1,323
Views
17
CrossRef citations to date
0
Altmetric
Commentaries

Intratumoral infection by CMV may change the tumor environment by directly interacting with tumor-associated macrophages to promote cancer immunity

ORCID Icon, ORCID Icon & , PhD ORCID Icon
Pages 1778-1785 | Received 26 Apr 2017, Accepted 14 May 2017, Published online: 26 Jun 2017

References

  • Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: Are we there yet? Immunol Rev 2011; 239(1):27-44; PMID:21198663; https://doi.org/10.1111/j.1600-065X.2010.00979.x
  • Saxena M, Van TT, Baird FJ, Coloe PJ, Smooker PM. Pre-existing immunity against vaccine vectors–friend or foe? Microbiology 2013; 159(Pt 1):1-11; PMID:23175507; https://doi.org/10.1099/mic.0.049601-0
  • Klenerman P, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol 2016; 16(6):367-77; PMID:27108521; https://doi.org/10.1038/nri.2016.38
  • Munks MW, Gold MC, Zajac AL, Doom CM, Morello CS, Spector DH, Hill AB. Genome-wide analysis reveals a highly diverse cd8 t cell response to murine cytomegalovirus. J Immunol 2006; 176:3760-6; PMID:16517745; https://doi.org/10.4049/jimmunol.176.6.3760
  • Karrer U, Wagner M, Sierro S, Oxenius A, Hengel H, Dumrese T, Freigang S, Koszinowski UH, Phillips RE, Klenerman P. Expansion of protective CD8+ T-cell responses driven by recombinant cytomegaloviruses. J Virol 2004; 78(5):2255-64; PMID:14963122; https://doi.org/10.1128/JVI.78.5.2255-2264.2004
  • Komatsu H, Sierro S, V Cuero A, Klenerman P. Population analysis of antiviral T cell responses using MHC class I-peptide tetramers. Clin Exp Immunol 2003; 134(1):9-12; PMID:12974748; https://doi.org/10.1046/j.1365-2249.2003.02266.x
  • Holtappels R, Grzimek NK, Simon CO, Thomas D, Dreis D, Reddehase MJ. Processing and presentation of murine cytomegalovirus pORFm164-derived peptide in fibroblasts in the face of all viral immunosubversive early gene functions. J Virol 2002; 76(12):6044-53; PMID:12021337; https://doi.org/10.1128/JVI.76.12.6044-6053.2002
  • Holtappels R, et al. Enrichment of immediate-early 1 (m123/pp89) peptide-specific cd8 t cells in a pulmonary CD62Llo memory-effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol 2000; 74(24):11495-503; https://doi.org/10.1128/JVI.74.24.11495-11503.2000
  • Simon CO, Holtappels R, Tervo HM, Böhm V, Däubner T, Oehrlein-Karpi SA, Kühnapfel B, Renzaho A, Strand D, Podlech J, et al. CD8 T cells control cytomegalovirus latency by epitope-specific sensing of transcriptional reactivation. J Virol 2006; 80(21):10436-56; PMID:16928768; https://doi.org/10.1128/JVI.01248-06
  • Quinn M, Erkes DA, Snyder CM. Cytomegalovirus and immunotherapy: Opportunistic pathogen, novel target for cancer and a promising vaccine vector. Immunotherapy 2016; 8(2):211-21; PMID:26786895; https://doi.org/10.2217/imt.15.110
  • Cardin RD, Abenes GB, Stoddart CA, Mocarski ES. Murine cytomegalovirus IE2, an activator of gene expression, is dispensable for growth and latency in mice. Virology 1995; 209(1):236-41; PMID:7747475; https://doi.org/10.1006/viro.1995.1249
  • Podlech J, Holtappels R, Pahl-Seibert MF, Steffens HP, Reddehase MJ. Murine model of interstitial cytomegalovirus pneumonia in syngeneic bone marrow transplantation: Persistence of protective pulmonary CD8-T-cell infiltrates after clearance of acute infection. J Virol 2000; 74(16):7496-507; PMID:10906203; https://doi.org/10.1128/JVI.74.16.7496-7507.2000
