7,719
Views
149
CrossRef citations to date
0
Altmetric
Review

Peptide/protein vaccine delivery system based on PLGA particles

&
Pages 806-828 | Received 25 Mar 2015, Accepted 27 Sep 2015, Published online: 05 May 2016

References

  • Jain S, O'Hagan DT, Singh M. The long-term potential of biodegradable poly(lactide-co-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 2011; 10:1731-42; PMID:22085176; http://dx.doi.org/10.1586/erv.11.126
  • Amjadi I, Rabiee M, Hosseini MS. Anticancer Activity of Nanoparticles Based on PLGA and its Co-polymer: In-vitro Evaluation. Iran J Pharm Res 2013; 12:623-34; PMID:24523742
  • Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011; 3:1377-97; PMID:22577513; http://dx.doi.org/10.3390/polym3031377
  • Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, Swai HS. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine 2010; 6:662-71; http://dx.doi.org/10.1016/j.nano.2010.02.002
  • Mahboubian A, Hashemein SK, Moghadam S, Atyabi F, Dinarvand R. Preparation and in-vitro evaluation of controlled release PLGA microparticles containing triptoreline. Iran J Pharm Res 2010; 9:369; PMID:24381601
  • Waeckerle-Men Y, Groettrup M. PLGA microspheres for improved antigen delivery to dendritic cells as cellular vaccines. Adv Drug Deliv Rev 2005; 57:475-82; PMID:15560953; http://dx.doi.org/10.1016/j.addr.2004.09.007
  • Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011; 63:943-55; PMID:21679733; http://dx.doi.org/10.1016/j.addr.2011.05.021
  • Malyala P, O'Hagan DT, Singh M. Enhancing the therapeutic efficacy of CpG oligonucleotides using biodegradable microparticles. Adv Drug Deliv Rev 2009; 61:218-25; PMID:19168103; http://dx.doi.org/10.1016/j.addr.2008.12.009
  • Bhatnagar S, Naqvi RA, Ali R, Rao DN. Preparation of peptide microspheres using tumor antigen-derived peptides. Methods Mol Biol 2014; 1139:443-52; PMID:24619698; http://dx.doi.org/10.1007/978-1-4939-0345-0_34
  • van de Weert M, Hennink WE, Jiskoot W. Protein instability in poly (lactic-co-glycolic acid) microparticles. Pharm Res 2000; 17:1159-67; PMID:11145219; http://dx.doi.org/10.1023/A:1026498209874
  • Brown LR. Commercial challenges of protein drug delivery. Expert Opin Drug Deliv 2005; 2:29-42; PMID:16296733; http://dx.doi.org/10.1517/17425247.2.1.29
  • Salvador A, Igartua M, Hernández RM, Pedraz JL. An overview on the field of micro-and nanotechnologies for synthetic peptide-based vaccines. J Drug Deliv 2011; 2011:181646; PMID:21773041; http://dx.doi.org/10.1155/2011/181646
  • Quintanar-Guerrero D, Allemann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev Ind Pharm 1998; 24:1113-28; PMID:9876569; http://dx.doi.org/10.3109/03639049809108571
  • Kanchan V, Panda AK. Interactions of antigen-loaded polylactide particles with macrophages and their correlation with the immune response. Biomaterials 2007; 28:5344-57; PMID:17825905; http://dx.doi.org/10.1016/j.biomaterials.2007.08.015
  • Mundargi RC, Babu VR, Rangaswamy V, Patel P, Aminabhavi TM. Nano/micro technologies for delivering macromolecular therapeutics using poly (d, l-lactide-< i>co-glycolide) and its derivatives. J Control Release 2008; 125:193-209; PMID:18083265; http://dx.doi.org/10.1016/j.jconrel.2007.09.013
  • Wendorf J, Chesko J, Kazzaz J, Ugozzoli M, Vajdy M, O'Hagan D, Singh M. A comparison of anionic nanoparticles and microparticles as vaccine delivery systems. Hum Vaccin 2008; 4:44-9; PMID:18438105; http://dx.doi.org/10.4161/hv.4.1.4886
  • Tan ML, Choong PF, Dass CR. Recent developments in liposomes, microparticles and nanoparticles for protein and peptide drug delivery. Peptides 2010; 31:184-93; PMID:19819278; http://dx.doi.org/10.1016/j.peptides.2009.10.002
  • Vert M, Hellwich K-H, Hess M, Hodge P, Kubisa P, Rinaudo M, et al. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Applied Chem 2012; 84:377-410; http://dx.doi.org/10.1351/PAC-REC-10-12-04
  • Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75:1-18; http://dx.doi.org/10.1016/j.colsurfb.2009.09.001
