2,364
Views
34
CrossRef citations to date
0
Altmetric
Review

Potential applications of nanoparticles in cancer immunotherapy

, , &
Pages 63-74 | Received 24 Aug 2016, Accepted 02 Oct 2016, Published online: 23 Dec 2016

References

  • World Health Organization. Cancer. Fact Sheet Number 297:2015; available at: http://www.who.int/mediacentre/factsheets/fs297/en/
  • Vigneron N. Human tumor antigens and cancer immunotherapy. BioMed Res Int 2015; 2015:948501; PMID:26161423; http://dx.doi.org/10.1155/2015/948501
  • Gatenby RA. A change of strategy in the war on cancer. Nature 2009; 459:508-9; PMID:19478766; http://dx.doi.org/10.1038/459508a
  • Urruticoechea A, Alemany R, Balart J, Villanueva A, Vinals F, Capella G. Recent advances in cancer therapy: an overview. Curr Pharmaceutical Design 2010; 16:3-10; PMID:20214614; http://dx.doi.org/10.2174/138161210789941847
  • Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013; 39:1-10; PMID:23890059; http://dx.doi.org/10.1016/j.immuni.2013.07.012
  • Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature 2011; 480:480-9; PMID:22193102; http://dx.doi.org/10.1038/nature10673
  • Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S, Florindo HF, Barata TS. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Frontiers Chem 2014; 2:105; PMID:25505783; http://dx.doi.org/10.3389/fchem.2014.00105
  • Corrigan-Curay J, Kiem HP, Baltimore D, O'Reilly M, Brentjens RJ, Cooper L, Forman S, Gottschalk S, Greenberg P, Junghans R, et al. T-cell immunotherapy: looking forward. Mol Therapy 2014; 22:1564-74; PMID:25186558; http://dx.doi.org/10.1038/mt.2014.148
  • Lam SS, Zhou F, Hode T, Nordquist RE, Alleruzzo L, Raker J, Chen WR. Advances in strategies and methodologies in cancer immunotherapy. Discov Med 2015; 19:293-301; PMID:25977192
  • Vergati M, Intrivici C, Huen NY, Schlom J, Tsang KY. Strategies for cancer vaccine development. J Biomed Biotechnol 2010; 2010:1–14; PMID:20706612; http://dx.doi.org/10.1155/2010/596432
  • So-Rosillo R, Small EJ. Sipuleucel-T (APC8015) for prostate cancer. Exp Rev Anticancer Therapy 2006; 6:1163-7; PMID:17020451; http://dx.doi.org/10.1586/14737140.6.9.1163
  • Sheikh NA, Petrylak D, Kantoff PW, Dela Rosa C, Stewart FP, Kuan LY, Whitmore JB, Trager JB, Poehlein CH, Frohlich MW, et al. Sipuleucel-T immune parameters correlate with survival: an analysis of the randomized phase 3 clinical trials in men with castration-resistant prostate cancer. Cancer Immunol Immunotherapy 2013; 62:137-47; PMID:22865266; http://dx.doi.org/10.1007/s00262-012-1317-2
  • Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016; 14:73; PMID:27151159; http://dx.doi.org/10.1186/s12916-016-0623-5
  • Chiang CJ, Yang YW, You SL, Lai MS, Chen CJ. Thirty-year outcomes of the national hepatitis B immunization program in Taiwan. Jama 2013; 310:974-6; PMID:24002285; http://dx.doi.org/10.1001/jama.2013.276701
  • Drolet M, Benard E, Boily MC, Ali H, Baandrup L, Bauer H, Beddows S, Brisson J, Brotherton JM, Cummings T, et al. Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 2015; 15:565-80; PMID:25744474; http://dx.doi.org/10.1016/S1473-3099(14)71073-4
  • Vilgelm AE, Johnson DB, Richmond A. Combinatorial approach to cancer immunotherapy: strength in numbers. J Leukocyte Biol 2016; 100(2):275-90; PMID:27256570
  • Kleponis J, Skelton R, Zheng L. Fueling the engine and releasing the break: combinational therapy of cancer vaccines and immune checkpoint inhibitors. Cancer Biol Med 2015; 12:201-8; PMID:26487965
