1,383
Views
25
CrossRef citations to date
0
Altmetric
Commentaries

Use of adjuvants for immunotherapy

, , &
Pages 1774-1777 | Received 04 Apr 2017, Accepted 17 Apr 2017, Published online: 16 Jun 2017

References

  • Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy. Science 2013; 342:1432-3
  • Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10:909-15; PMID:15340416; https://doi.org/10.1038/nm1100
  • Cheever MA, Higano CS. PROVENGE (Sipuleucel-T) in prostate cancer: the first FDA-approved therapeutic cancer vaccine. Clin Cancer Res 2011; 17:3520-6; PMID:21471425; https://doi.org/10.1158/1078-0432.CCR-10-3126
  • Bonanni P. Universal hepatitis B immunization: infant, and infant plus adolescent immunization. Vaccine 1998; 16(Suppl):S17-22; PMID:9915027; https://doi.org/10.1016/S0264-410X(98)00286-2
  • Centers for Disease Control and Prevention (CDC). FDA licensure of bivalent human papillomavirus vaccine (HPV2, Cervarix) for use in females and updated HPV vaccination recommendations from the Advisory Committee on Immunization Practices (ACIP). MMWR Morb Mortal Wkly Rep 2010; 59:626-9; PMID:20508593
  • Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer 2014; 14:559-67; PMID:24990523; https://doi.org/10.1038/nrc3770
  • Leitner WW, Ying H, Restifo NP. DNA and RNA-based vaccines: principles, progress and prospects. Vaccine 1999; 18:765-77; PMID:10580187; https://doi.org/10.1016/S0264-410X(99)00271-6
  • Pol J, Bloy N, Buque A, Eggermont A, Cremer I, Sautes-Fridman C, Galon J, Tartour E, Zitvogel L, Kroemer G, et al. Trial Watch: Peptide-based anticancer vaccines. Oncoimmunology 2015; 4:e974411; PMID:26137405; https://doi.org/10.4161/2162402X.2014.974411
  • Delany I, Rappuoli R, De GE. Vaccines for the 21st century. EMBO Mol Med 2014; 6:708-20; PMID:24803000
  • Hilleman MR. A Forward look at viral vaccines: with special reference to a new immunologic adjuvant. Am Rev Respir Dis 1964; 90:683-706; PMID:14211456
  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med 2013; 19:1597-608; PMID:24309663; https://doi.org/10.1038/nm.3409
  • Moyer MW. New adjuvants aim to give whooping cough vaccine a boost. Nat Med 2012; 18:991; PMID:22772531; https://doi.org/10.1038/nm0712-991a
  • Buonaguro FM, Tornesello ML, Buonaguro L. New adjuvants in evolving vaccine strategies. Expert Opin Biol Ther 2011; 11:827-32; PMID:21609186; https://doi.org/10.1517/14712598.2011.587802
  • Hogenesch H. Mechanism of immunopotentiation and safety of aluminum adjuvants. Front Immunol 2012; 3:406; PMID:23335921
  • Pashine A, Valiante NM, Ulmer JB. Targeting the innate immune response with improved vaccine adjuvants. Nat Med 2005; 11:S63-8; PMID:15812492; https://doi.org/10.1038/nm1210
  • Olive C. Pattern recognition receptors: sentinels in innate immunity and targets of new vaccine adjuvants. Expert Rev Vaccines 2012; 11:237-56; PMID:22309671; https://doi.org/10.1586/erv.11.189
  • Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009; 30:23-32; PMID:19059004; https://doi.org/10.1016/j.it.2008.09.006
  • Duthie MS, Windish HP, Fox CB, Reed SG. Use of defined TLR ligands as adjuvants within human vaccines. Immunol Rev 2011; 239:178-96; PMID:21198672; https://doi.org/10.1111/j.1600-065X.2010.00978.x
  • Shen H, Tesar BM, Walker WE, Goldstein DR. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J Immunol 2008; 181:1849-58; PMID:18641322; https://doi.org/10.4049/jimmunol.181.3.1849
  • Lahiri A, Das P, Chakravortty D. Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond. Vaccine 2008; 26:6777-83; PMID:18835576; https://doi.org/10.1016/j.vaccine.2008.09.045
  • Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem 2007; 76:141-65; PMID:17362201; https://doi.org/10.1146/annurev.biochem.76.060305.151318
  • Dowling JK, Dellacasagrande J. Toll-Like Receptors: Ligands, Cell-Based Models, and Readouts for Receptor Action. Methods Mol Biol 2016; 1390:3-27; PMID:26803619
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11:373-84; PMID:20404851; https://doi.org/10.1038/ni.1863
  • Asprodites N, Zheng L, Geng D, Velasco-Gonzalez C, Sanchez-Perez L, Davila E. Engagement of Toll-like receptor-2 on cytotoxic T-lymphocytes occurs in vivo and augments antitumor activity. FASEB J 2008; 22:3628-37; PMID:18587008; https://doi.org/10.1096/fj.08-108274
  • Lee SK, Chwee JY, Ma CA, Le BN, Huang CW, Gasser S. Synergistic anticancer effects of Pam3CSK4 and Ara-C on B-cell lymphoma cells. Clin Cancer Res 2014; 20:3485-95; PMID:24799523; https://doi.org/10.1158/1078-0432.CCR-13-2522
  • Borsutzky S, Ebensen T, Link C, Becker PD, Fiorelli V, Cafaro A, Ensoli B, Guzman CA. Efficient systemic and mucosal responses against the HIV-1 Tat protein by prime/boost vaccination using the lipopeptide MALP-2 as adjuvant. Vaccine 2006; 24:2049-56; PMID:16406225; https://doi.org/10.1016/j.vaccine.2005.11.025
