2,652
Views
46
CrossRef citations to date
0
Altmetric
Research Paper

Dissolving microneedles for DNA vaccination: Improving functionality via polymer characterization and RALA complexation

, , , , , , & show all
Pages 50-62 | Received 03 Aug 2016, Accepted 08 Oct 2016, Published online: 23 Dec 2016

References

  • Khan KH. DNA vaccines: roles against diseases. Germs 2013; 3(1):26-35
  • Cole G, McCaffrey J, Ali AA, McCarthy HO. DNA vaccination for prostate cancer: key concepts and considerations. Cancer Nanotechnol 2015; 6(1):2; PMID:26161151; http://dx.doi.org/10.1186/s12645-015-0010-5
  • Saade F, Petrovsky N. Technologies for enhanced efficacy of DNA vaccines. Expert Rev Vaccines 2012; 11(2):189-209; PMID:22309668; http://dx.doi.org/10.1586/erv.11.188
  • Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol 2011; 23(3):421-9; PMID:21530212; http://dx.doi.org/10.1016/j.coi.2011.03.008
  • Jones S, Evans K, McElwaine-Johnn H, Sharpe M, Oxford J, Lambkin-Williams R, Mant T, Nolan A, Zambon M, Ellis J, et al. DNA vaccination protects against an influenza challenge in a double-blind randomised placebo-controlled phase 1b clinical trial. Vaccine 2009; 27(18):2506-12; PMID:19368793; http://dx.doi.org/10.1016/j.vaccine.2009.02.061
  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26(36):5896-903; PMID:19029422; http://dx.doi.org/10.1200/JCO.2007.13.9048
  • Jackson LA, Austin G, Chen RT, Stout R, DeStefano F, Gorse GJ, Newman FK, Yu O, Weniger BG, Vaccine Safety Datalink Study Group. Safety and immunogenicity of varying dosages of trivalent inactivated influenza vaccine administered by needle-free jet injectors. Vaccine 2001; 19(32):4703-9; PMID:11535320; http://dx.doi.org/10.1016/S0264-410X(01)00225-0
  • McCarthy HO, Wang Y, Mangipudi SS, Hatefi A. Advances with the use of bio-inspired vectors towards creation of artificial viruses. Expert Opin Drug Deliv 2010; 7(4):497-512; PMID:20151849; http://dx.doi.org/10.1517/17425240903579989
  • Loughran SP, McCrudden CM, McCarthy HO. Designer peptide delivery systems for gene therapy. Eur J Nanomedicine 2015; 7(2):85-96; http://dx.doi.org/10.1515/ejnm-2014-0037
  • Lv H, Zhang S, Wang B, Cui S, Yan J. Toxicity of cationic lipids and cationic polymers in gene delivery. J Control Release 2006; 114(1):100-9; PMID:16831482; http://dx.doi.org/10.1016/j.jconrel.2006.04.014
  • Mann ER. Review: Skin and the Immune System. J Clin Exp Dermatol Res 2014; 4:3; http://dx.doi.org/10.4172/2155-9554.S2-003
  • Venus M, Waterman J, McNab I. Basic physiology of the skin. Surg. 2011; 29(10):471-4
  • Stoecklinger A, Eticha TD, Mesdaghi M, Kissenpfennig A, Malissen B, Thalhamer J, Hammerl P. Langerin+ dermal dendritic cells are critical for CD8+ T cell activation and IgH γ−1 class switching in response to gene gun vaccines. J. Immunol. 2011; 186(3):1377-83; PMID:21187444; http://dx.doi.org/10.4049/jimmunol.1002557
  • Stoitzner P, Zanella M, Ortner U, Lukas M, Tagwerker A, Janke K, Lutz M.B, Schuler G, Echtenacher B, Ryffel B, et al. Migration of langerhans cells and dermal dendritic cells in skin organ cultures: augmentation by TNF-alpha and IL-1beta. J Leukoc Biol 1999; 66(3):462-70; PMID:10496317