  • Pillai G. Nanomedicines for cancer therapy: An update of FDA approved and those under various stages of development. SOJ Pharm Pharm Sci 2014; 1:1-13; http://dx.doi.org/10.1166/jpsp.2014.1001
  • Kapadia CH, Tian S, Perry JL, Luft JC, DeSimone JM. Reduction sensitive PEG hydrogels for co-delivery of antigen and adjuvant to induce potent CTLs. Mol Pharmaceutics 2016; 13(10):3381-3394; PMID:27551741
  • Silva JM, Videira M, Gaspar R, Preat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Controlled Release 2013; 168:179-99; PMID:23524187; http://dx.doi.org/10.1016/j.jconrel.2013.03.010
  • Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Controlled Release 2013; 172:1020-34; PMID:24140748; http://dx.doi.org/10.1016/j.jconrel.2013.10.012
  • Hamdy S, Molavi O, Ma Z, Haddadi A, Alshamsan A, Gobti Z, Elhasi S, Samuel J, Lavasanifar A. Co-delivery of cancer-associated antigen and Toll-like receptor 4 ligand in PLGA nanoparticles induces potent CD8+ T cell-mediated anti-tumor immunity. Vaccine 2008; 26:5046-57; PMID:18680779; http://dx.doi.org/10.1016/j.vaccine.2008.07.035
  • Kreutz M, Giquel B, Hu Q, Abuknesha R, Uematsu S, Akira S, Nestle FO, Diebold SS. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity. PloS One 2012; 7:e40208; PMID:22808118; http://dx.doi.org/10.1371/journal.pone.0040208
  • Sur A, Pradhan B, Banerjee A, Aich P. Immune activation efficacy of indolicidin is enhanced upon conjugation with carbon nanotubes and gold nanoparticles. PloS One 2015; 10:e0123905; PMID:25876153; http://dx.doi.org/10.1371/journal.pone.0123905
  • Rahimian S, Fransen MF, Kleinovink JW, Christensen JR, Amidi M, Hennink WE, Ossendorp F. Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. J Controlled Release 2015; 203:16-22; PMID:25660830; http://dx.doi.org/10.1016/j.jconrel.2015.02.006
  • Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Therapy 2010; 18:1650-6; PMID:20606648; http://dx.doi.org/10.1038/mt.2010.136
  • Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat Med 2010; 16:1035-41; PMID:20711198; http://dx.doi.org/10.1038/nm.2198
  • Gao H, Zhang Q, Yang Y, Jiang X, He Q. Tumor homing cell penetrating peptide decorated nanoparticles used for enhancing tumor targeting delivery and therapy. Int J Pharmaceutics 2015; 478:240-50; PMID:25448586; http://dx.doi.org/10.1016/j.ijpharm.2014.11.029
  • Comenge J, Sotelo C, Romero F, Gallego O, Barnadas A, Parada TG, Dominguez F, Puntes VF. Detoxifying antitumoral drugs via nanoconjugation: the case of gold nanoparticles and cisplatin. PloS One 2012; 7:e47562; PMID:23082177; http://dx.doi.org/10.1371/journal.pone.0047562
  • Markman JL, Rekechenetskiy A, Holler E, Ljubimova JY. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv Drug Delivery Rev 2013; 65:1866-79; PMID:24120656; http://dx.doi.org/10.1016/j.addr.2013.09.019
  • Rink JS, Plebanek MP, Tripathy S, Thaxton CS. Update on current and potential nanoparticle cancer therapies. Curr Opin Oncol 2013; 25:646-51; PMID:24097107; http://dx.doi.org/10.1097/CCO.0000000000000012
  • Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Delivery Rev 2014; 66:2-25; PMID:24270007; http://dx.doi.org/10.1016/j.addr.2013.11.009
  • Shao K, Singha S, Clemente-Casares X, Tsai S, Yang Y, Santamaria P. Nanoparticle-based immunotherapy for cancer. ACS Nano 2015; 9:16-30; PMID:25469470; http://dx.doi.org/10.1021/nn5062029