  • Murata M. Activation of Toll-like receptor 2 by a novel preparation of cell wall skeleton from Mycobacterium bovis BCG Tokyo (SMP-105) sufficiently enhances immune responses against tumors. Cancer Sci 2008; 99:1435-40; PMID:18452561; https://doi.org/10.1111/j.1349-7006.2008.00832.x
  • Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 441:101-5; PMID:16625202; https://doi.org/10.1038/nature04734
  • Matsumoto M, Tatematsu M, Nishikawa F, Azuma M, Ishii N, Morii-Sakai A, Shime H, Seya T. Defined TLR3-specific adjuvant that induces NK and CTL activation without significant cytokine production in vivo. Nat Commun 2015; 6:6280; PMID:25692975; https://doi.org/10.1038/ncomms7280
  • Zhu X, Nishimura F, Sasaki K, Fujita M, Dusak JE, Eguchi J, Fellows-Mayle W, Storkus WJ, Walker PR, Salazar AM, et al. Toll like receptor-3 ligand poly-ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. J Transl Med 2007; 5:10; PMID:17295916; https://doi.org/10.1186/1479-5876-5-10
  • Damo M, Wilson DS, Simeoni E, Hubbell JA. TLR-3 stimulation improves anti-tumor immunity elicited by dendritic cell exosome-based vaccines in a murine model of melanoma. Sci Rep 2015; 5:17622; PMID:26631690; https://doi.org/10.1038/srep17622
  • Shen H, Tesar BM, Walker WE, Goldstein DR. Dual signaling of MyD88 and TRIF is critical for maximal TLR4-induced dendritic cell maturation. J Immunol 2008; 181:1849-58; PMID:18641322; https://doi.org/10.4049/jimmunol.181.3.1849
  • Fox CB, Friede M, Reed SG, Ireton GC. Synthetic and natural TLR4 agonists as safe and effective vaccine adjuvants. Subcell Biochem 2010; 53:303-21; PMID:20593273
  • Chakravarty J, Kumar S, Trivedi S, Rai VK, Singh A, Ashman JA, Laughlin EM, Coler RN, Kahn SJ, Beckmann AM, et al. A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine 2011; 29:3531-7; PMID:21414377; https://doi.org/10.1016/j.vaccine.2011.02.096
  • Cluff CW. Monophosphoryl lipid A (MPL) as an adjuvant for anti-cancer vaccines: clinical results. Adv Exp Med Biol 2010; 667:111-23; PMID:20665204
  • Jurk M, Heil F, Vollmer J, Schetter C, Krieg AM, Wagner H, Lipford G, Bauer S. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 2002; 3:499; PMID:12032557; https://doi.org/10.1038/ni0602-499
  • Diebold SS, Massacrier C, Akira S, Paturel C, Morel Y, Reis e Sousa C. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 2006; 36:3256-67; PMID:17111347; https://doi.org/10.1002/eji.200636617
  • Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, Hoshino K, Horiuchi T, Tomizawa H, Takeda K, Akira S. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat Immunol 2002; 3:196-200; PMID:11812998; https://doi.org/10.1038/ni758
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557-76; PMID:23264902; https://doi.org/10.4161/onci.22428
  • Scheel B, Braedel S, Probst J, Carralot JP, Wagner H, Schild H, Jung G, Rammensee HG, Pascolo S. Immunostimulating capacities of stabilized RNA molecules. Eur J Immunol 2004; 34:537-47; PMID:14768059; https://doi.org/10.1002/eji.200324198
  • Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 2004; 303:1529-31; PMID:14976261; https://doi.org/10.1126/science.1093616
  • Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303:1526-9; PMID:14976262; https://doi.org/10.1126/science.1093620
  • Heidenreich R, Jasny E, Kowalczyk A, Lutz J, Probst J, Baumhof P, Scheel B, Voss S, Kallen KJ, Fotin-Mleczek M. A novel RNA-based adjuvant combines strong immunostimulatory capacities with a favorable safety profile. Int J Cancer 2015; 137:372-84; PMID:25530186; https://doi.org/10.1002/ijc.29402
  • Circelli L, Petrizzo A, Tagliamonte M, Heidenreich R, Tornesello ML, Buonaguro FM, Buonaguro L. Immunological effects of a novel RNA-based adjuvant in liver cancer patients. Cancer Immunol Immunother 2017; 66:103-12; PMID:27832318; https://doi.org/10.1007/s00262-016-1923-5
  • Krieg AM. Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Discov 2006; 5:471-84; PMID:16763660; https://doi.org/10.1038/nrd2059
  • Pashenkov M, Goess G, Wagner C, Hormann M, Jandl T, Moser A, Britten CM, Smolle J, Koller S, Mauch C, et al. Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol 2006; 24:5716-24; PMID:17179105; https://doi.org/10.1200/JCO.2006.07.9129
  • Manegold C, Gravenor D, Woytowitz D, Mezger J, Hirsh V, Albert G, Al-Adhami M, Readett D, Krieg AM, Leichman CG. Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J Clin Oncol 2008; 26:3979-86; PMID:18711188; https://doi.org/10.1200/JCO.2007.12.5807

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.