  • Karrer R, Sierro S, Wagner M, Oxenius A, Hengel H, Koszinowski UH, Phillips RE, Klenerman P. Memory Inflation: Continuous accumulation of antiviral CD8 + T cells over time. J Immunol 2003; 170:2022-9; PMID:12574372; https://doi.org/10.4049/jimmunol.170.4.2022
  • Smith CJ, Turula H, Snyder CM. Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog 2014; 10(7):e1004233; PMID:24992722; https://doi.org/10.1371/journal.ppat.1004233
  • Smith CJ, Caldeira-Dantas S, Turula H, Snyder CM. Murine CMV infection induces the continuous production of mucosal resident T cells. Cell Rep 2015; 13(6):1137-48; PMID:26526996; https://doi.org/10.1016/j.celrep.2015.09.076
  • Sierro S, Rothkopf R, Klenerman P. Evolution of diverse antiviral CD8+ T cell populations after murine cytomegalovirus infection. Eur J Immunol 2005; 35(4):1113-23; PMID:15756645; https://doi.org/10.1002/eji.200425534
  • Erkes DA, Smith CJ, Wilski NA, Caldeira-Dantas S, Mohgbeli T, Snyder CM. Virus-specific CD8+ T cells infiltrate melanoma lesions and retain function independently of PD-1 expression. J Immunol 2017; 198(7):2979-88; PMID:28202614; https://doi.org/10.4049/jimmunol.1601064
  • Quinn M, Turula H, Tandon M, Deslouches B, Moghbeli T, Snyder CM. Memory T cells specific for murine cytomegalovirus re-emerge after multiple challenges and recapitulate immunity in various adoptive transfer scenarios. J Immunol 2015; 194(4):1726-36; PMID:25595792; https://doi.org/10.4049/jimmunol.1402757
  • Hertoghs KM, Moerland PD, van Stijn A, Remmerswaal EB, Yong SL, van de Berg PJ, van Ham SM, Baas F, ten Berge IJ, van Lier RA. Molecular profiling of cytomegalovirus-induced human CD8+ T cell differentiation. J Clin Invest 2010; 120(11):4077-90; PMID:20921622; https://doi.org/10.1172/JCI42758
  • Snyder CM, Loewendorf A, Bonnett EL, Croft M, Benedict CA, Hill AB. CD4+ T cell help has an epitope-dependent impact on CD8+ T cell memory inflation during murine cytomegalovirus infection. J Immunol 2009; 183(6):3932-41; PMID:19692644; https://doi.org/10.4049/jimmunol.0900227
  • Walton S, Mandaric S, Oxenius A. CD4 T cell responses in latent and chronic viral infections. Front Immunol 2013; 4:105; PMID:23717308; https://doi.org/10.3389/fimmu.2013.00105
  • Sylwester AW, Mitchell BL, Edgar JB, Taormina C, Pelte C, Ruchti F, Sleath PR, Grabstein KH, Hosken NA, Kern F, et al. Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects. J Exp Med 2005; 202(5):673-85; PMID:16147978; https://doi.org/10.1084/jem.20050882
  • Shellam GR. The potential of murine cytomegalovirus as a viral vector for immunocontraception. Reprod Fertil Dev 1994; 6(3):401-9; PMID:7831489; https://doi.org/10.1071/RD9940401
  • Lloyd ML, Shellam GR, Papadimitriou JM, Lawson MA. Immunocontraception is induced in BALB/c mice inoculated with murine cytomegalovirus expressing mouse zona pellucida 3. Biol Reprod 2003; 68(6):2024-32; PMID:12606395; https://doi.org/10.1095/biolreprod.102.012880
  • Lloyd ML, Papadimitriou JM, O'Leary S, Robertson SA, Shellam GR. Immunoglobulin to zona pellucida 3 mediates ovarian damage and infertility after contraceptive vaccination in mice. J Autoimmun 2010; 35(1):77-85; PMID:20382503; https://doi.org/10.1016/j.jaut.2010.03.002
  • Tsuda Y, Parkins CJ, Caposio P, Feldmann F, Botto S, Ball S, Messaoudi I, Cicin-Sain L, Feldmann H, Jarvis MA. A cytomegalovirus-based vaccine provides long-lasting protection against lethal Ebola virus challenge after a single dose. Vaccine 2015; 33(19):2261-6; PMID:25820063; https://doi.org/10.1016/j.vaccine.2015.03.029
