1,951
Views
27
CrossRef citations to date
0
Altmetric
Review

Dendritic cell vaccines: A review of recent developments and their potential pediatric application

, &
Pages 2232-2239 | Received 11 Jan 2016, Accepted 14 Apr 2016, Published online: 04 Jun 2016

References

  • Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 2014; 64:83-103; PMID:24488779
  • Mitchell DA, Sayour EJ, Reap E, Schmittling R, DeLeon G, Norberg P, Desjardins A, Friedman AH, Friedman HS, Archer G, et al. Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol research 2015; 3:320-5; PMID:25387895; http://dx.doi.org/10.1158/2326-6066.CIR-14-0100
  • Krishnadas DK, Shusterman S, Bai F, Diller L, Sullivan JE, Cheerva AC, George RE, Lucas KG. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother 2015; 64:1251-60; PMID:26105625; http://dx.doi.org/10.1007/s00262-015-1731-3
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:411-22; PMID:20818862; http://dx.doi.org/10.1056/NEJMoa1001294
  • Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediat Blood Cancer 2010; 54:519-25; PMID:19852061
  • Caruso DA, Orme LM, Neale AM, Radcliff FJ, Amor GM, Maixner W, Downie P, Hassall TE, Tang ML, Ashley DM. Results of a phase 1 study utilizing monocyte-derived dendritic cells pulsed with tumor RNA in children and young adults with brain cancer. Neuro-oncology 2004; 6:236-46; PMID:15279716; http://dx.doi.org/10.1215/S1152851703000668
  • Lasky JL, 3rd, Panosyan EH, Plant A, Davidson T, Yong WH, Prins RM, Liau LM, Moore TB. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 2013; 33:2047-56; PMID:23645755
  • Dohnal AM, Witt V, Hugel H, Holter W, Gadner H, Felzmann T. Phase I study of tumor Ag-loaded IL-12 secreting semi-mature DC for the treatment of pediatric cancer. Cytotherapy 2007; 9:755-70; PMID:17917887; http://dx.doi.org/10.1080/14653240701589221
  • Geiger J, Hutchinson R, Hohenkirk L, McKenna E, Chang A, Mule J. Treatment of solid tumours in children with tumour-lysate-pulsed dendritic cells. Lancet (London, England) 2000; 356:1163-5; PMID:11030299; http://dx.doi.org/10.1016/S0140-6736(00)02762-8
  • Geiger JD, Hutchinson RJ, Hohenkirk LF, McKenna EA, Yanik GA, Levine JE, Chang AE, Braun TM, Mule JJ. Vaccination of pediatric solid tumor patients with tumor lysate-pulsed dendritic cells can expand specific T cells and mediate tumor regression. Cancer Res 2001; 61:8513-9; PMID:11731436
  • Himoudi N, Wallace R, Parsley KL, Gilmour K, Barrie AU, Howe K, Dong R, Sebire NJ, Michalski A, Thrasher AJ, et al. Lack of T-cell responses following autologous tumour lysate pulsed dendritic cell vaccination, in patients with relapsed osteosarcoma. Clin Transl Oncol 2012; 14:271-9; PMID:22484634; http://dx.doi.org/10.1007/s12094-012-0795-1
  • Matsuzaki A, Suminoe A, Hattori H, Hoshina T, Hara T. Immunotherapy with autologous dendritic cells and tumor-specific synthetic peptides for synovial sarcoma. J Pediat Hematol Oncol 2002; 24:220-3; PMID:11990310; http://dx.doi.org/10.1097/00043426-200203000-00012
  • Shilyansky J, Jacobs P, Doffek K, Sugg SL. Induction of cytolytic T lymphocytes against pediatric solid tumors in vitro using autologous dendritic cells pulsed with necrotic primary tumor. J Pediat Surgery 2007; 42:54-61; discussion; PMID:17208541; http://dx.doi.org/10.1016/j.jpedsurg.2006.09.008
