1,876
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems

, , , &
Pages 2075-2089 | Received 11 Jan 2016, Accepted 20 Feb 2016, Published online: 13 May 2016

References

  • Ozawa S, Mirelman A, Stack ML, Walker DG, Levine OS. Cost-effectiveness and economic benefits of vaccines in low- and middle-income countries: a systematic review. Vaccine 2012; 31:96-108; PMID:23142307; http://dx.doi.org/10.1016/j.vaccine.2012.10.103
  • Levine MM. “IDEAL” vaccines for resource poor settings. Vaccine 2011; 29 Suppl 4:D116-25; PMID:22486974; http://dx.doi.org/10.1016/j.vaccine.2011.11.090
  • Chen D, Zehrung D. Desirable attributes of vaccines for deployment in low-resource settings. J Pharm Sci 2012; 102:29-33; PMID:23136115; http://dx.doi.org/10.1002/jps.23352
  • Childress BC, Montney JD, Albro EA. Making evidence-based selections of influenza vaccines. Hum Vaccin Immunother 2014; 10:2729-32; PMID:25483499; http://dx.doi.org/10.4161/hv.29340
  • Domingues CM, de Fatima Pereira S, Cunha Marreiros AC, Menezes N, Flannery B. Introduction of sequential inactivated polio vaccine-oral polio vaccine schedule for routine infant immunization in Brazil's National Immunization Program. J Infect Dis 2014; 210 Suppl 1:S143-51; PMID:25316829; http://dx.doi.org/10.1093/infdis/jit588
  • Low N, Bavdekar A, Jeyaseelan L, Hirve S, Ramanathan K, Andrews NJ, Shaikh N, Jadi RS, Rajagopal A, Brown KE, et al. A randomized, controlled trial of an aerosolized vaccine against measles. N Engl J Med 2015; 372:1519-29; PMID:25875257; http://dx.doi.org/10.1056/NEJMoa1407417
  • Kim YC, Park JH, Prausnitz MR. Microneedles for drug and vaccine delivery. Adv Drug Deliv Rev 2012; 64:1547-68; PMID:22575858; http://dx.doi.org/10.1016/j.addr.2012.04.005
  • Henry S, McAllister DV, Allen MG, Prausnitz MR. Microfabricated microneedles: a novel approach to transdermal drug delivery. Journal of pharmaceutical sciences 1998; 87:922-5; PMID:9687334; http://dx.doi.org/10.1021/js980042+
  • Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK. Microneedle-based vaccines. Curr Top Microbiol Immunol 2009; 333:369-93; PMID:19768415.
  • Pattani A, McKay PF, Garland MJ, Curran RM, Migalska K, Cassidy CM, Malcolm RK, Shattock RJ, McCarthy HO, Donnelly RF. Microneedle mediated intradermal delivery of adjuvanted recombinant HIV-1 CN54gp140 effectively primes mucosal boost inoculations. J Control Release 2012; 162:529-37; PMID:22960496; http://dx.doi.org/10.1016/j.jconrel.2012.07.039
  • Norman JJ, Arya JM, McClain MA, Frew PM, Meltzer MI, Prausnitz MR. Microneedle patches: usability and acceptability for self-vaccination against influenza. Vaccine 2014; 32:1856-62; PMID:24530146; http://dx.doi.org/10.1016/j.vaccine.2014.01.076
  • Pearton M, Kang SM, Song JM, Kim YC, Quan FS, Anstey A, Ivory M, Prausnitz MR, Compans RW, Birchall JC. Influenza virus-like particles coated onto microneedles can elicit stimulatory effects on Langerhans cells in human skin. Vaccine 2010; 28:6104-13; PMID:20685601; http://dx.doi.org/10.1016/j.vaccine.2010.05.055
  • Zipursky S, Djingarey MH, Lodjo JC, Olodo L, Tiendrebeogo S, Ronveaux O. Benefits of using vaccines out of the cold chain: Delivering Meningitis A vaccine in a controlled temperature chain during the mass immunization campaign in Benin. Vaccine 2014; 32:1431-5; PMID:24559895; http://dx.doi.org/10.1016/j.vaccine.2014.01.038