  • Morabito KM, Ruckwardt TR, Redwood AJ, Moin SM, Price DA, Graham BS. Intranasal administration of RSV antigen-expressing MCMV elicits robust tissue-resident effector and effector memory CD8+ T cells in the lung. Mucosal Immunol 2017; 10(2):545-54; PMID:27220815; https://doi.org/10.1038/mi.2016.48
  • Beverley PC, Ruzsics Z, Hey A, Hutchings C, Boos S, Bolinger B, Marchi E, O'Hara G, Klenerman P, Koszinowski UH, et al. A novel murine cytomegalovirus vaccine vector protects against mycobacterium tuberculosis. J Immunol 2014; 193(5):2306-16; PMID:25070842; https://doi.org/10.4049/jimmunol.1302523
  • Hansen SG, Wu HL, Burwitz BJ, Hughes CM, Hammond KB, Ventura AB, Reed JS, Gilbride RM, Ainslie E, Morrow DW, et al. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex E. Science 2016; 351(6274):714-20; PMID:26797147; https://doi.org/10.1126/science.aac9475
  • Hansen SG, Sacha JB, Hughes CM, Ford JC, Burwitz BJ, Scholz I, Gilbride RM, Lewis MS, Gilliam AN, Ventura AB, et al. Cytomegalovirus vectors violate CD8+ T cell epitope recognition paradigms. Science 2013; 340(6135):1237874; PMID:23704576; https://doi.org/10.1126/science.1237874
  • Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM, Ford JC, Oswald K, Shoemaker R, Li Y, Lewis MS, et al. Immune clearance of highly pathogenic SIV infection. Nature 2013; 502(7469):100-4; PMID:24025770; https://doi.org/10.1038/nature12519
  • Hansen SG, Ford JC, Lewis MS, Ventura AB, Hughes CM, Coyne-Johnson L, Whizin N, Oswald K, Shoemaker R, Swanson T, et al. Profound early control of highly pathogenic SIV by an effector memory T-cell vaccine. Nature 2011; 473(7348):523-7; PMID:21562493; https://doi.org/10.1038/nature10003
  • Hansen SG, Powers CJ, Richards R, Ventura AB, Ford JC, Siess D, Axthelm MK, Nelson JA, Jarvis MA, Picker LJ, et al. Evasion of CD8+ T cells is critical for superinfection by cytomegalovirus. Science 2010; 328(5974):102-6; PMID:20360110; https://doi.org/10.1126/science.1185350
  • Hansen SG, Vieville C, Whizin N, Coyne-Johnson L, Siess DC, Drummond DD, Legasse AW, Axthelm MK, Oswald K, Trubey CM, et al. Effector memory T cell responses are associated with protection of rhesus monkeys from mucosal simian immunodeficiency virus challenge. Nat Med 2009; 15(3):293-9; PMID:19219024; https://doi.org/10.1038/nm.1935
  • Klyushnenkova EN, Kouiavskaia DV, Parkins CJ, Caposio P, Botto S, Alexander RB, Jarvis MA. A cytomegalovirus-based vaccine expressing a single tumor-specific CD8+ T-cell epitope delays tumor growth in a murine model of prostate cancer. J Immunother 2012; 35(5):390-9; PMID:22576344; https://doi.org/10.1097/CJI.0b013e3182585d50
  • Xu G, Smith T, Grey F, Hill AB. Cytomegalovirus-based cancer vaccines expressing TRP2 induce rejection of melanoma in mice. Biochem Biophys Res Commun 2013; 437(2):287-91; PMID:23811402; https://doi.org/10.1016/j.bbrc.2013.06.068
  • Qiu Z, Huang H, Grenier JM, Perez OA, Smilowitz HM, Adler B, Khanna KM. Cytomegalovirus based vaccine expressing a modified tumor antigen induces potent tumor-specific CD8+ T cell response and protects mice from melanoma. Cancer Immunol Res 2015; 3(5):1-11; PMID:25568067; https://doi.org/10.1158/2326-6066.CIR-14-0044
  • Dekhtiarenko I, Ratts RB, Blatnik R, Lee LN, Fischer S, Borkner L, Oduro JD, Marandu TF, Hoppe S, Ruzsics Z, et al. Peptide processing is critical for T-cell memory inflation and may be optimized to improve immune protection by CMV-based vaccine vectors. PLoS Pathog 2016; 12(12):e1006072; PMID:27977791; https://doi.org/10.1371/journal.ppat.1006072