  • Suminoe A, Matsuzaki A, Hattori H, Koga Y, Hara T. Immunotherapy with autologous dendritic cells and tumor antigens for children with refractory malignant solid tumors. Pediat Transplant 2009; 13:746-53; PMID:19067917; http://dx.doi.org/10.1111/j.1399-3046.2008.01066.x
  • Hunn MK, Bauer E, Wood CE, Gasser O, Dzhelali M, Ancelet LR, Mester B, Sharples KJ, Findlay MP, Hamilton DA, et al. Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme. J Neuro-Oncol 2015; 121:319-29; PMID:25366363; http://dx.doi.org/10.1007/s11060-014-1635-7
  • Saito S, Yanagisawa R, Yoshikawa K, Higuchi Y, Koya T, Yoshizawa K, Tanaka M, Sakashita K, Kobayashi T, Kurata T, et al. Safety and tolerability of allogeneic dendritic cell vaccination with induction of Wilms tumor 1-specific T cells in a pediatric donor and pediatric patient with relapsed leukemia: a case report and review of the literature. Cytotherapy 2015; 17:330-5; PMID:25484308; http://dx.doi.org/10.1016/j.jcyt.2014.10.003
  • Nair SK, Driscoll T, Boczkowski D, Schmittling R, Reynolds R, Johnson LA, Grant G, Fuchs H, Bigner DD, Sampson JH, et al. Ex vivo generation of dendritic cells from cryopreserved, post-induction chemotherapy, mobilized leukapheresis from pediatric patients with medulloblastoma. J Neuro-oncol 2015; 125:65-74; PMID:26311248; http://dx.doi.org/10.1007/s11060-015-1890-2
  • Jacobs JF, Hoogerbrugge PM, de Rakt MW, Aarntzen EH, Figdor CG, Adema GJ, de Vries IJ. Phenotypic and functional characterization of mature dendritic cells from pediatric cancer patients. Pediat Blood Cancer 2007; 49:924-7; PMID:17486645; http://dx.doi.org/10.1002/pbc.21246
  • Vakkila J, Vettenranta K, Sariola H, Saarinen-Pihkala UM. Poor yield of dendritic cell precursors from untreated pediatric cancer. J Hematother Stem Cell Res 2001; 10:787-93; PMID:11798505; http://dx.doi.org/10.1089/152581601317210881
  • Haruta M, Tomita Y, Yuno A, Matsumura K, Ikeda T, Takamatsu K, Haga E, Koba C, Nishimura Y, Senju S. TAP-deficient human iPS cell-derived myeloid cell lines as unlimited cell source for dendritic cell-like antigen-presenting cells. Gene Ther 2013; 20:504-13; PMID:22875043; http://dx.doi.org/10.1038/gt.2012.59
  • Lonial S, Hicks M, Rosenthal H, Langston A, Redei I, Torre C, Duenzl M, Feinstein B, Cherry J, Waller EK. A randomized trial comparing the combination of granulocyte-macrophage colony-stimulating factor plus granulocyte colony-stimulating factor versus granulocyte colony-stimulating factor for mobilization of dendritic cell subsets in hematopoietic progenitor cell products. Biol Blood Marrow Transplant 2004; 10:848-57; PMID:15570253; http://dx.doi.org/10.1016/j.bbmt.2004.07.008
  • Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95:2484-90; PMID:10753825
  • Zeng J, Wu C, Wang S. Antigenically Modified Human Pluripotent Stem Cells Generate Antigen-Presenting Dendritic Cells. Sci Rep 2015; 5:15262; PMID:26471005; http://dx.doi.org/10.1038/srep15262
  • Iwamoto H, Ojima T, Nakamori M, Nakamura M, Hayata K, Katsuda M, Iida T, Miyazawa M, Iwahashi M, Yamaue H. [Cancer vaccine therapy using genetically modified induced pluripotent stem cell-derived dendritic cells expressing the TAA gene]. Gan To kagaku Ryoho Cancer Chemother 2013; 40:1575-7; PMID:24393853
  • Fukushima S, Hirata S, Motomura Y, Fukuma D, Matsunaga Y, Ikuta Y, Ikeda T, Kageshita T, Ihn H, Nishimura Y, et al. Multiple antigen-targeted immunotherapy with alpha-galactosylceramide-loaded and genetically engineered dendritic cells derived from embryonic stem cells. J Immunother 2009; 32:219-31; PMID:19242378; http://dx.doi.org/10.1097/CJI.0b013e318194b63b