  • Jiao Q, Li L, Mu Q, Zhang Q. Immunomodulation of nanoparticles in nanomedicine applications. BioMed Res Int 2014; 2014:426028; PMID:24949448
  • Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420:860-7; PMID:12490959; http://dx.doi.org/10.1038/nature01322
  • van den Broek ME, Kagi D, Ossendorp F, Toes R, Vamvakas S, Lutz WK, Melief CJ, Zinkernagel RM, Hengartner H. Decreased tumor surveillance in perforin-deficient mice. J Exp Med 1996; 184:1781-90; PMID:8920866; http://dx.doi.org/10.1084/jem.184.5.1781
  • Smyth MJ, Thia KY, Street SE, Cretney E, Trapani JA, Taniguchi M, Kawano T, Pelikan SB, Crowe NY, Godfrey DI. Differential tumor surveillance by natural killer (NK) and NKT cells. J Exp Med 2000; 191:661-8; PMID:10684858; http://dx.doi.org/10.1084/jem.191.4.661
  • Chew V, Toh HC, Abastado JP. Immune microenvironment in tumor progression: characteristics and challenges for therapy. J Oncol 2012; 2012:608406; PMID:22927846; http://dx.doi.org/10.1155/2012/608406
  • Pross HF, Lotzova E. Role of natural killer cells in cancer. Natural Immunity 1993; 12:279-92; PMID:8257832
  • Weigelin B, Krause M, Friedl P. Cytotoxic T lymphocyte migration and effector function in the tumor microenvironment. Immunol Letters 2011; 138:19-21; PMID:21333682; http://dx.doi.org/10.1016/j.imlet.2011.02.016
  • Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H, Blankenstein T. A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res 2003; 63:4095-100; PMID:12874012
  • Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. J Cell Sci 2012; 125:5591-6; PMID:23420197; http://dx.doi.org/10.1242/jcs.116392
  • Almog N. Molecular mechanisms underlying tumor dormancy. Cancer Letters 2010; 294:139-46; PMID:20363069; http://dx.doi.org/10.1016/j.canlet.2010.03.004
  • Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer 2009; 9:57-63; PMID:19052556; http://dx.doi.org/10.1038/nrc2541
  • Jacobs JF, Nierkens S, Figdor CG, de Vries IJ, Adema GJ. Regulatory T cells in melanoma: the final hurdle towards effective immunotherapy? Lancet Oncol 2012; 13:e32-42; PMID:22225723; http://dx.doi.org/10.1016/S1470-2045(11)70155-3
  • Yokokawa J, Cereda V, Remondo C, Gulley JL, Arlen PM, Schlom J, Tsang KY. Enhanced functionality of CD4+CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer. Clin Cancer Res 2008; 14:1032-40; PMID:18281535; http://dx.doi.org/10.1158/1078-0432.CCR-07-2056
  • Onizuka S, Tawara I, Shimizu J, Sakaguchi S, Fujita T, Nakayama E. Tumor rejection by in vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res 1999; 59:3128-33; PMID:10397255
  • Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res 2006; 66:5527-36; PMID:16740684; http://dx.doi.org/10.1158/0008-5472.CAN-05-4128
  • Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6:295-307; PMID:16557261; http://dx.doi.org/10.1038/nri1806
  • Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 2008; 8:618-31; PMID:18633355; http://dx.doi.org/10.1038/nrc2444
  • Igney FH, Krammer PH. Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukocyte Biol 2002; 71:907-20; PMID:12050175
  • Kim HJ, Hawke N, Baldwin AS. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006; 13:738-47; PMID:16485028; http://dx.doi.org/10.1038/sj.cdd.4401877
  • Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Controlled Release 2006; 112:26-34; PMID:16529839; http://dx.doi.org/10.1016/j.jconrel.2006.01.006