  • Colston JM, Bolinger B, Cottingham MG, Gilbert S, Klenerman P. Modification of antigen impacts on memory quality after adenovirus vaccination. J Immunol 2016; 196(8):3354-63; PMID:26944930; https://doi.org/10.4049/jimmunol.1502687
  • Turula H, Smith CJ, Grey F, Zurbach KA, Snyder CM. Competition between T cells maintains clonal dominance during memory inflation induced by MCMV. Eur J Immunol 2013; 43(5):1252-63; PMID:23404526; https://doi.org/10.1002/eji.201242940
  • Farrington LA, Smith TA, Grey F, Hill AB, Snyder CM. Competition for antigen at the level of the APC is a major determinant of immunodominance during memory inflation in murine cytomegalovirus infection. J Immunol 2013; 190(7):3410-6; PMID:23455500; https://doi.org/10.4049/jimmunol.1203151
  • Dekhtiarenko I, Jarvis MA, Ruzsics Z, Čičin-Šain L. The context of gene expression defines the immunodominance hierarchy of cytomegalovirus antigens. J Immunol 2013; 190(7):3399-409; PMID:23460738; https://doi.org/10.4049/jimmunol.1203173
  • Hutchinson S, Sims S, O'Hara G, Silk J, Gileadi U, Cerundolo V, Klenerman P. A dominant role for the immunoproteasome in CD8+ T cell responses to murine cytomegalovirus. PLoS One 2011; 6(2):e14646; PMID:21304910; https://doi.org/10.1371/journal.pone.0014646
  • Holtappels R, Simon CO, Munks MW, Thomas D, Deegen P, Kühnapfel B, Däubner T, Emde SF, Podlech J, Grzimek NK, et al. Subdominant CD8 T-cell epitopes account for protection against cytomegalovirus independent of immunodomination. J Virol 2008; 82(12):5781-96; PMID:18367531; https://doi.org/10.1128/JVI.00155-08
  • Erkes DA, Xu G, Daskalakis C, Zurbach KA, Wilski NA, Moghbeli T, Hill AB, Snyder CM. Intratumoral infection with murine cytomegalovirus synergizes with PD-L1 blockade to clear melanoma lesions and induce long-term immunity. Mol Ther 2016; 24(8):1444-55; In Press; PMID:27434584; https://doi.org/10.1038/mt.2016.121
  • Marabelle A, Kohrt H, Caux C, Levy R. Intratumoral immunization: A new paradigm for cancer therapy. Clin Cancer Res 2014; 20(7):1747-56; PMID:24691639; https://doi.org/10.1158/1078-0432.CCR-13-2116
  • Agarwala SS. Intralesional therapy for advanced melanoma: Promise and limitation. Curr Opin Oncol 2015; 27(2):151-6; PMID:25629369; https://doi.org/10.1097/CCO.0000000000000158
  • Mastrangelo MJ, Bellet RE, Berkelhammer J, Clark WH Jr. Regression of pulmonary metastatic disease associated with intralesional BCG therapy of intracutaneous melanoma metastases. Cancer 1975; 36(4):1305-8; PMID:1175129; https://doi.org/10.1002/1097-0142(197510)36:4%3c1305::AID-CNCR2820360417%3e3.0.CO;2-
  • Cheok CF. Protecting normal cells from the cytotoxicity of chemotherapy. Cell Cycle 2012; 11(12):2227-32; PMID:22684296; https://doi.org/10.4161/cc.20961
  • Gottesman MM. Cancer gene therapy: An awkward adolescence. Cancer Gene Ther 2003; 10(7):501-8; PMID:12833130; https://doi.org/10.1038/sj.cgt.7700602
  • Russell SJ, Peng KW. Oncolytic virotherapy: A contest between apples and oranges. Mol Ther 2017; 25(5):1107-16; PMID:28392162; https://doi.org/10.1016/j.ymthe.2017.03.026
  • Bommareddy PK, Silk AW, Kaufman HL. Intratumoral approached for the treatment of melanoma. Cancer K 2017; 23(1):40-7; PMID:28114253; https://doi.org/10.1097/PPO.0000000000000234
  • Weide B, Martens A, Wistuba-Hamprecht K, Zelba H, Maier L, Lipp HP, Klumpp BD, Soffel D, Eigentler TK, Garbe C. Combined treatment with ipilimumab and intratumoral interleukin-2 in pretreated patients with stage IV melanoma-safety and efficacy in a phase II study. Cancer Immunol Immunother 2017; 66(4):441-9; PMID:28008452; https://doi.org/10.1007/s00262-016-1944-0