  • Zeng J, Wang S. Human dendritic cells derived from embryonic stem cells stably modified with CD1d efficiently stimulate antitumor invariant natural killer T cell response. Stem Cell Transl Med 2014; 3:69-80; PMID:24292792; http://dx.doi.org/10.5966/sctm.2013-0070
  • de Haar C, Plantinga M, Blokland NJ, van Til NP, Flinsenberg TW, Van Tendeloo VF, Smits EL, Boon L, Spel L, Boes M, et al. Generation of a cord blood-derived Wilms Tumor 1 dendritic cell vaccine for AML patients treated with allogeneic cord blood transplantation. Oncoimmunology 2015; 4:e1023973; PMID:26451309; http://dx.doi.org/10.1080/2162402X.2015.1023973
  • Sakai K, Shimodaira S, Maejima S, Udagawa N, Sano K, Higuchi Y, Koya T, Ochiai T, Koide M, Uehara S, et al. Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma. J Neurosurg 2015; 123:989-97; PMID:26252465; http://dx.doi.org/10.3171/2015.1.JNS141554
  • Collignon A, Perles-Barbacaru AT, Robert S, Silvy F, Martinez E, Crenon I, Germain S, Garcia S, Viola A, Lombardo D, et al. A pancreatic tumor-specific biomarker characterized in humans and mice as an immunogenic onco-glycoprotein is efficient in dendritic cell vaccination. Oncotarget 2015; 6:23462-79; PMID:26405163; http://dx.doi.org/10.18632/oncotarget.4359
  • Okamoto M, Kobayashi M, Yonemitsu Y, Koido S, Homma S. Dendritic cell-based vaccine for pancreatic cancer in Japan. World J Gastrointest Pharmacol Ther 2016; 7:133-8; PMID:26855819; http://dx.doi.org/10.4292/wjgpt.v7.i1.133
  • Nguyen ST, Nguyen HL, Pham VQ, Nguyen GT, Tran CD, Phan NK, Pham PV. Targeting specificity of dendritic cells on breast cancer stem cells: in vitro and in vivo evaluations. Onco Targets Ther 2015; 8:323-34; PMID:25674007
  • Wang X, Bayer ME, Chen X, Fredrickson C, Cornforth AN, Liang G, Cannon J, He J, Fu Q, Liu J, et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B-positive patients with hepatocellular carcinoma. J Surg Oncol 2015; 111:862-7; PMID:25873455; http://dx.doi.org/10.1002/jso.23897
  • Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tonnesen P, Suso EM, Saeboe-Larssen S, Sandberg C, Brinchmann JE, Helseth E, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 2013; 62:1499-509; PMID:23817721; http://dx.doi.org/10.1007/s00262-013-1453-3
  • Wilgenhof S, Corthals J, Van Nuffel AM, Benteyn D, Heirman C, Bonehill A, Thielemans K, Neyns B. Long-term clinical outcome of melanoma patients treated with messenger RNA-electroporated dendritic cell therapy following complete resection of metastases. Cancer Immunol Immunother 2015; 64:381-8; PMID:25548092; http://dx.doi.org/10.1007/s00262-014-1642-8
  • Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, Nascene D, Gustafson MP, Dietz AB, Clark HB, Chen W, et al. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J Immunother Cancer 2014; 2:4; PMID:24829761; http://dx.doi.org/10.1186/2051-1426-2-4
  • Kabelitz D, Medzhitov R. Innate immunity–cross-talk with adaptive immunity through pattern recognition receptors and cytokines. Curr Opin Immunol 2007; 19:1-3; PMID:17157490; http://dx.doi.org/10.1016/j.coi.2006.11.018
  • Reis e Sousa C. Toll-like receptors and dendritic cells: for whom the bug tolls. Semin Immunol 2004; 16:27-34; PMID:14751761; http://dx.doi.org/10.1016/j.smim.2003.10.004