  • Correia-Pinto JF, Csaba N, Alonso MJ. Vaccine delivery carriers: insights and future perspectives. Int J Pharmaceutics 2013; 440:27-38; PMID:22561794; http://dx.doi.org/10.1016/j.ijpharm.2012.04.047
  • Kim H, Uto T, Akagi T, Baba M, Akashi M. Amphiphilic poly(Amino Acid) nanoparticles induce size-dependent dendritic cell maturation. Adv Functional Materials 2010; 20:3925-31; http://dx.doi.org/10.1002/adfm.201000021
  • Pelkmans L, Helenius A. Endocytosis via caveolae. Traffic 2002; 3:311-20; PMID:11967125; http://dx.doi.org/10.1034/j.1600-0854.2002.30501.x
  • Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunol 2013; 138:105-15; PMID:23216602; http://dx.doi.org/10.1111/imm.12036
  • Ren SX, Ren ZJ, Zhao MY, Wang XB, Zuo SG, Yu F. Antitumor activity of endogenous mFlt4 displayed on a T4 phage nanoparticle surface. Acta pharmacologica Sinica 2009; 30:637-45; PMID:19417736; http://dx.doi.org/10.1038/aps.2009.44
  • Foged C, Brodin B, Frokjaer S, Sundblad A. Particle size and surface charge affect particle uptake by human dendritic cells in an in vitro model. Int J Pharmaceutics 2005; 298:315-22; PMID:15961266; http://dx.doi.org/10.1016/j.ijpharm.2005.03.035
  • Yue ZG, Wei W, Lv PP, Yue H, Wang LY, Su ZG, Ma GH. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 2011; 12:2440-6; PMID:21657799; http://dx.doi.org/10.1021/bm101482r
  • Yang C, Hu R, Anderson T, Wang Y, Lin G, Law WC, Lin WJ, Nguyen QT, Toh HT, Yoon HS, et al. Biodegradable nanoparticle-mediated K-ras down regulation for pancreatic cancer gene therapy. J Mater Chem B 2015; 3:2163-72; http://dx.doi.org/10.1039/C4TB01623H
  • Yan W, Chen W, Huang L. Reactive oxygen species play a central role in the activity of cationic liposome based cancer vaccine. J Controlled Release 2008; 130:22-8; PMID:18554742; http://dx.doi.org/10.1016/j.jconrel.2008.05.005
  • Venkataraman S, Hedrick JL, Ong ZY, Yang C, Ee PL, Hammond PT, Yang YY. The effects of polymeric nanostructure shape on drug delivery. Adv Drug Delivery Rev 2011; 63:1228-46; PMID:21777633; http://dx.doi.org/10.1016/j.addr.2011.06.016
  • Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007; 2:249-55; PMID:18654271; http://dx.doi.org/10.1038/nnano.2007.70
  • Christian DA, Cai S, Garbuzenko OB, Harada T, Zajac AL, Minko T, Discher DE. Flexible filaments for in vivo imaging and delivery: persistent circulation of filomicelles opens the dosage window for sustained tumor shrinkage. Mol Pharmaceutics 2009; 6:1343-52; PMID:19249859; http://dx.doi.org/10.1021/mp900022m
  • Kim Y, Dalhaimer P, Christian DA, Discher DE. Polymeric worm micelles as nano-carriers for drug delivery. Nano Technol 2005; 16:S484-91; PMID:21727469; http://dx.doi.org/10.1088/0957-4484/16/7/024
  • Vaine CA, Patel MK, Zhu J, Lee E, Finberg RW, Hayward RC, Kurt-Jones EA. Tuning innate immune activation by surface texturing of polymer microparticles: the role of shape in inflammasome activation. J Immunol 2013; 190:3525-32; http://dx.doi.org/10.4049/jimmunol.1200492
  • Hobbs SK, Monsky WL, Yuan F, Roberts WG, Griffith L, Torchilin VP, Jain RK. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 1998; 95:4607-12; PMID:9539785; http://dx.doi.org/10.1073/pnas.95.8.4607
  • Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Rev 2001; 53:283-318; PMID:11356986
  • Steinman RM. Dendritic cells and immune-based therapies. Exp Hematol 1996; 24:859-62; PMID:8690042