  • Valladeau J, Saeland S. Cutaneous dendritic cells. Semin Immunol 2005; 17(4):273-83; PMID:15953735; http://dx.doi.org/10.1016/j.smim.2005.05.009
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12(4):265-77; PMID:22437871; http://dx.doi.org/10.1038/nrc3258
  • Broere F, Apasov SG, Sitkovsky MV, Van Eden W. A2 T cell subsets and T cell-mediated immunity. In FP Nijkamp, MJ Parnham, eds., Principles of Immunopharmacology. Basel: Birkhäuser Basel; 2011; 15-27; http://dx.doi.org/10.1007/978-3-0346-0136-8_2
  • McCaffrey J, Donnelly RF, McCarthy HO. Microneedles: an innovative platform for gene delivery. Drug Deliv Transl Res 2015; 5(4):424-37; PMID:26122168; http://dx.doi.org/10.1007/s13346-015-0243-1
  • van der Maaden K, Jiskoot W, Bouwstra J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J Control Release 2012; 161(2):645-55; PMID:22342643; http://dx.doi.org/10.1016/j.jconrel.2012.01.042
  • Qiu Y, Guo L, Zhang S, Xu B, Gao Y, Hu Y, Hou J, Bai B, Shen H, Mao P. DNA-based vaccination against hepatitis B virus using dissolving microneedle arrays adjuvanted by cationic liposomes and CpG ODN. Drug Deliv 2015; 23(7):2391-8
  • Kim YC, Song JM, Lipatov AS, Choi SO, Lee JW, Donis RO, Compans RW, Kang SM, Prausnitz MR. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch. Eur J Pharm Biopharm 2012; 81(2):239-47; PMID:22504442; http://dx.doi.org/10.1016/j.ejpb.2012.03.010
  • Gill HS, Söderholm J, Prausnitz MR, Sällberg M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther 2010; 17(6):811-4
  • Hu Y, Xu B, Xu J, Shou D, Liu E, Gao J, Liang W, Huang Y. Microneedle-assisted dendritic cell-targeted nanoparticles for transcutaneous DNA immunization. Polym Chem 2015; 6(3):373-9; http://dx.doi.org/10.1039/C4PY01394H
  • Mikszta JA, Alarcon JB, Brittingham JM, Sutter DE, Pettis RJ, Harvey NG. Improved genetic immunization via micromechanical disruption of skin-barrier function and targeted epidermal delivery. Nat Med 2002; 8(4):415-9; PMID:11927950; http://dx.doi.org/10.1038/nm0402-415
  • Chabri F, Bouris K, Jones T, Barrow D, Hann A, Allender C, Brain K, Birchall J. Microfabricated silicon microneedles for nonviral cutaneous gene delivery. Br J Dermatol. 2004; 150(5):869-77
  • Pearton M, Saller V, Coulman SA, Gateley C, Anstey AV, Zarnitsyn V, Birchall JC. Microneedle delivery of plasmid DNA to living human skin: Formulation coating, skin insertion and gene expression. J Control Release 2012; 160(3):561-9; PMID:22516089; http://dx.doi.org/10.1016/j.jconrel.2012.04.005
  • McGrath MG, Vucen S, Vrdoljak A, Kelly A, O'Mahony C, Crean AM, Moore A. Production of dissolvable microneedles using an atomised spray process: effect of microneedle composition on skin penetration. Eur J Pharm Biopharm 2014; 86(2):200-11; PMID:23727511; http://dx.doi.org/10.1016/j.ejpb.2013.04.023
  • Lutton REM, Larrañeta E, Kearney MC, Boyd P, Woolfson AD, Donnelly RF. A novel scalable manufacturing process for the production of hydrogel-forming microneedle arrays. Int J Pharm 2015; 494(1):417-29; PMID:26302858; http://dx.doi.org/10.1016/j.ijpharm.2015.08.049