  • Zhang Y, Chan HF, Leong KW. Advanced materials and processing for drug delivery: the past and the future. Adv Drug Deliv Rev 2013; 65:104-20; PMID:23088863; http://dx.doi.org/10.1016/j.addr.2012.10.003
  • Bilati U, Allémann E, Doelker E. Strategic approaches for overcoming peptide and protein instability within biodegradable nano-and microparticles. Eur J Pharm Biopharm 2005; 59:375-88; PMID:15760718; http://dx.doi.org/10.1016/j.ejpb.2004.10.006
  • Sinha V, Trehan A. Biodegradable microspheres for protein delivery. J Control Release 2003; 90:261-80; PMID:12880694; http://dx.doi.org/10.1016/S0168-3659(03)00194-9
  • Xu Q, Hashimoto M, Dang TT, Hoare T, Kohane DS, Whitesides GM, Langer R, Anderson DG. Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow‐focusing device for controlled drug delivery. Small 2009; 5:1575-81; PMID:19296563; http://dx.doi.org/10.1002/smll.200801855
  • Xu J, Wong DH, Byrne JD, Chen K, Bowerman C, DeSimone JM. Future of the particle replication in nonwetting templates (PRINT) technology. Angew Chem Int Ed 2013; 52:6580-9; http://dx.doi.org/10.1002/anie.201209145
  • Galloway AL, Murphy A, DeSimone JM, Di J, Herrmann JP, Hunter ME, Kindig JP, Malinoski FJ, Rumley MA, Stoltz DM, et al. Development of a nanoparticle-based influenza vaccine using the PRINT technology. Nanomedicine 2013; 9:523-31; PMID:23178283; http://dx.doi.org/10.1016/j.nano.2012.11.001
  • Raghuvanshi RS, Katare YK, Lalwani K, Ali MM, Singh O, Panda AK. Improved immune response from biodegradable polymer particles entrapping tetanus toxoid by use of different immunization protocol and adjuvants. Int J Pharm 2002; 245:109-21; PMID:12270248; http://dx.doi.org/10.1016/S0378-5173(02)00342-3
  • Shi S, Hickey AJ. PLGA microparticles in respirable sizes enhance an in vitro T cell response to recombinant Mycobacterium tuberculosis antigen TB10.4-Ag85B. Pharm Res 2010; 27:350-60; PMID:20024670; http://dx.doi.org/10.1007/s11095-009-0028-7
  • Kasturi SP, Skountzou I, Albrecht RA, Koutsonanos D, Hua T, Nakaya HI, Ravindran R, Stewart S, Alam M, Kwissa M, et al. Programming the magnitude and persistence of antibody responses with innate immunity. Nature 2011; 470:543-7; PMID:21350488; http://dx.doi.org/10.1038/nature09737
  • Sales-Junior P, Guzman F, Vargas M, Sossai S, González C, Patarroyo J. Use of biodegradable PLGA microspheres as a slow release delivery system for the Boophilus microplus synthetic vaccine SBm7462. Vet Immunol Immunopathol 2005; 107:281-90; PMID:16002149; http://dx.doi.org/10.1016/j.vetimm.2005.05.004
  • Rosas JE, Hernandez RM, Gascon AR, Igartua M, Guzman F, Patarroyo ME, Pedraz JL. Biodegradable PLGA microspheres as a delivery system for malaria synthetic peptide SPf66. Vaccine 2001; 19:4445-51; PMID:11483270; http://dx.doi.org/10.1016/S0264-410X(01)00192-X
  • Salvador A, Igartua M, Hernandez RM, Pedraz JL. Combination of immune stimulating adjuvants with poly(lactide-co-glycolide) microspheres enhances the immune response of vaccines. Vaccine 2012; 30:589-96; PMID:22119926; http://dx.doi.org/10.1016/j.vaccine.2011.11.057
  • Quintilio W, Takata CS, Sant'Anna OA, da Costa MHB, Raw I. Evaluation of a diphtheria and tetanus PLGA microencapsulated vaccine formulation without stabilizers. Curr Drug Deliv 2009; 6:297-304; PMID:19604144; http://dx.doi.org/10.2174/156720109788680886
  • Waeckerle-Men Y, Uetz-von Allmen E, Gander B, Scandella E, Schlosser E, Schmidtke G, Merkle HP, Groettrup M. Encapsulation of proteins and peptides into biodegradable poly (D, L-lactide-co-glycolide) microspheres prolongs and enhances antigen presentation by human dendritic cells. Vaccine 2006; 24:1847-57; PMID:16288821; http://dx.doi.org/10.1016/j.vaccine.2005.10.032
  • Huang SS, Li IH, Hong PD, Yeh MK. Development of Yersinia pestis F1 antigen-loaded microspheres vaccine against plague. Int J Nanomedicine 2014; 9:813-22; PMID:24550673
  • Lee Y-R, Lee Y-H, Im S-A, Kim K, Lee C-K. Formulation and Characterization of Antigen-loaded PLGA Nanoparticles for Efficient Cross-priming of the Antigen. Immune Netw 2011; 11:163-8; PMID:21860609; http://dx.doi.org/10.4110/in.2011.11.3.163