  • Al-Zahrani S, Zaric M, McCrudden C, Scott C, Kissenpfennig A, Donnelly RF. Microneedle-mediated vaccine delivery: harnessing cutaneous immunobiology to improve efficacy. Expert Opin Drug Deliv 2012; 9:541-50; PMID:22475249; http://dx.doi.org/10.1517/17425247.2012.676038
  • van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 2012; 161:645-55; PMID:22342643; http://dx.doi.org/10.1016/j.jconrel.2012.01.042
  • Wang T, Zhen YY, Ma XY, Wei BA, Li SQ, Wang NN. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloid Surface B 2015; 126:520-30; http://dx.doi.org/10.1016/j.colsurfb.2015.01.005
  • DeMuth PC, Min Y, Huang B, Kramer JA, Miller AD, Barouch DH, Hammond PT, Irvine DJ. Polymer multilayer tattooing for enhanced DNA vaccination. Nature materials 2013; 12:367-76; PMID:23353628; http://dx.doi.org/10.1038/nmat3550
  • Wang T, Wang N. Biocompatible Mater Constructed Microneedle Arrays as a Novel Vaccine Adjuvant-Delivery System for Cutaneous and Mucosal Vaccination. Curr Pharm Design 2015; 21:5245-55; http://dx.doi.org/10.2174/1381612821666150923100147
  • Haq MI, Smith E, John DN, Kalavala M, Edwards C, Anstey A, Morrissey A, Birchall JC. Clinical administration of microneedles: skin puncture, pain and sensation. Biomed Microdevices 2009; 11:35-47; PMID:18663579; http://dx.doi.org/10.1007/s10544-008-9208-1
  • Levin Y, Kochba E, Kenney R. Clinical evaluation of a novel microneedle device for intradermal delivery of an influenza vaccine: are all delivery methods the same? Vaccine 2014; 32:4249-52; PMID:24930715; http://dx.doi.org/10.1016/j.vaccine.2014.03.024
  • Hirobe S, Azukizawa H, Hanafusa T, Matsuo K, Quan YS, Kamiyama F, Katayama I, Okada N, Nakagawa S. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015; 57:50-8; PMID:25913250; http://dx.doi.org/10.1016/j.biomaterials.2015.04.007
  • Bal SM, Caussin J, Pavel S, Bouwstra JA. In vivo assessment of safety of microneedle arrays in human skin. Eur J Pharm Sci 2008; 35:193-202; PMID:18657610; http://dx.doi.org/10.1016/j.ejps.2008.06.016
  • Anand A, Zaman K, Estivariz CF, Yunus M, Gary HE, Weldon WC, Bari TI, Steven Oberste M, Wassilak SG, Luby SP, et al. Early priming with inactivated poliovirus vaccine (IPV) and intradermal fractional dose IPV administered by a microneedle device: A randomized controlled trial. Vaccine 2015; 33:6816-22; PMID:26476367; http://dx.doi.org/10.1016/j.vaccine.2015.09.039
  • Wendorf JR, Ghartey-Tagoe EB, Williams SC, Enioutina E, Singh P, Cleary GW. Transdermal Delivery of Macromolecules Using Solid-State Biodegradable Microstructures. Pharm Res-Dordr 2011; 28:22-30; http://dx.doi.org/10.1007/s11095-010-0174-y
  • Yang S, Feng Y, Zhang L, Chen N, Yuan W, Jin T. A scalable fabrication process of polymer microneedles. International journal of nanomedicine 2012; 7:1415-22; PMID:22457598.
  • Bystrova S, Luttge R. Micromolding for ceramic microneedle arrays. Microelectron Eng 2011; 88:1681-4; http://dx.doi.org/10.1016/j.mee.2010.12.067
  • Wilke N, Mulcahy A, Ye SR, Morrissey A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectron J 2005; 36:650-6; http://dx.doi.org/10.1016/j.mejo.2005.04.044
  • Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, Migalska K, Ryan E, Gillen D, Scott CJ, et al. Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique. Pharmaceutical research 2011; 28:41-57.