  • Shen HTB, Walker WE, Goldstein DR. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J Immunol 2008; 181:1849-58; PMID:18641322; http://dx.doi.org/10.4049/jimmunol.181.3.1849
  • Napolitani G RA, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nature Immunol 2005; 6:769-76; PMID:15995707; http://dx.doi.org/10.1038/ni1223
  • Baxevanis CN, Voutsas IF, Tsitsilonis OE. Toll-like receptor agonists: current status and future perspective on their utility as adjuvants in improving anticancer vaccination strategies. Immunotherapy 2013; 5:497-511; PMID:23638745; http://dx.doi.org/10.2217/imt.13.24
  • Engell-Noerregaard L, Hansen TH, Andersen MH, Thor Straten P, Svane IM. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 2009; 58:1-14; PMID:18719915; http://dx.doi.org/10.1007/s00262-008-0568-4
  • Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, Jungbluth AA, Ritter G, Aghajanian C, Bell-McGuinn K, et al. Phase I Trial of Overlapping Long Peptides from a Tumor Self-Antigen and Poly-ICLC Shows Rapid Induction of Integrated Immune Response in Ovarian Cancer Patients. Clin Cancer Res 2012; 18:6497-508; PMID:23032745; http://dx.doi.org/10.1158/1078-0432.CCR-12-2189
  • Matthews KCN, Klasse PJ, Moutaftsi M, Carter D, Salazar AM, Reed SG, Sanders RW, Moore JP. Clinical adjuvant combinations stimulate potent B-cell responses in vitro by activating dermal dendritic cells. PLoS One 2013; 8:e63785; PMID:23700434
  • Pollack IF JR, Butterfield LH, Okada H. Peptide vaccine therapy for childhood gliomas. Neurosurgery 2013; 60:113-9; PMID:23839362; http://dx.doi.org/10.1227/01.neu.0000430769.33467.68
  • Okada H, Kalinski P, Ueda R, Hoji A, Kohanbash G, Donegan TE, Mintz AH, Engh JA, Bartlett DL, Brown CK, et al. Induction of CD8+ T-Cell Responses Against Novel Glioma–Associated Antigen Peptides and Clinical Activity by Vaccinations With a-Type 1 Polarized Dendritic Cells and Polyinosinic-Polycytidylic Acid Stabilized by Lysine and Carboxymethylcellulose in Patients With Recurrent Malignant Glioma. J Clin Oncol 2011; 29:330-6; PMID:21149657; http://dx.doi.org/10.1200/JCO.2010.30.7744
  • Chang WT, Lai TH, Chyan YJ, Yin SY, Chen YH, Wei WC, Yang NS. Specific medicinal plant polysaccharides effectively enhance the potency of a DC-based vaccine against mouse mammary tumor metastasis. PloS One 2015; 10:e0122374; PMID:25825910; http://dx.doi.org/10.1371/journal.pone.0122374
  • Lin CC, Pan IH, Li YR, Pan YG, Lin MK, Lu YH, Wu HC, Chu CL. The adjuvant effects of high-molecule-weight polysaccharides purified from Antrodia cinnamomea on dendritic cell function and DNA vaccines. PloS One 2015; 10:e0116191; PMID:25723174; http://dx.doi.org/10.1371/journal.pone.0116191
  • Wang Y, Ma X, Su C, Peng B, Du J, Jia H, Luo M, Fang C, Wei Y. Uric acid enhances the antitumor immunity of dendritic cell-based vaccine. Sci Rep 2015; 5:16427; PMID:26553557; http://dx.doi.org/10.1038/srep16427
  • Seth A, Heo MB, Sung MH, Lim YT. Infection-mimicking poly(gamma-glutamic acid) as adjuvant material for effective anti-tumor immune response. Int J Biol Macromol 2015; 75:495-504; PMID:25709015; http://dx.doi.org/10.1016/j.ijbiomac.2015.02.013
  • Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, Congdon KL, Reap EA, Archer GE, Desjardins A, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 2015; 519:366-9; PMID:25762141; http://dx.doi.org/10.1038/nature14320