  • Feng L, Qi XR, Zhou XJ, Maitani Y, Wang SC, Jiang Y, Nagai T. Pharmaceutical and immunological evaluation of a single-dose hepatitis B vaccine using PLGA microspheres. J Controlled Release 2006; 112:35-42; PMID:16516999; http://dx.doi.org/10.1016/j.jconrel.2006.01.012
  • Thomas C, Gupta V, Ahsan F. Influence of surface charge of PLGA particles of recombinant hepatitis B surface antigen in enhancing systemic and mucosal immune responses. Int J Pharm 2009; 379:41-50; PMID:19524654; http://dx.doi.org/10.1016/j.ijpharm.2009.06.006
  • Chuang S-C, Ko J-C, Chen C-P, Du J-T, Yang C-D. Induction of long-lasting protective immunity against Toxoplasma gondii in BALB/c mice by recombinant surface antigen 1 protein encapsulated in poly (lactide-co-glycolide) microparticles. Parasit Vectors 2013; 6:34; PMID:23398973; http://dx.doi.org/10.1186/1756-3305-6-34
  • Chuang S-C, Ko J-C, Chen C-P, Du J-T, Yang C-D. Encapsulation of chimeric protein rSAG1/2 into poly (lactide-co-glycolide) microparticles induces long-term protective immunity against Toxoplasma gondii in mice. Exp Parasitol 2013; 134:430-7; PMID:23624036; http://dx.doi.org/10.1016/j.exppara.2013.04.002
  • Kazzaz J, Singh M, Ugozzoli M, Chesko J, Soenawan E, O'Hagan DT. Encapsulation of the immune potentiators MPL and RC529 in PLG microparticles enhances their potency. J Control Release 2006; 110:566-73; PMID:16360956; http://dx.doi.org/10.1016/j.jconrel.2005.10.010
  • Chesko J, Kazzaz J, Ugozzoli M, O'Hagan DT, Singh M. An investigation of the factors controlling the adsorption of protein antigens to anionic PLG microparticles. J Pharm Sci 2005; 94:2510-9; PMID:16200615; http://dx.doi.org/10.1002/jps.20472
  • Kazzaz J, Neidleman J, Singh M, Ott G, O'Hagan D. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J Control Release 2000; 67:347-56; PMID:10825566; http://dx.doi.org/10.1016/S0168-3659(00)00226-1
  • Singh M, Kazzaz J, Chesko J, Soenawan E, Ugozzoli M, Giuliani M, Pizza M, Rappouli R, O'Hagan DT. Anionic microparticles are a potent delivery system for recombinant antigens from Neisseria meningitidis serotype B. J Pharm Sci 2004; 93:273-82; PMID:14705185; http://dx.doi.org/10.1002/jps.10538
  • Park TG, Lee HY, Nam YS. A new preparation method for protein loaded poly (D, L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J Control Release 1998; 55:181-91; PMID:9795050; http://dx.doi.org/10.1016/S0168-3659(98)00050-9
  • Calis S, Jeyanthi R, Tsai T, Mehta RC, DeLuca PP. Adsorption of salmon calcitonin to PLGA microspheres. Pharm Res 1995; 12:1072-6; PMID:7494805; http://dx.doi.org/10.1023/A:1016278902839
  • Mao S, Xu J, Cai C, Germershaus O, Schaper A, Kissel T. Effect of WOW process parameters on morphology and burst release of FITC-dextran loaded PLGA microspheres. Int J Pharm 2007; 334:137-48; PMID:17196348; http://dx.doi.org/10.1016/j.ijpharm.2006.10.036
  • Zolnik BS, Burgess DJ. Effect of acidic pH on PLGA microsphere degradation and release. J Control Release 2007; 122:338-44; PMID:17644208; http://dx.doi.org/10.1016/j.jconrel.2007.05.034
  • Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev 2012; 64:72-82; http://dx.doi.org/10.1016/j.addr.2012.09.004
  • Schakenraad J, Hardonk M, Feijen J, Molenaar I, Nieuwenhuis P. Enzymatic activity toward poly (L‐lactic acid) implants. J Biomed Mater Res 1990; 24:529-45; PMID:2324125; http://dx.doi.org/10.1002/jbm.820240502
  • Demento SL, Cui W, Criscione JM, Stern E, Tulipan J, Kaech SM, Fahmy TM. Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials 2012; 33:4957-64; PMID:22484047; http://dx.doi.org/10.1016/j.biomaterials.2012.03.041
  • Fredenberg S, Wahlgren M, Reslow M, Axelsson A. The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. Int J Pharm 2011; 415:34-52; PMID:21640806; http://dx.doi.org/10.1016/j.ijpharm.2011.05.049
  • Wischke C, Schwendeman SP. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int J Pharm 2008; 364:298-327; PMID:18621492; http://dx.doi.org/10.1016/j.ijpharm.2008.04.042