  • Park JH, Allen MG, Prausnitz MR. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. Journal of Controlled Release 2005; 104:51-66; PMID:15866334; http://dx.doi.org/10.1016/j.jconrel.2005.02.002
  • Qin D, Xia YN, Whitesides GM. Soft lithography for micro- and nanoscale patterning. Nat Protoc 2010; 5:491-502; PMID:20203666; http://dx.doi.org/10.1038/nprot.2009.234
  • Watanabe T, Hagino K, Sato T. Evaluation of the effect of polymeric microneedle arrays of varying geometries in combination with a high-velocity applicator on skin permeability and irritation. Biomed Microdevices 2014; 16:591-7; PMID:24733417; http://dx.doi.org/10.1007/s10544-014-9861-5
  • Bal SM, Kruithof AC, Zwier R, Dietz E, Bouwstra JA, Lademann J, Meinke MC. Influence of microneedle shape on the transport of a fluorescent dye into human skin in vivo. Journal of Controlled Release 2010; 147:218-24; PMID:20650292; http://dx.doi.org/10.1016/j.jconrel.2010.07.104
  • Ai-Qallaf B, Das DB. Optimization of square microneedle arrays for increasing drug permeability in skin. Chem Eng Sci 2008; 63:2523-35; http://dx.doi.org/10.1016/j.ces.2008.02.007
  • Edens C, Collins ML, Goodson JL, Rota PA, Prausnitz MR. A microneedle patch containing measles vaccine is immunogenic in non-human primates. Vaccine 2015; 33:4712-4718. http://dx.doi.org/10.1016/j.vaccine.2015.02.074.
  • Wang T, Zhen Y, Ma X, Wei B, Li S, Wang N. Mannosylated and lipid A-incorporating cationic liposomes constituting microneedle arrays as an effective oral mucosal HBV vaccine applicable in the controlled temperature chain. Colloids Surf B Biointerfaces 2015; 126:520-30; PMID:25612819; http://dx.doi.org/10.1016/j.colsurfb.2015.01.005
  • Zhang J, Pritchard E, Hu X, Valentin T, Panilaitis B, Omenetto FG, Kaplan DL. Stabilization of vaccines and antibiotics in silk and eliminating the cold chain. Proceedings of the National Academy of Sciences of the United States of America 2012; 109:11981-6; PMID:22778443; http://dx.doi.org/10.1073/pnas.1206210109
  • Wang T, Zhen Y, Ma X, Wei B, Wang N. Phospholipid bilayer-coated aluminum nanoparticles as an effective vaccine adjuvant-delivery system. ACS applied materials & interfaces 2015; 7:6391-6; PMID:25780860; http://dx.doi.org/10.1021/acsami.5b00348
  • Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of molecular biology 1965; 13:238-52; PMID:5859039; http://dx.doi.org/10.1016/S0022-2836(65)80093-6
  • Wang T, Wang N, Sun W, Li T. Preparation of submicron liposomes exhibiting efficient entrapment of drugs by freeze-drying water-in-oil emulsions. Chem Phys Lipids 2011; 164:151-7; PMID:21185814; http://dx.doi.org/10.1016/j.chemphyslip.2010.12.005
  • Wang T, Deng Y, Geng Y, Gao Z, Zou J, Wang Z. Preparation of submicron unilamellar liposomes by freeze-drying double emulsions. Biochim Biophys Acta 2006; 1758:222-31; PMID:16563340; http://dx.doi.org/10.1016/j.bbamem.2006.01.023
  • Wang T, Wang N, Jin X, Zhang K, Li T. A novel procedure for preparation of submicron liposomes-lyophilization of oil-in-water emulsions. J Liposome Res 2009; 19:231-40; PMID:19263267; http://dx.doi.org/10.1080/08982100902788390
  • Alving CR, Rao M, Steers NJ, Matyas GR, Mayorov AV. Liposomes containing lipid A: an effective, safe, generic adjuvant system for synthetic vaccines. Expert Rev Vaccines 2012; 11:733-44; PMID:22873129; http://dx.doi.org/10.1586/erv.12.35
  • Shariat S, Badiee A, Jaafari MR, Mortazavi SA. Optimization of a Method to Prepare Liposomes Containing HER2/Neu-Derived Peptide as a Vaccine Delivery System for Breast Cancer. Iran J Pharm Res 2014; 13:15-25; PMID:24711825.