  • Gulley JL, Mulders P, Albers P, Banchereau J, Bolla M, Pantel K, Powles T. Perspectives on sipuleucel-T: Its role in the prostate cancer treatment paradigm. Oncoimmunology 2016; 5:e1107698; PMID:27141392; http://dx.doi.org/10.1080/2162402X.2015.1107698
  • D HY, Appel S. Current status and future perspectives of dendritic cell-based cancer immunotherapy. Scandinavian J Immunol 2013; 78:167-71; PMID:23672402; http://dx.doi.org/10.1111/sji.12060
  • Calixto G, Bernegossi J, Fonseca-Santos B, Chorilli M. Nanotechnology-based drug delivery systems for treatment of oral cancer: a review. Int J Nanomed 2014; 9:3719-35; PMID:25143724; http://dx.doi.org/10.2147/IJN.S61670
  • Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG. Targeting nanoparticles to dendritic cells for immunotherapy. Meth Enzymol 2012; 509:143-63; PMID:22568905; http://dx.doi.org/10.1016/B978-0-12-391858-1.00008-3
  • Cruz LJ, Rosalia RA, Kleinovink JW, Rueda F, Lowik CW, Ossendorp F. Targeting nanoparticles to CD40, DEC-205 or CD11c molecules on dendritic cells for efficient CD8(+) T cell response: a comparative study. J Controlled Release 2014; 192:209-18; PMID:25068703; http://dx.doi.org/10.1016/j.jconrel.2014.07.040
  • Rosalia RA, Cruz LJ, van Duikeren S, Tromp AT, Silva AL, Jiskoot W, de Gruijl T, Lowik C, Oostendorp J, van der Burg SH, et al. CD40-targeted dendritic cell delivery of PLGA-nanoparticle vaccines induce potent anti-tumor responses. Biomaterials 2015; 40:88-97; PMID:25465442; http://dx.doi.org/10.1016/j.biomaterials.2014.10.053
  • Saluja SS, Hanlon DJ, Sharp FA, Hong E, Khalil D, Robinson E, Tigelaar R, Fahmy TM, Edelson RL. Targeting human dendritic cells via DEC-205 using PLGA nanoparticles leads to enhanced cross-presentation of a melanoma-associated antigen. Int J Nanomed 2014; 9:5231-46; PMID:25419128
  • Dudziak D, Kamphorst AO, Heidkamp GF, Buchholz VR, Trumpfheller C, Yamazaki S, Cheong C, Liu K, Lee HW, Park CG, et al. Differential antigen processing by dendritic cell subsets in vivo. Science 2007; 315:107-11; PMID:17204652; http://dx.doi.org/10.1126/science.1136080
  • Chen K, Wang JM, Yuan R, Yi X, Li L, Gong W, Yang T, Li L, Su S. Tissue-resident dendritic cells and diseases involving dendritic cell malfunction. Int Immunopharmacol 2016; 34:1-15; PMID:26906720; http://dx.doi.org/10.1016/j.intimp.2016.02.007
  • Hardin JA. Dendritic cells: potential triggers of autoimmunity and targets for therapy. Annals Rheumatic Dis 2005; 64 Suppl 4:iv86-90; PMID:16239396
  • Vallhov H, Qin J, Johansson SM, Ahlborg N, Muhammed MA, Scheynius A, Gabrielsson S. The importance of an endotoxin-free environment during the production of nanoparticles used in medical applications. Nano Letters 2006; 6:1682-6; PMID:16895356; http://dx.doi.org/10.1021/nl060860z
  • Brady MT, Miller A, Sait SN, Ford LA, Minderman H, Wang ES, Lee KP, Baumann H, Wetzler M. Downregulation of signal transducer and activator of transcription 3 improves human acute myeloid leukemia-derived dendritic cell function. Leukemia Res 2013; 37:822-8; PMID:23628554; http://dx.doi.org/10.1016/j.leukres.2013.04.002
  • Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, Cai L, Ma Y. Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials 2015; 38:50-60; PMID:25457983; http://dx.doi.org/10.1016/j.biomaterials.2014.10.050