  • Makino K, Mogi T, Ohtake N, Yoshida M, Ando S, Nakajima T, et al. Pulsatile drug release from poly (lactide-co-glycolide) microspheres: how does the composition of the polymer matrices affect the time interval between the initial burst and the pulsatile release of drugs? Colloids and Surfaces B: Biointerfaces 2000; 19:173-9; http://dx.doi.org/10.1016/S0927-7765(00)00148-X
  • Chen Y, Mohanraj VJ, Wang F, Benson HA. Designing chitosan-dextran sulfate nanoparticles using charge ratios. AAPS PharmSciTech 2007; 8:E98; PMID:18181558; http://dx.doi.org/10.1208/pt0804098
  • Giteau A, Venier-Julienne M-C, Aubert-Pouëssel A, Benoit J-P. How to achieve sustained and complete protein release from PLGA-based microparticles? Int J Pharm 2008; 350:14-26; PMID:18162341; http://dx.doi.org/10.1016/j.ijpharm.2007.11.012
  • Tracy MA, Ward KL, Firouzabadian L, Wang Y, Dong N, Qian R, Zhang Y. Factors affecting the degradation rate of poly(lactide-co-glycolide) microspheres in vivo and in vitro. Biomaterials 1999; 20:1057-62; PMID:10378806; http://dx.doi.org/10.1016/S0142-9612(99)00002-2
  • Lima K, Rodrigues Júnior J. Poly-DL-lactide-co-glycolide microspheres as a controlled release antigen delivery system. Braz J Med Biol Res 1999; 32:171-80
  • Saini V, Jain V, Sudheesh MS, Jaganathan KS, Murthy PK, Kohli DV. Comparison of humoral and cell-mediated immune responses to cationic PLGA microspheres containing recombinant hepatitis B antigen. Int J Pharm 2011; 408:50-7; PMID:21291968; http://dx.doi.org/10.1016/j.ijpharm.2011.01.045
  • Park TG. Degradation of poly (lactic-co-glycolic acid) microspheres: effect of copolymer composition. Biomaterials 1995; 16:1123-30; PMID:8562787; http://dx.doi.org/10.1016/0142-9612(95)93575-X
  • Passerini N, Craig D. An investigation into the effects of residual water on the glass transition temperature of polylactide microspheres using modulated temperature DSC. J Control Release 2001; 73:111-5; PMID:11337064; http://dx.doi.org/10.1016/S0168-3659(01)00245-0
  • Wiggins JS, Hassan MK, Mauritz KA, Storey RF. Hydrolytic degradation of poly (d, l-lactide) as a function of end group: carboxylic acid vs. hydroxyl. Polymer 2006; 47:1960-9; http://dx.doi.org/10.1016/j.polymer.2006.01.021
  • Silva A, Rosalia R, Sazak A, Carstens M, Ossendorp F, Oostendorp J, Jiskoot W. Optimization of encapsulation of a synthetic long peptide in PLGA nanoparticles: Low-burst release is crucial for efficient CD8< sup>+T cell activation. Eur J Pharm Biopharm 2013; 83:338-45; PMID:23201055; http://dx.doi.org/10.1016/j.ejpb.2012.11.006
  • Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55:329-47; PMID:12628320; http://dx.doi.org/10.1016/S0169-409X(02)00228-4
  • Siepmann J, Elkharraz K, Siepmann F, Klose D. How autocatalysis accelerates drug release from PLGA-based microparticles: a quantitative treatment. Biomacromolecules 2005; 6:2312-9; PMID:16004477; http://dx.doi.org/10.1021/bm050228k
  • Yang Q, Owusu-Ababio G. Biodegradable progesterone microsphere delivery system for osteoporosis therapy. Drug Dev Ind Pharm 2000; 26:61-70; PMID:10677811; http://dx.doi.org/10.1081/DDC-100100328
  • Sandor M, Enscore D, Weston P, Mathiowitz E. Effect of protein molecular weight on release from micron-sized PLGA microspheres. J Control Release 2001; 76:297-311; PMID:11578744; http://dx.doi.org/10.1016/S0168-3659(01)00446-1
  • Newman KD, Elamanchili P, Kwon GS, Samuel J. Uptake of poly (D, L‐lactic‐co‐glycolic acid) microspheres by antigen‐presenting cells in vivo. J Biomed Mater Res 2002; 60:480-6; PMID:11920673; http://dx.doi.org/10.1002/jbm.10019
  • van Riet E, Ainai A, Suzuki T, Kersten G, Hasegawa H. Combatting infectious diseases; nanotechnology as a platform for rational vaccine design. Adv Drug Deliv Rev 2014; 74:28-34; PMID:24862579; http://dx.doi.org/10.1016/j.addr.2014.05.011
  • Mohanan D, Slütter B, Henriksen-Lacey M, Jiskoot W, Bouwstra JA, Perrie Y, Kündig TM, Gander B, Johansen P. Administration routes affect the quality of immune responses: a cross-sectional evaluation of particulate antigen-delivery systems. J Control Release 2010; 147:342-9; PMID:20727926; http://dx.doi.org/10.1016/j.jconrel.2010.08.012