  • Wang N, Wang T, Zhang ML, Chen RN, Niu RW, Deng YH. Mannose derivative and lipid A dually decorated cationic liposomes as an effective cold chain free oral mucosal vaccine adjuvant-delivery system. Eur J Pharm Biopharm 2014; 88:194-206; PMID:24769065; http://dx.doi.org/10.1016/j.ejpb.2014.04.007
  • Guo L, Chen J, Qiu Y, Zhang S, Xu B, Gao Y. Enhanced transcutaneous immunization via dissolving microneedle array loaded with liposome encapsulated antigen and adjuvant. Int J Pharm 2013; 447:22-30; PMID:23410987; http://dx.doi.org/10.1016/j.ijpharm.2013.02.006
  • Qiu Y, Guo L, Zhang S, Xu B, Gao Y, Hu Y, Hou J, Bai B, Shen H, Mao P. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug delivery 2016 (in press); http://dx.doi.org/10.3109/10717544.2014.992497
  • Slutter B, Bal SM, Ding Z, Jiskoot W, Bouwstra JA. Adjuvant effect of cationic liposomes and CpG depends on administration route. J Control Release 2011; 154:123-30; PMID:21315779; http://dx.doi.org/10.1016/j.jconrel.2011.02.007
  • Moon JJ, Suh H, Bershteyn A, Stephan MT, Liu H, Huang B, Sohail M, Luo S, Um SH, Khant H, et al. Interbilayer-crosslinked multilamellar vesicles as synthetic vaccines for potent humoral and cellular immune responses. Nature materials 2011; 10:243-51; PMID:21336265; http://dx.doi.org/10.1038/nmat2960
  • DeMuth PC, Moon JJ, Suh H, Hammond PT, Irvine DJ. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 2012; 6:8041-51; PMID:22920601; http://dx.doi.org/10.1021/nn302639r
  • Zhen YY, Wang N, Gao ZB, Ma XY, Wei BA, Deng YH, Wang T. Multifunctional liposomes constituting microneedles induced robust systemic and mucosal immunoresponses against the loaded antigens via oral mucosal vaccination. Vaccine 2015; 33:4330-40; PMID:25858854; http://dx.doi.org/10.1016/j.vaccine.2015.03.081
  • Wang T, Wang N, Song H, Xi X, Wang J, Hao A, Li T. Preparation of an anhydrous reverse micelle delivery system to enhance oral bioavailability and anti-diabetic efficacy of berberine. Eur J Pharm Sci 2011; 44:127-35; PMID:21742030; http://dx.doi.org/10.1016/j.ejps.2011.06.015
  • Wang N, Wang T, Zhang M, Chen R, Deng Y. Using procedure of emulsification-lyophilization to form lipid A-incorporating cochleates as an effective oral mucosal vaccine adjuvant-delivery system (VADS). Int J Pharm 2014; 468:39-49; PMID:24704308; http://dx.doi.org/10.1016/j.ijpharm.2014.04.002
  • Desai SN, Kamat D. Closing the global immunization gap: delivery of lifesaving vaccines through innovation and technology. Pediatrics in review / American Academy of Pediatrics 2014; 35:e32-40; PMID:24986933; http://dx.doi.org/10.1542/pir.35-7-e32
  • DeMuth PC, Li AV, Abbink P, Liu J, Li H, Stanley KA, Smith KM, Lavine CL, Seaman MS, Kramer JA, et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nature biotechnology 2013; 31:1082-5; PMID:24316643; http://dx.doi.org/10.1038/nbt.2759
  • Mata-Haro V, Cekic C, Martin M, Chilton PM, Casella CR, Mitchell TC. The vaccine adjuvant monophosphoryl lipid A as a TRIF-biased agonist of TLR4. Science 2007; 316:1628-32; PMID:17569868; http://dx.doi.org/10.1126/science.1138963
  • Casella CR, Mitchell TC. Putting endotoxin to work for us: monophosphoryl lipid A as a safe and effective vaccine adjuvant. Cell Mol Life Sci 2008; 65:3231-40; PMID:18668203; http://dx.doi.org/10.1007/s00018-008-8228-6
  • Ohimain EI. Recent advances in the development of vaccines for Ebola virus disease. Virus Res 2016; 211:174-85; PMID:26596227; http://dx.doi.org/10.1016/j.virusres.2015.10.021
  • Allison SD. Effect of structural relaxation on the preparation and drug release behavior of poly(lactic-co-glycolic)acid microparticle drug delivery systems. Journal of pharmaceutical sciences 2008; 97:2022-35; PMID:17828755; http://dx.doi.org/10.1002/jps.21124