  • Kang TH, Kim YS, Kim S, Yang B, Lee JJ, Lee HJ, Lee J, Jung ID, Han HD, Lee SH, et al. Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4. Oncotarget 2015; 6:27751-62; PMID:26336989; http://dx.doi.org/10.18632/oncotarget.4859
  • Van Nuffel AM, Benteyn D, Wilgenhof S, Corthals J, Heirman C, Neyns B, Thielemans K, Bonehill A. Intravenous and intradermal TriMix-dendritic cell therapy results in a broad T-cell response and durable tumor response in a chemorefractory stage IV-M1c melanoma patient. Cancer Immunol Immunother 2012; 61:1033-43; PMID:22159452; http://dx.doi.org/10.1007/s00262-011-1176-2
  • Benteyn D, Van Nuffel AM, Wilgenhof S, Bonehill A. Single-step antigen loading and maturation of dendritic cells through mRNA electroporation of a tumor-associated antigen and a TriMix of costimulatory molecules. Methods Mol Biol 2014; 1139:3-15; PMID:24619665; http://dx.doi.org/10.1007/978-1-4939-0345-0_1
  • Seya T, Shime H, Takeda Y, Tatematsu M, Takashima K, Matsumoto M. Adjuvant for vaccine immunotherapy of cancer - focusing on Toll-like receptor 2 and 3 agonists for safely enhancing antitumor immunity. Cancer Sci 2015; 106:1659-68; PMID:26395101; http://dx.doi.org/10.1111/cas.12824
  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nature Med 2002; 8:793-800; PMID:12091876; http://dx.doi.org/10.1038/nm0902-1039c
  • Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Med 1999; 5:1365-9; PMID:10581077; http://dx.doi.org/10.1038/70932
  • Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson KL, Daniel B, Zimmermann MC, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Med 2003; 9:562-7; PMID:12704383; http://dx.doi.org/10.1038/nm863
  • Ge Y, Xi H, Ju S, Zhang X. Blockade of PD-1/PD-L1 immune checkpoint during DC vaccination induces potent protective immunity against breast cancer in hu-SCID mice. Cancer Lett 2013; 336:253-9; PMID:23523609; http://dx.doi.org/10.1016/j.canlet.2013.03.010
  • van der Waart AB, Fredrix H, van der Voort R, Schaap N, Hobo W, Dolstra H. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice. Cancer Immunol Immunother 2015; 64:645-54; PMID:25724840; http://dx.doi.org/10.1007/s00262-015-1668-6
  • Wang S, Wang Y, Liu J, Shao S, Li X, Gao J, Niu H, Wang X. Silencing B7-H1 enhances the anti-tumor effect of bladder cancer antigen-loaded dendritic cell vaccine in vitro. Onco Targets Ther 2014; 7:1389-96; PMID:25120371; http://dx.doi.org/10.2147/OTT.S65367
  • Rossowska J, Anger N, Kicielinska J, Pajtasz-Piasecka E, Bielawska-Pohl A, Wojas-Turek J, Dus D. Temporary elimination of IL-10 enhanced the effectiveness of cyclophosphamide and BMDC-based therapy by decrease of the suppressor activity of MDSCs and activation of antitumour immune response. Immunobiology 2015; 220:389-98; PMID:25454807; http://dx.doi.org/10.1016/j.imbio.2014.10.009
  • Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5:641-54; PMID:16056256; http://dx.doi.org/10.1038/nri1668
  • Chung DJ, Rossi M, Romano E, Ghith J, Yuan J, Munn DH, Young JW. Indoleamine 2,3-dioxygenase-expressing mature human monocyte-derived dendritic cells expand potent autologous regulatory T cells. Blood 2009; 114:555-63; PMID:19465693; http://dx.doi.org/10.1182/blood-2008-11-191197
  • Johnson TS, Munn DH. Host indoleamine 2,3-dioxygenase: contribution to systemic acquired tumor tolerance. Immunol Invest 2012; 41:765-97; PMID:23017145; http://dx.doi.org/10.3109/08820139.2012.689405