  • O'Hagan DT, Singh M, Ulmer JB. Microparticle-based technologies for vaccines. Methods 2006; 40:10-9; http://dx.doi.org/10.1016/j.ymeth.2006.05.017
  • Garinot M, Fiévez V, Pourcelle V, Stoffelbach F, des Rieux A, Plapied L, Theate I, Freichels H, Jérôme C, Marchand-Brynaert J, et al. PEGylated PLGA-based nanoparticles targeting M cells for oral vaccination. J Control Release 2007; 120:195-204; PMID:17586081; http://dx.doi.org/10.1016/j.jconrel.2007.04.021
  • Conway MA, Madrigal-Estebas L, McClean S, Brayden DJ, Mills KH. Protection against Bordetella pertussis infection following parenteral or oral immunization with antigens entrapped in biodegradable particles: effect of formulation and route of immunization on induction of Th1 and Th2 cells. Vaccine 2001; 19:1940-50; PMID:11228364; http://dx.doi.org/10.1016/S0264-410X(00)00433-3
  • Gutierro I, Hernandez R, Igartua M, Gascon A, Pedraz J. Size dependent immune response after subcutaneous, oral and intranasal administration of BSA loaded nanospheres. Vaccine 2002; 21:67-77; PMID:12443664; http://dx.doi.org/10.1016/S0264-410X(02)00435-8
  • Carcaboso AM, Hernandez RM, Igartua M, Rosas JE, Patarroyo ME, Pedraz JL. Potent, long lasting systemic antibody levels and mixed Th1/Th2 immune response after nasal immunization with malaria antigen loaded PLGA microparticles. Vaccine 2004; 22:1423-32; PMID:15063565; http://dx.doi.org/10.1016/j.vaccine.2003.10.020
  • Thomas C, Gupta V, Ahsan F. Particle size influences the immune response produced by hepatitis B vaccine formulated in inhalable particles. Pharm Res 2010; 27:905-19; PMID:20232117; http://dx.doi.org/10.1007/s11095-010-0094-x
  • Cruz LJ, Tacken PJ, Fokkink R, Joosten B, Stuart MC, Albericio F, Torensma R, Figdor CG. Targeted PLGA nano-but not microparticles specifically deliver antigen to human dendritic cells via DC-SIGN in vitro. J Control Release 2010; 144:118-26; PMID:20156497; http://dx.doi.org/10.1016/j.jconrel.2010.02.013
  • O'Hagan DT, Jeffery H, Davis S. Long-term antibody responses in mice following subcutaneous immunization with ovalbumin entrapped in biodegradable microparticles. Vaccine 1993; 11:965-9; PMID:8212845; http://dx.doi.org/10.1016/0264-410X(93)90387-D
  • Eldridge JH, Staas J, Meulbroek J, Tice T, Gilley R. Biodegradable and biocompatible poly (DL-lactide-co-glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 1991; 59:2978-86; PMID:1879922
  • Manolova V, Flace A, Bauer M, Schwarz K, Saudan P, Bachmann MF. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008; 38:1404-13; PMID:18389478; http://dx.doi.org/10.1002/eji.200737984
  • Jaganathan KS, Singh P, Prabakaran D, Mishra V, Vyas SP. Development of a single-dose stabilized poly(D,L-lactic-co-glycolic acid) microspheres-based vaccine against hepatitis B. J Pharm Pharmacol 2004; 56:1243-50; PMID:15482638; http://dx.doi.org/10.1211/0022357044418
  • Rosas JE, Pedraz JL, Hernandez RM, Gascon AR, Igartua M, Guzman F, Rodríguez R, Cortés J, Patarroyo ME. Remarkably high antibody levels and protection against P. falciparum malaria in Aotus monkeys after a single immunisation of SPf66 encapsulated in PLGA microspheres. Vaccine 2002; 20:1707-10; PMID:11906756; http://dx.doi.org/10.1016/S0264-410X(01)00508-4
  • Joshi VB, Adamcakova-Dodd A, Jing X, Wongrakpanich A, Gibson-Corley KN, Thorne PS, Salem AK. Development of a poly (lactic-co-glycolic acid) particle vaccine to protect against house dust mite induced allergy. AAPS J 2014; 16:975-85; PMID:24981892; http://dx.doi.org/10.1208/s12248-014-9624-5
  • Xiao X, Zeng X, Zhang X, Ma L, Liu X, Yu H, Mei L, Liu Z. Effects of Caryota mitis profilin-loaded PLGA nanoparticles in a murine model of allergic asthma. Int J Nanomedicine 2013; 8:4553; PMID:24376349
  • Thomas C, Rawat A, Hope-Weeks L, Ahsan F. Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm 2011; 8:405-15; PMID:21189035; http://dx.doi.org/10.1021/mp100255c
  • Tafaghodi M, Eskandari M, Kharazizadeh M, Khamesipour A, Jaafari M. Immunization against leishmaniasis by PLGA nanospheres loaded with an experimental autoclaved Leishmania major (ALM) and Quillaja saponins. Tropical biomedicine 2010; 27:639-50; PMID:21399606