  • Ungaro F, d'Angelo I, Miro A, La Rotonda MI, Quaglia F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: challenges and promises. The Journal of pharmacy and pharmacology 2012; 64:1217-35; PMID:22881435; http://dx.doi.org/10.1111/j.2042-7158.2012.01486.x
  • Joshi VB, Geary SM, Salem AK. Biodegradable particles as vaccine antigen delivery systems for stimulating cellular immune responses. Human vaccines & immunotherapeutics 2013; 9:2584-90; PMID:23978910; http://dx.doi.org/10.4161/hv.26136
  • Silva AL, Rosalia RA, Varypataki E, Sibuea S, Ossendorp F, Jiskoot W. Poly-(lactic-co-glycolic-acid)-based particulate vaccines: particle uptake by dendritic cells is a key parameter for immune activation. Vaccine 2015; 33:847-54; PMID:25576216; http://dx.doi.org/10.1016/j.vaccine.2014.12.059
  • Zaric M, Lyubomska O, Touzelet O, Poux C, Al-Zahrani S, Fay F, Wallace L, Terhorst D, Malissen B, Henri S, et al. Skin dendritic cell targeting via microneedle arrays laden with antigen-encapsulated poly-D,L-lactide-co-glycolide nanoparticles induces efficient antitumor and antiviral immune responses. ACS nano 2013; 7:2042-55; PMID:23373658; http://dx.doi.org/10.1021/nn304235j
  • Zaric M, Lyubomska O, Poux C, Hanna ML, McCrudden MT, Malissen B, Ingram RJ, Power UF, Scott CJ, Donnelly RF, et al. Dissolving microneedle delivery of nanoparticle-encapsulated antigen elicits efficient cross-priming and Th1 immune responses by murine Langerhans cells. J Invest Dermatol 2015; 135:425-34; PMID:25243789; http://dx.doi.org/10.1038/jid.2014.415
  • Demuth PC, Garcia-Beltran WF, Ai-Ling ML, Hammond PT, Irvine DJ. Composite dissolving microneedles for coordinated control of antigen and adjuvant delivery kinetics in transcutaneous vaccination. Advanced functional materials 2013; 23:161-72; PMID:23503923; http://dx.doi.org/10.1002/adfm.201201512
  • Smith A, Perelman M, Hinchcliffe M. Chitosan: a promising safe and immune-enhancing adjuvant for intranasal vaccines. Human vaccines & immunotherapeutics 2014; 10:797-807; PMID:24346613; http://dx.doi.org/10.4161/hv.27449
  • Bal SM, Ding Z, Kersten GF, Jiskoot W, Bouwstra JA. Microneedle-based transcutaneous immunisation in mice with N-trimethyl chitosan adjuvanted diphtheria toxoid formulations. Pharm Res 2010; 27:1837-47; PMID:20559701; http://dx.doi.org/10.1007/s11095-010-0182-y
  • Bal SM, Slutter B, Jiskoot W, Bouwstra JA. Small is beautiful: N-trimethyl chitosan-ovalbumin conjugates for microneedle-based transcutaneous immunisation. Vaccine 2011; 29:4025-32; PMID:21443959; http://dx.doi.org/10.1016/j.vaccine.2011.03.039
  • Leguen E, Chassepot A, Decher G, Schaaf P, Voegel JC, Jessel N. Bioactive coatings based on polyelectrolyte multilayer architectures functionalized by embedded proteins, peptides or drugs. Biomolecular engineering 2007; 24:33-41; PMID:16860599; http://dx.doi.org/10.1016/j.bioeng.2006.05.023
  • Kim BS, Park SW, Hammond PT. Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. Acs Nano 2008; 2:386-92; PMID:19206641; http://dx.doi.org/10.1021/nn700408z
  • Zeltins A. Construction and characterization of virus-like particles: a review. Mol Biotechnol 2013; 53:92-107; PMID:23001867; http://dx.doi.org/10.1007/s12033-012-9598-4
  • Rodriguez-Limas WA, Sekar K, Tyo KEJ. Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development. Curr Opin Biotech 2013; 24:1089-93; PMID:23481378; http://dx.doi.org/10.1016/j.copbio.2013.02.008
  • Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine 2015; 33 Suppl 4:D13-23; PMID:26324116; http://dx.doi.org/10.1016/j.vaccine.2015.07.091
  • Quan FS, Kim YC, Vunnava A, Yoo DG, Song JM, Prausnitz MR, Compans RW, Kang SM. Intradermal Vaccination with Influenza Virus-Like Particles by Using Microneedles Induces Protection Superior to That with Intramuscular Immunization. Journal of virology 2010; 84:7760-9; PMID:20484519; http://dx.doi.org/10.1128/JVI.01849-09