  • Bruno MJ. Interventional endoscopic ultrasonography: Where are we headed? Dig Endosc 2017; 29(4):503-11; PMID:28181708; https://doi.org/10.1111/den.12842
  • Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol 2017; [epub ahead of print]; PMID:28117416; https://doi.org/10.1038/nrclinonc.2016.217
  • Sica A, Larghi P, Mancino A, Rubino L, Porta C, Totaro MG, Rimoldi M, Biswas SK, Allavena P, Mantovani A. Macrophage polarization in tumour progression. Semin Cancer Biol 2008; 18(5):349-55; PMID:18467122; https://doi.org/10.1016/j.semcancer.2008.03.004
  • Gabrilovich DI, Ostrand-Rosenberg S, Bronte V. Coordinated regulation of myeloid cells by tumours. Nat Rev Immunol 2012; 12(4):253-68; PMID:22437938; https://doi.org/10.1038/nri3175
  • Zeisberger SM, Odermatt B, Marty C, Zehnder-Fjällman AH, Ballmer-Hofer K, Schwendener RA. Clodronate-liposome-mediated depletion of tumour-associated macrophages: A new and highly effective antiangiogenic therapy approach. Br J Cancer 2006; 95(3):272-81; PMID:16832418; https://doi.org/10.1038/sj.bjc.6603240
  • Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel) 2014; 6(3):1670-90; PMID:25125485; https://doi.org/10.3390/cancers6031670
  • Koffron AJ, Hummel M, Patterson BK, Yan S, Kaufman DB, Fryer JP, Stuart FP, Abecassis MI. Cellular localization of laten murine cytomegalovirus. J Virol 1998; 72(1):95-103; PMID:9420204
  • Hahn G, Jores R, Mocarkski ES. Cytomegalovirus remains latent in a common precursor of dendritic and myeloid cells. PNAS 1998; 95:3937-42; PMID:9520471; https://doi.org/10.1073/pnas.95.7.3937
  • Mendelson M, Monard S, Sissons P, Sinclair J. Detection of endogenous human cytomegalovirus in CD34+ bone marrow progenitors. J Gen Virol 1996; 77:3099-102; PMID:9000102; https://doi.org/10.1099/0022-1317-77-12-3099
  • Kondo K, Xu J, Mocarkski ES. Human cytomegalovirus latent gene expression in granulocyte-macrophage progenitors in culture and in seropositive individuals. PNAS 1996; 93:11137-42; PMID:8855322; https://doi.org/10.1073/pnas.93.20.11137
  • Kondo K, Kaneshima H, Mocarkski ES. Human cytomegalovirus latent infection of granulovyte-macrophage progenitors. PNAS 1994; 91:11879-83; PMID:7991550; https://doi.org/10.1073/pnas.91.25.11879
  • Sindre H, Tjøonnfjord GE, Rollag H, Ranneberg-Nilsen T, Veiby OP, Beck S, Degré M, Hestdal K. Human cytomegalovirus suppression of and latency in early hematopoietic progenitor cells. Blood 1996; 88(12):4526-33; PMID:8977244
  • Reevers MB, MacAry PA, Lehner PJ, Sissons JG, Sinclair JH. Latency, chromatin remodeling, and reactivation of human cytomegalovirus in the dendritic cells of healthy carriers. Proc Natl Acad Sci U S A 2005; 102(11):4140-5; PMID:15738399; https://doi.org/10.1073/pnas.0408994102
  • Pollock JL, Presti RM, Paetzold S. Virgin HW 4th., Latent Murine Cytomegalovirus Infection in Macrophages. Virology 1997; 227:168-79; PMID:9007070; https://doi.org/10.1006/viro.1996.8303
  • Taylor-Wiedeman J, Sissons JG, Borysiewicz LK, Sinclair JH. Monocytes are a major site of persistence of huma cytomegalovirus in peripharl blood mononuclear cells. J Gen Virol 1991; 72:2059-64; PMID:1654370; https://doi.org/10.1099/0022-1317-72-9-2059
  • Stoddart CA, Cardin RD, Boname JM, Manning WC, Abenes GB, Mocarski ES. Peripheral blood mononuclear phagocytes mediate disseminiation of murine cytomegalovirus. J Virol 1994; 68(10):6243-53; PMID:8083964