  • McCaffrey J, McCrudden CM, Ali AA, Massey AS, McBride JW, McCrudden MTC, Vicente-Perez EM, Coulter JA, Robson T, Donnelly RF, et al. Transcending epithelial and intracellular biological barriers; a prototype DNA delivery device. J Control Release 2016; 226:238-47; PMID:26883753; http://dx.doi.org/10.1016/j.jconrel.2016.02.023
  • González-González E, Kim YC, Speaker TJ, Hickerson RP, Spitler R, Birchall JC, Lara MF, Hu RH, Liang Y, Kirkiles-Smith N, et al. Visualization of plasmid delivery to keratinocytes in mouse and human epidermis. Sci Rep 2011; 1:158
  • Bachy V, Hervouet C, Becker PD, Chorro L, Carlin LM, Herath S, Papagatsias T, Barbaroux JB, Oh SJ, Benlahrech A, et al. Langerin negative dendritic cells promote potent CD8+ T-cell priming by skin delivery of live adenovirus vaccine microneedle arrays. Proc Natl Acad Sci U S A. 2013; 110(8):3041-6; PMID:23386724; http://dx.doi.org/10.1073/pnas.1214449110
  • Hirobe S, Azukizawa H, Hanafusa T, Matsuo K, Quan YS, Kamiyama F, Katayama I, Okada N, Nakagawa S. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015; 57:50-8; PMID:25913250; http://dx.doi.org/10.1016/j.biomaterials.2015.04.007
  • Sullivan SP, Koutsonanos DG, Del Pilar Martin M, Lee JW, Zarnitsyn V, Choi SO, Murthy N, Compans RW, Skountzou I, et al. Dissolving polymer microneedle patches for influenza vaccination. Nat Med 2010; 16(8):915-20; PMID:20639891; http://dx.doi.org/10.1038/nm.2182
  • Kommareddy S, Baudner BC, Oh S, Kwon S, Singh M, O'hagan DT. Dissolvable microneedle patches for the delivery of cell-culture-derived influenza vaccine antigens. J Pharm Sci 2012; 101(3):1021-7
  • Mumper RJ, Wang J, Klakamp SL, Nitta H, Anwer K, Tagliaferri F, Rolland AP. Protective interactive noncondensing (PINC) polymers for enhanced plasmid distribution and expression in rat skeletal muscle. J Control Release 1998; 52(1–2):191-203
  • McCarthy HO, McCaffrey J, McCrudden CM, Zholobenko A, Ali AA, McBride JW, Massey AS, Pentlavalli S, Chen KH, Cole G, et al. Development and characterization of self-assembling nanoparticles using a bio-inspired amphipathic peptide for gene delivery. J Control Release 2014; 189:141-9; PMID:24995949; http://dx.doi.org/10.1016/j.jconrel.2014.06.048
  • Donnelly RF, Majithiya R, Singh TRR, Morrow DIJ, Garland MJ, Demir YK, Migalska K, Ryan E, Gillen D, Scott CJ, et al. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm Res 2011; 28(1):41-57; PMID:20490627; http://dx.doi.org/10.1007/s11095-010-0169-8
  • Jain AK, Yusuf H, Pattani A, McCarthy HO, McDonald DM, Kett VL. Development of a method to quantify the DNA content in cationic peptide–DNA nanoparticles. J Pharm Biomed Anal 2014; 100:236-242
  • Krampe B, Al-Rubeai M. Cell death in mammalian cell culture: molecular mechanisms and cell line engineering strategies. Cytotechnology 2010; 62(3):175-88; PMID:20502964; http://dx.doi.org/10.1007/s10616-010-9274-0
  • Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, Donnelly RF. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm 2014; 472(1–2):65-73; http://dx.doi.org/10.1016/j.ijpharm.2014.06.020
  • Arda O, Göksügür N. Basic histological structure and functions of facial skin. Clin Dermatol 2014; 32(1):3-13; http://dx.doi.org/10.1016/j.clindermatol.2013.05.021