  • Das J, Das S, Paul A, Samadder A, Bhattacharyya SS, Khuda-Bukhsh AR. Assessment of drug delivery and anticancer potentials of nanoparticles-loaded siRNA targeting STAT3 in lung cancer, in vitro and in vivo. Toxicol Letters 2014; 225:454-66; PMID:24440344; http://dx.doi.org/10.1016/j.toxlet.2014.01.009
  • Heo MB, Cho MY, Lim YT. Polymer nanoparticles for enhanced immune response: combined delivery of tumor antigen and small interference RNA for immunosuppressive gene to dendritic cells. Acta Biomaterialia 2014; 10:2169-76; PMID:24394635; http://dx.doi.org/10.1016/j.actbio.2013.12.050
  • Getts DR, Martin AJ, McCarthy DP, Terry RL, Hunter ZN, Yap WT, Getts MT, Pleiss M, Luo X, King NJ, et al. Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nat Biotechnol 2012; 30:1217-24; PMID:23159881; http://dx.doi.org/10.1038/nbt.2434
  • Romano E, Romero P. The therapeutic promise of disrupting the PD-1/PD-L1 immune checkpoint in cancer: unleashing the CD8 T cell mediated anti-tumor activity results in significant, unprecedented clinical efficacy in various solid tumors. J Immunother Cancer 2015; 3:15; PMID:25901287; http://dx.doi.org/10.1186/s40425-015-0059-z
  • Spranger S, Bao R, Gajewski TF. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015; 523:231-5; PMID:25970248; http://dx.doi.org/10.1038/nature14404
  • Li SY, Liu Y, Xu CF, Shen S, Sun R, Du XJ, Xia JX, Zhu YH, Wang J. Restoring anti-tumor functions of T cells via nanoparticle-mediated immune checkpoint modulation. J Controlled Release 2016; 231:17-28
  • Lebel ME, Chartrand K, Tarrab E, Savard P, Leclerc D, Lamarre A. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Letters 2016; 16:1826-32; PMID:26891174; http://dx.doi.org/10.1021/acs.nanolett.5b04877
  • Bald T, Landsberg J, Lopez-Ramos D, Renn M, Glodde N, Jansen P, Gaffal E, Steitz J, Tolba R, Kalinke U, et al. Immune cell-poor melanomas benefit from PD-1 blockade after targeted type I IFN activation. Cancer Discov 2014; 4:674-87; PMID:24589924; http://dx.doi.org/10.1158/2159-8290.CD-13-0458
  • Liu JY, Chiang T, Liu CH, Chern GG, Lin Ts T, Gao DY, Chen Y. Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol Ther 2015; 23:1772-82; PMID:26278330; http://dx.doi.org/10.1038/mt.2015.147
  • Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 2010; 10:9-22; PMID:20029421; http://dx.doi.org/10.1038/nrc2748
  • Kanapathipillai M, Brock A, Ingber DE. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Delivery Rev 2014; 79-80:107-18; PMID:24819216; http://dx.doi.org/10.1016/j.addr.2014.05.005
  • Misra S, Heldin P, Hascall VC, Karamanos NK, Skandalis SS, Markwald RR, Ghatak S. Hyaluronan-CD44 interactions as potential targets for cancer therapy. FEBS J 2011; 278:1429-43; PMID:21362138; http://dx.doi.org/10.1111/j.1742-4658.2011.08071.x
  • Tan M, Wu X, Jeong EK, Chen Q, Lu ZR. Peptide-targeted Nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance cancer molecular imaging. Biomacromolecules 2010; 11:754-61; PMID:20131758; http://dx.doi.org/10.1021/bm901352v
  • Yang Z, Luo H, Cao Z, Chen Y, Gao J, Li Y, Jiang Q, Xu R, Liu J. Dual-targeting hybrid nanoparticles for the delivery of SN38 to Her2 and CD44 overexpressed human gastric cancer. Nanoscale 2016; 8:11543-58; PMID:27203688; http://dx.doi.org/10.1039/C6NR01749E
  • Cathcart J, Pulkoski-Gross A, Cao J. Targeting matrix metalloproteinases in cancer: Bringing new life to old ideas. Genes Dis 2015; 2:26-34; PMID:26097889; http://dx.doi.org/10.1016/j.gendis.2014.12.002