  • Slobedman B, Mocarkski ES. Quantitative analysis of latent human cytomegalovirus. J Virol 1999; 73(6):4806-12; PMID:10233941
  • Soderberg-Naucler C, Fish KN, Nelson JA. Reactivation of latent human cytomegalovirus by allogeneic stimulation of blood cells from healthy donors. Cell 1997; 91:119-26; PMID:9335340; https://doi.org/10.1016/S0092-8674(01)80014-3
  • Soderberg-Naucler C, Streblow DN, Fish KN, Allan-Yorke J, Smith PP, Nelson JA. Reactivation of latent human cytomegalovirus in CD14(+) monocytes is differentiation dependent. J Virol 2001; 75(16):7543-54; PMID:11462026; https://doi.org/10.1128/JVI.75.16.7543-7554.2001
  • Daley-Bauer LP, Roback LJ, Wynn GM, Mocarski ES. Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe 2014; 15(3):351-62; PMID:24629341; https://doi.org/10.1016/j.chom.2014.02.002
  • Daley-Bauer LP, Wynn GM, Mocarski ES. Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes. Immunity 2012; 37(1):122-33; PMID:22840843; https://doi.org/10.1016/j.immuni.2012.04.014
  • Noda S, Aguirre SA, Bitmansour A, Brown JM, Sparer TE, Huang J, Mocarski ES. Cytomegalovirus MCK-2 controls mobilization and recruitment of myeloid progenitor cells to facilitate dissemination. Blood 2006; 107(1):30-8; PMID:16046529; https://doi.org/10.1182/blood-2005-05-1833
  • Zheng Q, Tao R, Gao H, Xu J, Shang S, Zhao N. HCMV-encoded UL128 enhances TNF-alpha and IL-6 expression and promotes PBMC proliferation through the MAPK/ERK pathway in vitro. Viral Immunol 2012; 25(2):98-105; PMID:22486303; https://doi.org/10.1089/vim.2011.0064
  • Bentz GL, Jarquin-Pardo M, Chan G, Smith MS, Sinzger C, Yurochko AD. Human cytomegalovirus (HCMV) infection of endothelial cells promotes naive monocyte extravasation and transfer of productive virus to enhance hematogenous dissemination of HCMV. J Virol 2006; 80(23):11539-55; PMID:16987970; https://doi.org/10.1128/JVI.01016-06
  • Hong SS, Choi JH, Lee SY, Park YH, Park KY, Lee JY, Kim J, Gajulapati V, Goo JI, Singh S, et al. A novel small-molecule inhibitor targeting the IL-6 receptor beta subunit, glycoprotein 130. J Immunol 2015; 195(1):237-45; PMID:26026064; https://doi.org/10.4049/jimmunol.1402908
  • Gao H, Tao R, Zheng Q, Xu J, Shang S. Recombinant HCMV UL128 expression and functional identification of PBMC-attracting activity in vitro. Arch Virol 2013; 158(1):173-7; PMID:22851009; https://doi.org/10.1007/s00705-012-1558-6
  • Chan G, Bivins-Smith ER, Smith MS, Smith PM, Yurochko AD. Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J Immunol 2008; 181:698-711; PMID:18566437; https://doi.org/10.4049/jimmunol.181.1.698
  • Chan G, Nogalski MT, Yurochko AD. Human cytomegalovirus stimulates monocyte-to-macrophage differentiation via the temporal regulation of caspase 3. J Virol 2012; 86(19):10714-23; PMID:22837201; https://doi.org/10.1128/JVI.07129-11
  • Bayer C, Varani S, Wang L, Walther P, Zhou S, Straschewski S, Bachem M, Söderberg-Naucler C, Mertens T, Frascaroli G. Human cytomegalovirus infection of M1 and M2 macrophages triggers inflammation and autologous T-cell proliferation. J Virol 2013; 87(1):67-79; PMID:23055571; https://doi.org/10.1128/JVI.01585-12
  • Yamaguchi T, Shinagawa Y, Pollard RB. Relationship between the produciton of murine cytomegalovirus and inferferon in macrophages. J Gen Virol 1988; 69:2961-71; PMID:2462012; https://doi.org/10.1099/0022-1317-69-12-2961
