:9039259; http://dx.doi.org/10.1016/S0092-8674(00)81871-1
  • Oren M. Regulation of the p53 tumor suppressor protein. J Biol Chem 1999; 274:36031-4; PMID:10593882; http://dx.doi.org/10.1074/jbc.274.51.36031
  • Hollstein M, Shomer B, Greenblatt M, Soussi T, Hovig E, Montesano R, Harris CC. Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation. Nucleic Acids Res 1996; 24:141-6; PMID:8594564; http://dx.doi.org/10.1093/nar/24.1.141
  • Soong RS, Trieu J, Lee SY, He L, Tsai YC, Wu TC, Hung CF. Xenogeneic human p53 DNA vaccination by electroporation breaks immune tolerance to control murine tumors expressing mouse p53. PLoS One 2013; 8:e56912; PMID:23457640; http://dx.doi.org/10.1371/journal.pone.0056912
  • Han KT, Sin JI. DNA vaccines targeting human papillomavirus-associated diseases: progresses in animal and clinical studies. Clin Exp Vaccine Res 2013; 2:106-14; PMID:23858401; http://dx.doi.org/10.7774/cevr.2013.2.2.106
  • Dyson N, Howley PM, Munger K, Harlow E. The human papillomavirus-16 E7 oncoprotein is able to bind the retinoblastoma gene product. Science 1989; 243:934-7; PMID:2537532; http://dx.doi.org/10.1126/science.2537532
  • Werness BA, Levine AJ, Howley PM. Association of human papillomavirus type 16 and 18 E6 protein with p53. Science 1990; 248:76-9; PMID:2157286; http://dx.doi.org/10.1126/science.2157286
  • Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC. Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 2001; 108:669-78; PMID:11544272; http://dx.doi.org/10.1172/JCI200112346
  • Lee IH, Park JB, Cheong M, Choi YS, Park D, Sin JI. Antitumor therapeutic and antimetastatic activity of electroporation-delivered human papillomavirus 16 E7 DNA vaccines: a possible mechanism for enhanced tumor control. DNA Cell Biol 2011; 30:975-85; http://dx.doi.org/10.1089/dna.2011.1266
  • Thomas DA, Massagué J. TGF-beta directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell 2005; 8:369-80; PMID:16286245; http://dx.doi.org/10.1016/j.ccr.2005.10.012
  • Mansfield AS, Heikkila PS, Vaara AT, von Smitten KA, Vakkila JM, Leidenius MH. Simultaneous Foxp3 and IDO expression is associated with sentinel lymph node metastases in breast cancer. BMC Cancer 2009; 9:231; PMID:19604349; http://dx.doi.org/10.1186/1471-2407-9-231
  • Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2, 3-dioxygenase. J Exp Med 2002; 196:459-68; PMID:12186838; http://dx.doi.org/10.1084/jem.20020121
  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8:793-800; PMID:12091876; http://dx.doi.org/10.1038/nm0902-1039c
  • Strome SE, Dong HD, Tamura HH, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res 2003; 63:6501-5; PMID:14559843
  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 2002; 99:12293-7; PMID:12218188; http://dx.doi.org/10.1073/pnas.192461099
  • Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, Drake CG, Camacho LH, Kauh J, Odunsi K, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med 2012; 366:2455-65; PMID:22658128; http://dx.doi.org/10.1056/NEJMoa1200694
  • Thiery J, Dorothée G, Haddada H, Echchakir H, Richon C, Stancou R, Vergnon I, Benard J, Mami-Chouaib F, Chouaib S. Potentiation of a tumor cell susceptibility to autologous CTL killing by restoration of wild-type p53 function. J Immunol 2003; 170:5919-26; PMID:12794118; http://dx.doi.org/10.4049/jimmunol.170.12.5919