  • Römgens AM, Bader DL, Bouwstra JA, Baaijens FPT, Oomens CWJ. Monitoring the penetration process of single microneedles with varying tip diameters. J Mech Behav Biomed Mater 2014; 40:397-405; PMID:25305633; http://dx.doi.org/10.1016/j.jmbbm.2014.09.015
  • Chu LY, Choi SO, Prausnitz MR. Fabrication of dissolving polymer microneedles for controlled drug encapsulation and delivery: Bubble and pedestal microneedle designs. J Pharm Sci 2010; 99(10):4228-38; PMID:20737630; http://dx.doi.org/10.1002/jps.22140
  • Lee JW, Park JH, Prausnitz MR. Dissolving microneedles for transdermal drug delivery. Biomaterials 2008; 29(13):2113-24
  • Hespe W, Meier AM, Blankwater YJ. Excretion and distribution studies in rats with two forms of 14carbon-labelled polyvinylpyrrolidone with a relatively low mean molecular weight after intravenous administration. Arzneimittelforschung. 1977; 27(6):1158-62; PMID:578432
  • Hulme B, Dykes PW, Appleyard I, Arkell DW. Retention and storage sites of radioactive polyvinylpyrrolidone. J Nucl Med 1968; 9(7):389-93; PMID:5713814
  • Nair B. Final report on the safety assessment of polyvinylpyrrolidone (PVP). Int J Toxicol 1998; 17(4 Suppl):95-130; http://dx.doi.org/10.1177/109158189801700408
  • Morgan AM. Localized reactions to injected therapeutic materials. Part 2. Surgical agents. J Cutan Pathol 1995; 22(4):289-303; PMID:7499568; http://dx.doi.org/10.1111/j.1600-0560.1995.tb01411.x
  • Yamaoka T, Tabata Y, Ikada Y. Comparison of body distribution of poly(vinyl alcohol) with other water-soluble polymers after intravenous administration. J Pharm Pharmacol 1995; 47(6):479-86; PMID:7674130; http://dx.doi.org/10.1111/j.2042-7158.1995.tb05835.x
  • Kaneo Y, Hashihama S, Kakinoki A, Tanaka T, Nakano T, Ikeda Y. Pharmacokinetics and biodisposition of poly(vinyl alcohol) in rats and mice. Drug Metab Pharmacokinet. 2005; 20(6):435-42; PMID:16415529; http://dx.doi.org/10.2133/dmpk.20.435
  • McCrudden MTC, Alkilani AZ, McCrudden CM, McAlister E, McCarthy HO, Woolfson AD, Donnelly RF. Design and physicochemical characterisation of novel dissolving polymeric microneedle arrays for transdermal delivery of high dose, low molecular weight drugs. J Control Release 2014; 180:71-80; PMID:24556420; http://dx.doi.org/10.1016/j.jconrel.2014.02.007
  • qiu Y, Guo L, Mao P, Gao Y. Dissolving microneedle arrays for intradermal immunization of Hepatitis B virus DNA vaccine. Procedia Vaccinol 2015; 9:24-30; http://dx.doi.org/10.1016/j.provac.2015.05.004
  • Song M, Zeng L, Hong X, Meng Z, Yin J, Wang H, Liang Y, Jiang G. Polyvinyl pyrrolidone promotes DNA cleavage by a ROS-independent and depurination mechanism. Environ Sci Technol 2013; 47(6):2886-91
  • Ramgopal Y, Mondal D, Venkatraman SS, Godbey WT. Sustained release of complexed and naked DNA from polymer films. J Biomed Mater Res B Appl Biomater 2008; 85(2):496-503
  • Cohen-Sacks H, Elazar V, Gao J, Golomb A, Adwan H, Korchov N, Levy RJ, Berger MR, Golomb G. Delivery and expression of pDNA embedded in collagen matrices. J Control Release 2004; 95(2):309-20
  • Vrdoljak A. Review of recent literature on microneedle vaccine delivery technologies. Vaccine Dev Ther 2013; 3:47; http://dx.doi.org/10.2147/VDT.S34682

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.