  • Song JM, Kim YC, Lipatov AS, Pearton M, Davis CT, Yoo DG, Park KM, Chen LM, Quan FS, Birchall JC, et al. Microneedle delivery of H5N1 influenza virus-like particles to the skin induces long-lasting B- and T-cell responses in mice. Clin Vaccine Immunol 2010; 17:1381-9; PMID:20631330; http://dx.doi.org/10.1128/CVI.00100-10
  • Song JM, Kim YC, Barlow PG, Hossain MJ, Park KM, Donis RO, Prausnitz MR, Compans RW, Kang SM. Improved protection against avian influenza H5N1 virus by a single vaccination with virus-like particles in skin using microneedles. Antivir Res 2010; 88:244-7; PMID:20851715; http://dx.doi.org/10.1016/j.antiviral.2010.09.001
  • Pearton M, Pirri D, Kang SM, Compans RW, Birchall JC. Host responses in human skin after conventional intradermal injection or microneedle administration of virus-like-particle influenza vaccine. Advanced healthcare materials 2013; 2:1401-10; PMID:23564440; http://dx.doi.org/10.1002/adhm.201300006
  • Kim MC, Lee JW, Choi HJ, Lee YN, Hwang HS, Lee J, Kim C, Lee JS, Montemagno C, Prausnitz MR, et al. Microneedle patch delivery to the skin of virus-like particles containing heterologous M2e extracellular domains of influenza virus induces broad heterosubtypic cross-protection. J Control Release 2015; 210:208-16; PMID:26003039; http://dx.doi.org/10.1016/j.jconrel.2015.05.278
  • Kines RC, Zarnitsyn V, Johnson TR, Pang YYS, Corbett KS, Nicewonger JD, Gangopadhyay A, Chen M, Liu J, Prausnitz MR, et al. Vaccination with human papillomavirus pseudovirus-encapsidated plasmids targeted to skin using microneedles. PLos One 2015; 10: e0120797-0120814. PMID:25785935; http://dx.doi.org/10.1371/10.1371/journal.pone.0120797
  • Carey JB, Pearson FE, Vrdoljak A, McGrath MG, Crean AM, Walsh PT, Doody T, O'Mahony C, Hill AV, Moore AC. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice. PLoS One 2013; 6:e22442.
  • Neutra MR, Kozlowski PA. Mucosal vaccines: the promise and the challenge. Nat Rev Immunol 2006; 6:148-58; PMID:16491139; http://dx.doi.org/10.1038/nri1777
  • Lutton RE, Moore J, Larraneta E, Ligett S, Woolfson AD, Donnelly RF. Microneedle characterisation: the need for universal acceptance criteria and GMP specifications when moving towards commercialisation. Drug Deliv Transl Res 2015; 5:313-31; PMID:26022578; http://dx.doi.org/10.1007/s13346-015-0237-z
  • Suh H, Shin J, Kim YC. Microneedle patches for vaccine delivery. Clin Exp Vaccine Res 2014; 3:42-9; PMID:24427762; http://dx.doi.org/10.7774/cevr.2014.3.1.42
  • Kolli CS. Microneedles: bench to bedside. Ther Deliv 2015; 6:1081-8; PMID:26419290; http://dx.doi.org/10.4155/tde.15.67
  • Jacoby E, Jarrahian C, Hull HF, Zehrung D. Opportunities and challenges in delivering influenza vaccine by microneedle patch. Vaccine 2015; 33:4699-704; PMID:25842218; http://dx.doi.org/10.1016/j.vaccine.2015.03.062
  • Arya J, Prausnitz MR. Microneedle patches for vaccination in developing countries. J Control Release 2016 (in press); PMID:26603347; http://dx.doi.org/10.1016/j.jconrel.2015.11.019
  • Korschun H. Clinical study at Emory tests microneedle skin patches as alternative to flu shot. Researchers are enrolling volunteers in a clinical study at the Hope Clinic of the Emory Vaccine Center. Emory University: Emory University Woodruff Health Sciences Center, August 28, 2015.
  • Toon J. Polio vaccination with microneedle patches receives funding for patch development, clinical trial. Clinical Trial Will Evaluate Polio Vaccination Using Microneedle Patch. Georgia Institute of Technology, Atlanta, Georgia 30332-0181 USA: Georgia Institute of Technology News Center, February 24, 2015.
  • Meek G. Microneedle Patch for Measles Vaccination Could Be a Game Changer. Promises to Increase Reach of Immunization Coverage Globally: CDC Newsroom Releases, April 27, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.