  • Sharma MD, Baban B, Chandler P, Hou DY, Singh N, Yagita H, Azuma M, Blazar BR, Mellor AL, Munn DH. Plasmacytoid dendritic cells from mouse tumor-draining lymph nodes directly activate mature Tregs via indoleamine 2,3-dioxygenase. J Clin Invest 2007; 117:2570-82; PMID:17710230; http://dx.doi.org/10.1172/JCI31911
  • Narita Y, Kitamura H, Wakita D, Sumida K, Masuko K, Terada S, Nakano K, Nishimura T. The key role of IL-6-arginase cascade for inducing dendritic cell-dependent CD4(+) T cell dysfunction in tumor-bearing mice. J Immunol 2013; 190:812-20; PMID:23248265; http://dx.doi.org/10.4049/jimmunol.1103797
  • Trabanelli S, Lecciso M, Salvestrini V, Cavo M, Ocadlikova D, Lemoli RM, Curti A. PGE2-induced IDO1 inhibits the capacity of fully mature DCs to elicit an in vitro antileukemic immune response. J Immunol Res 2015; 2015:253191; PMID:25815345
  • Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, Cheng Y, Kim JW, Qiao J, Zhang L, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4, and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20:5290-301; PMID:24691018; http://dx.doi.org/10.1158/1078-0432.CCR-14-0514
  • Lowe DB, Bose A, Taylor JL, Tawbi H, Lin Y, Kirkwood JM, Storkus WJ. Dasatinib promotes the expansion of a therapeutically superior T-cell repertoire in response to dendritic cell vaccination against melanoma. Oncoimmunology 2014; 3:e27589; PMID:24734217; http://dx.doi.org/10.4161/onci.27589
  • Zwaan CM, Rizzari C, Mechinaud F, Lancaster DL, Lehrnbecher T, van der Velden VH, Beverloo BB, den Boer ML, Pieters R, Reinhardt D, et al. Dasatinib in children and adolescents with relapsed or refractory leukemia: results of the CA180-018 phase I dose-escalation study of the Innovative Therapies for Children with Cancer Consortium. J Clin Oncol 2013; 31:2460-8; PMID:23715577; http://dx.doi.org/10.1200/JCO.2012.46.8280
  • Kobayashi K, Miyagawa N, Mitsui K, Matsuoka M, Kojima Y, Takahashi H, Ootsubo K, Nagai J, Ueno H, Ishibashi T, et al. TKI dasatinib monotherapy for a patient with Ph-like ALL bearing ATF7IP/PDGFRB translocation. Pediat Blood Cancer 2015; 62:1058-60; PMID:25400122; http://dx.doi.org/10.1002/pbc.25327
  • Wu KH, Wu HP, Weng T, Peng CT, Chao YH. Dasatinib for a child with Philadelphia chromosome-positive acute lymphoblastic leukemia and persistently elevated minimal residual disease during imatinib therapy. Curr Oncol 2015; 22:303-6; PMID:26300669; http://dx.doi.org/10.3747/co.22.2719
  • Merchant MS, Wright M, Baird K, Wexler LH, Rodriguez-Galindo C, Bernstein D, Delbrook C, Lodish M, Bishop R, Wolchok JD, et al. Phase I Clinical Trial of Ipilimumab in Pediatric Patients with Advanced Solid Tumors. Clin Cancer Res 2016; 22:1364-70; PMID:26534966; http://dx.doi.org/10.1158/1078-0432.CCR-15-0491
  • Tarp S, Amarilyo G, Foeldvari I, Christensen R, Woo JM, Cohen N, Pope TD, Furst DE. Efficacy and safety of biological agents for systemic juvenile idiopathic arthritis: a systematic review and meta-analysis of randomized trials. Rheumatology (Oxford, England) 2016; 55:669-79; PMID:26628580; http://dx.doi.org/10.1093/rheumatology/kev382
  • Yokota S, Itoh Y, Morio T, Origasa H, Sumitomo N, Tomobe M, Tanaka K, Minota S. Tocilizumab in systemic juvenile idiopathic arthritis in a real-world clinical setting: results from 1 year of postmarketing surveillance follow-up of 417 patients in Japan. Ann Rheum Dis 2015; PMID:26644233

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.