  • Santos DM, Carneiro MW, de Moura TR, Fukutani K, Clarencio J, Soto M, Espuelas S, Brodskyn C, Barral A, Barral-Netto M, et al. Towards development of novel immunization strategies against leishmaniasis using PLGA nanoparticles loaded with kinetoplastid membrane protein-11. Int J Nanomedicine 2012; 7:2115-27; PMID:22619548
  • Santos DM, Carneiro MW, de Moura TR, Soto M, Luz NF, Prates DB, Irache JM, Brodskyn C, Barral A, Barral-Netto M, et al. PLGA nanoparticles loaded with KMP-11 stimulate innate immunity and induce the killing of< i>Leishmania. Nanomedicine 2013; 9:985-95; http://dx.doi.org/10.1016/j.nano.2013.04.003
  • Kirby DJ, Rosenkrands I, Agger EM, Andersen P, Coombes AG, Perrie Y. PLGA microspheres for the delivery of a novel subunit TB vaccine. J Drug Target 2008; 16:282-93; PMID:18446607; http://dx.doi.org/10.1080/10611860801900462
  • Wang C, Muttil P, Lu D, Beltran-Torres AA, Garcia-Contreras L, Hickey AJ. Screening for potential adjuvants administered by the pulmonary route for tuberculosis vaccines. AAPS J 2009; 11:139-47; PMID:19277872; http://dx.doi.org/10.1208/s12248-009-9089-0
  • Taha MA, Singh SR, Dennis VA. Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnology 2012; 23:325101; PMID:22824940; http://dx.doi.org/10.1088/0957-4484/23/32/325101
  • Fairley SJ, Singh SR, Yilma AN, Waffo AB, Subbarayan P, Dixit S, Taha MA, Cambridge CD, Dennis VA. Chlamydia trachomatis recombinant MOMP encapsulated in PLGA nanoparticles triggers primarily T helper 1 cellular and antibody immune responses in mice: a desirable candidate nanovaccine. Int J Nanomedicine 2013; 8:2085-99; PMID:23785233
  • Tacken PJ, Zeelenberg IS, Cruz LJ, van Hout-Kuijer MA, van de Glind G, Fokkink RG, Lambeck AJ, Figdor CG. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 2011; 118:6836-44; PMID:21967977; http://dx.doi.org/10.1182/blood-2011-07-367615
  • Wischke C, Zimmermann J, Wessinger B, Schendler A, Borchert HH, Peters JH, Nesselhut T, Lorenzen DR. Poly(I:C) coated PLGA microparticles induce dendritic cell maturation. Int J Pharm 2009; 365:61-8; PMID:18812217; http://dx.doi.org/10.1016/j.ijpharm.2008.08.039
  • Hafner AM, Corthésy B, Merkle HP. Particulate formulations for the delivery of poly (I: C) as vaccine adjuvant. Adv Drug Deliv Rev 2013; 65:1386-99; PMID:23751781; http://dx.doi.org/10.1016/j.addr.2013.05.013
  • Salvador A, Igartua M, Hernandez RM, Pedraz JL. Designing improved poly lactic-co-glycolic acid microspheres for a malarial vaccine: incorporation of alginate and polyinosinic-polycytidilic acid. J Microencapsul 2014; 31:560-6; PMID:24697189; http://dx.doi.org/10.3109/02652048.2014.885608
  • Chong CS, Cao M, Wong WW, Fischer KP, Addison WR, Kwon GS, Tyrrell DL, Samuel J. Enhancement of T helper type 1 immune responses against hepatitis B virus core antigen by PLGA nanoparticle vaccine delivery. J Control Release 2005; 102:85-99; PMID:15653136; http://dx.doi.org/10.1016/j.jconrel.2004.09.014
  • Xie H, Gursel I, Ivins BE, Singh M, O'Hagan DT, Ulmer JB, Klinman DM. CpG oligodeoxynucleotides adsorbed onto polylactide-co-glycolide microparticles improve the immunogenicity and protective activity of the licensed anthrax vaccine. Infect Immun 2005; 73:828-33; PMID:15664922; http://dx.doi.org/10.1128/IAI.73.2.828-833.2005
  • Martinez Gomez JM, Fischer S, Csaba N, Kundig TM, Merkle HP, Gander B, Johansen P. A protective allergy vaccine based on CpG- and protamine-containing PLGA microparticles. Pharm Res 2007; 24:1927-35; PMID:17541735; http://dx.doi.org/10.1007/s11095-007-9318-0
  • Tafaghodi M, Khamesipour A, Jaafari MR. Immunization against leishmaniasis by PLGA nanospheres encapsulated with autoclaved Leishmania major (ALM) and CpG-ODN. Parasitol Res 2011; 108:1265-73; PMID:21125294; http://dx.doi.org/10.1007/s00436-010-2176-4
  • Lee Y-R, Lee Y-H, Kim K-H, Im S-A, Lee C-K. Induction of potent antigen-specific cytotoxic T cell response by PLGA-nanoparticles containing antigen and TLR agonist. Immune Netw 2013; 13:30-3; PMID:23559898; http://dx.doi.org/10.4110/in.2013.13.1.30