  • Smith PD, Shimamura M, Musgrove LC, Dennis EA, Bimczok D, Novak L, Ballestas M, Fenton A, Dandekar S, Britt WJ, et al. Cytomegalovirus enhances macrophage TLR expression and MyD88-mediated signal transduction to potentiate inducible inflammatory responses. J Immunol 2014; 193(11):5604-12; PMID:25355920; https://doi.org/10.4049/jimmunol.1302608
  • Cousins SW, Espinosa-Heidmann DG, Miller DM, Pereira-Simon S, Hernandez EP, Chien H, Meier-Jewett C, Dix RD. Macrophage activation associated with chronic murine cytomegalovirus infection results in more severe experimental choroidal neovascularization. PLoS Pathog 2012; 8(4):e1002671; PMID:22570607; https://doi.org/10.1371/journal.ppat.1002671
  • Mantovani A, Allavena P. The interaction of anticancer therapies with tumor-associated macrophages. J Exp Med 2015; 212(4):435-45; PMID:25753580; https://doi.org/10.1084/jem.20150295
  • Li Y, Fang M, Zhang J, Wang J, Song Y, Shi J, Li W, Wu G, Ren J, Wang Z, et al. Hydrogel dual delivered celecoxib and anti-PD-1 synergistically improve antitumor immunity. Oncoimmunology 2016; 5(2):e1074374; PMID:27057439; https://doi.org/10.1080/2162402X.2015.1074374
  • Zelenay S, van der Veen AG, Böttcher JP, Snelgrove KJ, Rogers N, Acton SE, Chakravarty P, Girotti MR, Marais R, Quezada SA, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 2015; 162(6):1257-70; PMID:26343581; https://doi.org/10.1016/j.cell.2015.08.015
  • Prima V, Kaliberova LN, Kaliberov S, Curiel DT, Kusmartsev S. COX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cells. Proc Natl Acad Sci U S A 2017; 114(5):1117-22; PMID:28096371; https://doi.org/10.1073/pnas.1612920114
  • Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, Fu YX. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124(2):687-95; PMID:24382348; https://doi.org/10.1172/JCI67313
  • Schalper K, et al. Clinical significance of PD-L1 protein expression on tumor-associated macrophages in lung cancer. J Immuno Ther Cancer 2015; 3(Suppl 2):P415; https://doi.org/10.1186/2051-1426-3-S2-P415
  • Zippelius A, Schreiner J, Herzig P, Müller P. Induced PD-L1 expression mediates acquired resistance to agonistic anti-CD40 treatment. Cancer Immunol Res 2015; 3(3):236-44; PMID:25623164; https://doi.org/10.1158/2326-6066.CIR-14-0226
  • Handke W, Krause E, Brune W. Live or let die: Manipulation of cellular suicide programs by murine cytomegalovirus. Med Microbiol Immunol 2012; 201(4):475-86; PMID:22965170; https://doi.org/10.1007/s00430-012-0264-z
  • Khairallah C, Dechanet-Merville J, Capone M. γδ T cell-mediated immunity to cytomegalovirus infection. Front Immunol 2017; 8(105):1-10; PMID:28232834; https://doi.org/10.3389/fimmu.2017.00105
  • Erlach KC, Böhm V, Knabe M, Deegen P, Reddehase MJ, Podlech J. Activation of hepatic natural killer cells and control of liver-adapted lymphoma in the murine model of cytomegalovirus infection. Med Microbiol Immunol 2008; 197(2):167-78; PMID:18309517; https://doi.org/10.1007/s00430-008-0084-3
  • Erlach KC, Böhm V, Seckert CK, Reddehase MJ, Podlech J. Lymphoma cell apoptosis in the liver induced by distant murine cytomegalovirus infection. J Virol 2006; 80(10):4801-19; PMID:16641273; https://doi.org/10.1128/JVI.80.10.4801-4819.2006
  • Erlach KC, Podlech J, Rojan A, Reddehase MJ. Tumor control in a model of bone marrow transplantation and acute liver-infiltrating B-cell lymphoma: An unpredicted novel function of cytomegalovirus. J Virol 2002; 76(6):2857-70; PMID:11861853; https://doi.org/10.1128/JVI.76.6.2857-2870.2002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.