  • Medema JP, de Jong J, Peltenburg LT, Verdegaal EM, Gorter A, Bres SA, Franken KL, Hahne M, Albar JP, Melief CJ, et al. Blockade of the granzyme B/perforin pathway through overexpression of the serine protease inhibitor PI-9/SPI-6 constitutes a mechanism for immune escape by tumors. Proc Natl Acad Sci USA 2001; 98:11515-20; PMID:11562487; http://dx.doi.org/10.1073/pnas.201398198
  • Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R. Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 1999; 190:1033-8; PMID:10510093; http://dx.doi.org/10.1084/jem.190.7.1033
  • Bai XF, Liu J, Li O, Zheng P, Liu Y. Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. J Clin Invest 2003; 111:1487-96; PMID:12750398; http://dx.doi.org/10.1172/JCI17656
  • Douawho CK, Pride MW, Kripke ML. Persistence of immunogenic pulmonary metastases in the presence of protective anti-melanoma immunity. Cancer Res 2001; 61:215-21; PMID:11196164
  • Lee SY, Sin JI. MC32 tumor cells acquire Ag-specific CTL resistance through the loss of CEA in a colon cancer model. Hum Vaccin Immunother 2015; In press
  • Angell TE, Lechner MG, Jang JK, LoPresti JS, Epstein AL. MHC class I loss is a frequent mechanism of immune escape in papillary thyroid cancer that is reversed by interferon and selumetinib treatment in vitro. Clin Cancer Res 2014; 20(23):6034-44; pii: clincanres.0879.2014; PMID:25294906; http://dx.doi.org/10.1158/1078-0432.CCR-14-0879
  • Jazirehi AR, Baritaki S, Koya RC, Bonavida B, Economou JS. Molecular mechanism of MART-1+/A*0201+ human melanoma resistance to specific CTL-killing despite functional tumor-CTL interaction. Cancer Res 2011; 71:1406-17; PMID:21159666; http://dx.doi.org/10.1158/0008-5472.CAN-10-1296
  • Ruffell B, Affara NI, Coussens LM. Differential macrophage programming in the tumor microenvironment. Trends Immunol 2012; 33:119-26; PMID:22277903; http://dx.doi.org/10.1016/j.it.2011.12.001
  • Ndure J, Flanagan KL. Targeting regulatory T cells to improve vaccine immunogenecity in early life. Front Microbiol 2014; 5:477; PMID:25309517; http://dx.doi.org/10.3389/fmicb.2014.00477
  • Solito S, Bronte V, Mandruzzato S. Antigen specificity of immune suppression by myeloid-derived suppressor cells. J Leukoc Biol 2011; 90:31-6; PMID:21486906; http://dx.doi.org/10.1189/jlb.0111021
  • Bae SH, Park YJ, Park JB, Choi YS, Kim MS, Sin JI. Therapeutic synergy of human papillomavirus E7 subunit vaccines plus cisplatin in an animal tumor model: causal involvement of increased sensitivity of cisplatin-treated tumors to CTL-mediated killing in therapeutic synergy. Clin Cancer Res 2007; 13:341-9; PMID:17200373; http://dx.doi.org/10.1158/1078-0432.CCR-06-1838
  • Ye GW, Park JB, Park YJ, Choi YS, Sin JI. Increased sensitivity of radiated murine cervical cancer tumors to E7 subunit vaccine-driven CTL-mediated killing induces synergistic antitumor activity. Mol Ther 2007; 15:1564-70; PMID:17505485; http://dx.doi.org/10.1038/sj.mt.6300149
  • Sin JI, Kim JM, Bae SH, Lee IH, Park JS, Ryoo HM. Adoptive transfer of human papillomavirus E7-specific CTL enhances tumor chemoresponse through the perforin/granzyme-mediated pathway. Mol Ther 2009; 17:906-13; PMID:19277009; http://dx.doi.org/10.1038/mt.2009.32
  • Norell H, Poschke I, Charo J, Wei WZ, Erskine C, Piechocki MP, Knutson KL, Bergh J, Lidbrink E, Kiessling R. Vaccination with a plasmid DNA encoding HER-2/neu together with low doses of GM-CSF and IL-2 in patients with metastatic breast carcinoma: a pilot clinical trial. J Transl Med 2010; 8:53; PMID:20529245; http://dx.doi.org/10.1186/1479-5876-8-53

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.