  • Elamanchili P, Diwan M, Cao M, Samuel J. Characterization of poly (D, L-lactic-co-glycolic acid) based nanoparticulate system for enhanced delivery of antigens to dendritic cells. Vaccine 2004; 22:2406-12; PMID:15193402; http://dx.doi.org/10.1016/j.vaccine.2003.12.032
  • Wang Q, Tan MT, Keegan BP, Barry MA, Heffernan MJ. Time course study of the antigen-specific immune response to a PLGA microparticle vaccine formulation. Biomaterials 2014; 35(29):8385-93
  • Malyala P, Chesko J, Ugozzoli M, Goodsell A, Zhou F, Vajdy M, O'Hagan DT, Singh M. The potency of the adjuvant, CpG oligos, is enhanced by encapsulation in PLG microparticles. J Pharm Sci 2008; 97:1155-64; PMID:17683059; http://dx.doi.org/10.1002/jps.21065
  • San Roman B, Irache JM, Gomez S, Tsapis N, Gamazo C, Espuelas MS. Co-encapsulation of an antigen and CpG oligonucleotides into PLGA microparticles by TROMS technology. Eur J Pharm Biopharm 2008; 70:98-108; http://dx.doi.org/10.1016/j.ejpb.2008.03.015
  • Fischer S, Schlosser E, Mueller M, Csaba N, Merkle HP, Groettrup M, Gander B. Concomitant delivery of a CTL-restricted peptide antigen and CpG ODN by PLGA microparticles induces cellular immune response. J Drug Target 2009; 17:652-61; PMID:19622019; http://dx.doi.org/10.1080/10611860903119656
  • Rubsamen RM, Herst CV, Lloyd PM, Heckerman DE. Eliciting cytotoxic T-lymphocyte responses from synthetic vectors containing one or two epitopes in a C57BL/6 mouse model using peptide-containing biodegradable microspheres and adjuvants. Vaccine 2014; 32:4111-6; PMID:24912025; http://dx.doi.org/10.1016/j.vaccine.2014.05.071
  • Bershteyn A, Hanson MC, Crespo MP, Moon JJ, Li AV, Suh H, Irvine DJ. Robust IgG responses to nanograms of antigen using a biomimetic lipid-coated particle vaccine. J Control Release 2012; 157:354-65; PMID:21820024; http://dx.doi.org/10.1016/j.jconrel.2011.07.029
  • Moon JJ, Suh H, Polhemus ME, Ockenhouse CF, Yadava A, Irvine DJ. Antigen-displaying lipid-enveloped PLGA nanoparticles as delivery agents for a Plasmodium vivax malaria vaccine. PloS one 2012; 7:e31472; PMID:22328935; http://dx.doi.org/10.1371/journal.pone.0031472
  • Jaganathan K, Vyas SP. Strong systemic and mucosal immune responses to surface-modified PLGA microspheres containing recombinant hepatitis B antigen administered intranasally. Vaccine 2006; 24:4201-11; PMID:16446012; http://dx.doi.org/10.1016/j.vaccine.2006.01.011
  • Pandit S, Cevher E, Zariwala MG, Somavarapu S, Alpar HO. Enhancement of immune response of HBsAg loaded poly (L-lactic acid) microspheres against hepatitis B through incorporation of alum and chitosan. J Microencapsul 2007; 24:539-52; PMID:17654174; http://dx.doi.org/10.1080/02652040701443700
  • Semete B, Booysen L, Kalombo L, Venter JD, Katata L, Ramalapa B, Verschoor JA, Swai H. In vivo uptake and acute immune response to orally administered chitosan and PEG coated PLGA nanoparticles. Toxicol Appl Pharmacol 2010; 249:158-65; PMID:20851137; http://dx.doi.org/10.1016/j.taap.2010.09.002
  • Pawar D, Goyal AK, Mangal S, Mishra N, Vaidya B, Tiwari S, Jain AK, Vyas SP. Evaluation of mucoadhesive PLGA microparticles for nasal immunization. AAPS J 2010; 12:130-7; PMID:20077052; http://dx.doi.org/10.1208/s12248-009-9169-1
  • Slutter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C, et al. Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 2010; 28:6282-91; PMID:20638455; http://dx.doi.org/10.1016/j.vaccine.2010.06.121
  • Primard C, Poecheim J, Heuking S, Sublet E, Esmaeili F, Borchard G. Multifunctional PLGA-based nanoparticles encapsulating simultaneously hydrophilic antigen and hydrophobic immunomodulator for mucosal immunization. Mol Pharm 2013; 10:2996-3004; PMID:23869898; http://dx.doi.org/10.1021/mp400092y
  • Brandhonneur N, Chevanne F, Vié V, Frisch B, Primault R, Le Potier M-F, Le Corre P. Specific and non-specific phagocytosis of ligand-grafted PLGA microspheres by macrophages. Eur J Pharm Sci 2009; 36:474-85; PMID:19110055; http://dx.doi.org/10.1016/j.ejps.2008.11.013