  • Zhu L, Kate P, Torchilin VP. Matrix metalloprotease 2-responsive multifunctional liposomal nanocarrier for enhanced tumor targeting. ACS Nano 2012; 6:3491-8; PMID:22409425; http://dx.doi.org/10.1021/nn300524f
  • June CH. Adoptive T cell therapy for cancer in the clinic. J Clin Invest 2007; 117:1466-76; PMID:17549249; http://dx.doi.org/10.1172/JCI32446
  • Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res 2006; 12:6106-15; PMID:17062687; http://dx.doi.org/10.1158/1078-0432.CCR-06-1183
  • Almasbak H, Aarvak T, Vemuri MC. CAR T cell therapy: A game changer in cancer treatment. J Immunol Res 2016; 2016:5474602; PMID:27298832; http://dx.doi.org/10.1155/2016/5474602
  • Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunological Rev 2014; 257:56-71; PMID:24329789; http://dx.doi.org/10.1111/imr.12132
  • Turtle CJ, Maloney DG. Clinical trials of CD19-targeted CAR-modified T cell therapy; a complex and varied landscape. Exp Rev Hematol 2016; 9(8):719-21; PMID:27322438
  • John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res 2013; 19:5636-46; PMID:23873688; http://dx.doi.org/10.1158/1078-0432.CCR-13-0458
  • Kodumudi KN, Siegel J, Weber AM, Scott E, Sarnaik AA, Pilon-Thomas S. Immune checkpoint blockade to improve tumor infiltrating lymphocytes for adoptive cell therapy. PloS One 2016; 11:e0153053; PMID:27050669; http://dx.doi.org/10.1371/journal.pone.0153053
  • Shin JH, Park HB, Oh YM, Lim DP, Lee JE, Seo HH, Lee SJ, Eom HS, Kim IH, Lee SH, et al. Positive conversion of negative signaling of CTLA4 potentiates antitumor efficacy of adoptive T-cell therapy in murine tumor models. Blood 2012; 119:5678-87; PMID:22538857; http://dx.doi.org/10.1182/blood-2011-09-380519
  • Kennedy LC, Bear AS, Young JK, Lewinski NA, Kim J, Foster AE, Drezek RA. T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res Lett 2011; 6:283; PMID:21711861; http://dx.doi.org/10.1186/1556-276X-6-283
  • Steinfeld U, Pauli C, Kaltz N, Bergemann C, Lee HH. T lymphocytes as potential therapeutic drug carrier for cancer treatment. Int J Pharmaceutics 2006; 311:229-36; PMID:16460895; http://dx.doi.org/10.1016/j.ijpharm.2005.12.040
  • Dinauer N, Balthasar S, Weber C, Kreuter J, Langer K, von Briesen H. Selective targeting of antibody-conjugated nanoparticles to leukemic cells and primary T-lymphocytes. Biomaterials 2005; 26:5898-906; PMID:15949555; http://dx.doi.org/10.1016/j.biomaterials.2005.02.038
  • Wu XY. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Exp Opin Drug Delivery 2016; 13:609-12; PMID:26978527; http://dx.doi.org/10.1517/17425247.2016.1165662
  • Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Controlled Release 2016; 240:489-503
  • Park J, Wrzesinski SH, Stern E, Look M, Criscione J, Ragheb R, Jay SM, Demento SL, Agawu A, Licona Limon P, et al. Combination delivery of TGF-β inhibitor and IL-2 by nanoscale liposomal polymeric gels enhances tumour immunotherapy. Nat Materials 2012; 11:895-905; PMID:22797827; http://dx.doi.org/10.1038/nmat3355
  • Cheng F, Wang HW, Cuenca A, Huang M, Ghansah T, Brayer J, Kerr WG, Takeda K, Akira S, Schoenberger SP, et al. A critical role for Stat3 signaling in immune tolerance. Immunity 2003; 19:425-36; PMID:14499117; http://dx.doi.org/10.1016/S1074-7613(03)00232-2
  • Kim JH, Noh YW, Heo MB, Cho MY, Lim YT. Multifunctional hybrid nanoconjugates for efficient in vivo delivery of immunomodulating oligonucleotides and enhanced antitumor immunity. Angewandte Chemie 2012; 51:9670-3; PMID:22915476; http://dx.doi.org/10.1002/anie.201204989