  • Martínez Gómez JM, Csaba N, Fischer S, Sichelstiel A, Kündig TM, Gander B, Johansen P. Surface coating of PLGA microparticles with protamine enhances their immunological performance through facilitated phagocytosis. J Control Release 2008; 130:161-7; http://dx.doi.org/10.1016/j.jconrel.2008.06.003
  • Han R, Zhu J, Yang X, Xu H. Surface modification of poly(D,L-lactic-co-glycolic acid) nanoparticles with protamine enhanced cross-presentation of encapsulated ovalbumin by bone marrow-derived dendritic cells. J Biomed Mater Res A 2011; 96:142-9; PMID:21105162; http://dx.doi.org/10.1002/jbm.a.32860
  • Sarti F, Perera G, Hintzen F, Kotti K, Karageorgiou V, Kammona O, Kiparissides C, Bernkop-Schnürch A. In vivo evidence of oral vaccination with PLGA nanoparticles containing the immunostimulant monophosphoryl lipid A. Biomaterials 2011; 32:4052-7; PMID:21377204; http://dx.doi.org/10.1016/j.biomaterials.2011.02.011
  • Jain S, Harde H, Indulkar A, Agrawal AK. Improved stability and immunological potential of tetanus toxoid containing surface engineered bilosomes following oral administration. Nanomedicine 2014; 10:431-40; http://dx.doi.org/10.1016/j.nano.2013.08.012
  • Gupta PN, Khatri K, Goyal AK, Mishra N, Vyas SP. M-cell targeted biodegradable PLGA nanoparticles for oral immunization against hepatitis B. J Drug Target 2007; 15:701-13; PMID:18041638; http://dx.doi.org/10.1080/10611860701637982
  • Fievez V, Plapied L, des Rieux A, Pourcelle V, Freichels H, Wascotte V, Vanderhaeghen ML, Jerôme C, Vanderplasschen A, Marchand-Brynaert J, et al. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination. Eur J Pharm Biopharm 2009; 73:16-24; PMID:19409989; http://dx.doi.org/10.1016/j.ejpb.2009.04.009
  • Mishra N, Tiwari S, Vaidya B, Agrawal GP, Vyas SP. Lectin anchored PLGA nanoparticles for oral mucosal immunization against hepatitis B. J Drug Target 2011; 19:67-78; PMID:20334603; http://dx.doi.org/10.3109/10611861003733946
  • Ma T, Wang L, Yang T, Ma G, Wang S. M-cell targeted polymeric lipid nanoparticles containing a Toll-like receptor agonist to boost oral immunity. Int J Pharm 2014; 473:296-303; PMID:24984067; http://dx.doi.org/10.1016/j.ijpharm.2014.06.052
  • Jiang T, Singh B, Li H-S, Kim Y-K, Kang S-K, Nah J-W, Choi YJ, Cho CS. Targeted oral delivery of BmpB vaccine using porous PLGA microparticles coated with M cell homing peptide-coupled chitosan. Biomaterials 2014; 35:2365-73; PMID:24342722; http://dx.doi.org/10.1016/j.biomaterials.2013.11.073
  • Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomedicine 2014; 9:5231-46; PMID:25419128
  • T O'Hagan D, Singh M, Gupta RK. Poly (lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev 1998; 32:225-46; PMID:10837646; http://dx.doi.org/10.1016/S0169-409X(98)00012-X
  • Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 2012; 161:505-22; PMID:22353619; http://dx.doi.org/10.1016/j.jconrel.2012.01.043
  • Vasir JK, Labhasetwar V. Biodegradable nanoparticles for cytosolic delivery of therapeutics. Adv Drug Deliv Rev 2007; 59:718-28; PMID:17683826; http://dx.doi.org/10.1016/j.addr.2007.06.003
  • Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Lowik CW, Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Control Release 2014; 192:209-18; PMID:25068703; http://dx.doi.org/10.1016/j.jconrel.2014.07.040
  • Fischer S, Uetz-von Allmen E, Waeckerle-Men Y, Groettrup M, Merkle HP, Gander B. The preservation of phenotype and functionality of dendritic cells upon phagocytosis of polyelectrolyte-coated PLGA microparticles. Biomaterials 2007; 28:994-1004; PMID:17118442; http://dx.doi.org/10.1016/j.biomaterials.2006.10.034
  • Heo MB, Cho MY, Lim YT. Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta biomaterialia 2014; 10:2169-76; PMID:24394635; http://dx.doi.org/10.1016/j.actbio.2013.12.050
  • Heo MB, Lim YT. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 2014; 35:590-600; PMID:24125775; http://dx.doi.org/10.1016/j.biomaterials.2013.10.009
  • Brito LA, O'Hagan DT. Designing and building the next generation of improved vaccine adjuvants. J Control Release 2014; 190:563-79; PMID:24998942; http://dx.doi.org/10.1016/j.jconrel.2014.06.027

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.