  • Heo MB, Lim YT. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials 2014; 35:590-600; PMID:24125775; http://dx.doi.org/10.1016/j.biomaterials.2013.10.009
  • Chu TW, Yang J, Zhang R, Sima M, Kopecek J. Cell surface self-assembly of hybrid nanoconjugates via oligonucleotide hybridization induces apoptosis. ACS Nano 2014; 8:719-30; PMID:24308267; http://dx.doi.org/10.1021/nn4053827
  • Larkin J, Chiarion-Sileni V, Gonzalez R, Grob JJ, Cowey CL, Lao CD, Schadendorf D, Dummer R, Smylie M, Rutkowski P, et al. Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma. N Eng J Med 2015; 373:23-34; PMID:26027431; http://dx.doi.org/10.1056/NEJMoa1504030
  • First immunotherapy combo approved for cancer. Cancer Discov 2015; 5:1228; PMID:26487304
  • Qiao J, Liu Z, Fu YX. Adapting conventional cancer treatment for immunotherapy. J Mol Med 2016; 94:489-95; PMID:26910191; http://dx.doi.org/10.1007/s00109-016-1393-4
  • Heo MB, Kim SY, Yun WS, Lim YT. Sequential delivery of an anticancer drug and combined immunomodulatory nanoparticles for efficient chemoimmunotherapy. Int J Nanomed 2015; 10:5981-92; PMID:26451105
  • Wyluda EJ, Cheng J, Schell TD, Haley JS, Mallon C, Neves RI, Robertson G, Sivik J, Mackley H, Talamo G, et al. Durable complete responses off all treatment in patients with metastatic malignant melanoma after sequential immunotherapy followed by a finite course of BRAF inhibitor therapy. Cancer Biol Therapy 2015; 16:662-70; PMID:25806780; http://dx.doi.org/10.1080/15384047.2015.1026507
  • Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12:237-51; PMID:22437869; http://dx.doi.org/10.1038/nrc3237
  • Bodey B, Bodey B, Jr, Siegel SE, Kaiser HE. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res 2000; 20:2665-76; PMID:10953341
  • McDermott D, Lebbe C, Hodi FS, Maio M, Weber JS, Wolchok JD, Thompson JA, Balch CM. Durable benefit and the potential for long-term survival with immunotherapy in advanced melanoma. Cancer Treatment Rev 2014; 40:1056-64; PMID:25060490; http://dx.doi.org/10.1016/j.ctrv.2014.06.012
  • Zwicke GL, Mansoori GA, Jeffery CJ. Utilizing the folate receptor for active targeting of cancer nanotherapeutics. Nano Rev 2012; 3: 1–11; PMID:23240070; http://dx.doi.org/10.3402/nano.v3i0.18496
  • Teo PY, Yang C, Whilding LM, Parente-Pereira AC, Maher J, George AJ, Hedrick JL, Yang YY, Ghaem-Maghami S. Ovarian cancer immunotherapy using PD-L1 siRNA targeted delivery from folic acid-functionalized polyethylenimine: strategies to enhance T cell killing. Adv Health Care Materials 2015; 4:1180-9; PMID:25866054; http://dx.doi.org/10.1002/adhm.201500089
  • Haq K, Jia Y, Krishnan L. Archaeal lipid vaccine adjuvants for induction of cell-mediated immunity. Exp Rev Vaccines 2016; 8:1-10; PMID:27276183; http://dx.doi.org/10.1080/14760584.2016.1195265
  • Krishnan L, Deschatelets L, Stark FC, Gurnani K, Sprott GD. Archaeosome adjuvant overcomes tolerance to tumor-associated melanoma antigens inducing protective CD8 T cell responses. Clin Dev Immunol 2010; 2010:1–13; PMID:21318177; http://dx.doi.org/10.1155/2010/578432
  • Zhao M, Sun Y, Zhu X, Chen D, Feng S, Guo S, Li H. Smart drug delivery system: chapter 6. Biomedical Engineering 2016
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol 2007; 2:751-60; PMID:18654426; http://dx.doi.org/10.1038/nnano.2007.387

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.