9,782
Views
5
CrossRef citations to date
0
Altmetric
Reviews

H3N2 influenza viruses in humans: Viral mechanisms, evolution, and evaluation

&
Pages 1840-1847 | Received 14 Feb 2018, Accepted 26 Mar 2018, Published online: 14 May 2018

References

  • Vemula SV, Zhao J, Liu J, Wang X, Biswas S, Hewlett I. Current approaches for diagnosis of influenza virus infections in humans. Viruses. 2016;8(4):96. doi:10.3390/v8040096. PMID:27077877.
  • Shim JM, Kim J, Tenson T, Min JY, Kainov DE. Influenza Virus Infection, Interferon Response, Viral Counter-Response, and Apoptosis. Viruses. 2017;9(8):223. doi:10.3390/v9080223.
  • Alymova IV, York IA, Air GM, Cipollo JF, Gulati S, Baranovich T, Kumar A, Zeng H, Gansebom S, McCullers JA. Glycosylation changes in the globular head of H3N2 influenza hemagglutinin modulate receptor binding without affecting virus virulence. Scientific Rep. 2016;6:36216.
  • Yang J, Liu S, Du L, Jiang S. A new role of neuraminidase (NA) in the influenza virus life cycle: implication for developing NA inhibitors with novel mechanism of action. Rev Med Virology. 2016;26(4):242–50. doi:10.1002/rmv.1879.
  • Lin Y, Wharton SA, Whittaker L, Dai M, Ermetal B, Lo J, Pontoriero A, Baumeister E, Daniels RS, McCauley JW. The characteristics and antigenic properties of recently emerged subclade 3C. 3a and 3C. 2a human influenza A (H3N2) viruses passaged in MDCK cells. Influenza Other Respir Viruses. 2017;11(3):263–74. doi:10.1111/irv.12447. PMID:28164446.
  • Melidou A, Gioula G, Exindari M, Ioannou E, Gkolfinopoulou K, Georgakopoulou T, Tsiodras S, Papa A. Ιnfluenza A (H3N2) genetic variants in vaccinated patients in northern Greece. J Clinical Virology. 2017;94:29–32. doi:10.1016/j.jcv.2017.07.003.
  • Blackburne BP, Hay AJ, and Goldstein RA. Changing selective pressure during antigenic changes in human influenza H3. PLoS pathogens. 2008;4(5):e1000058. doi:10.1371/journal.ppat.1000058. PMID:18451985.
  • Chambers BS, Li Y, Hodinka RL, Hensley SE. Recent H3N2 influenza virus clinical isolates rapidly acquire hemagglutinin or neuraminidase mutations when propagated for antigenic analyses. J Virology. 2014;88(18):10986–9. doi:10.1128/JVI.01077-14. PMID:24991002.
  • Pavlova S, D'Alessio F, Houard S, Remarque EJ, Stockhofe N, Engelhardt OG. Workshop report: Immunoassay standardisation for “universal” influenza vaccines. Influenza and Other Respir Viruses. 2017;11(3):194–201. doi:10.1111/irv.12445. PMID:28146323.
  • Zhu X, McBride R, Nycholat CM, Yu W, Paulson JC, Wilson IA. Influenza virus neuraminidases with reduced enzymatic activity that avidly bind sialic acid receptors. J Virology. 2012;86(24):13371–83. doi:10.1128/JVI.01426-12. PMID:23015718.
  • Lin YP, Gregory V, Collins P, Kloess J, Wharton S, Cattle N, Lackenby A, Daniels R, Hay A. Neuraminidase receptor binding variants of human influenza A (H3N2) viruses resulting from substitution of aspartic acid 151 in the catalytic site: a role in virus attachment? J Virology. 2010;84(13):6769–81. doi:10.1128/JVI.00458-10. PMID:20410266.
  • Bouvier NM and Palese P. The biology of influenza viruses. Vaccine. 2008;26:D49−53. doi:10.1016/j.vaccine.2008.07.039. PMID:19230160.
  • Westgeest KB, Russell CA, Lin X, Spronken MI, Bestebroer TM, Bahl J, van Beek R, Skepner E, Halpin RA, de Jong JC, et al., Genomewide analysis of reassortment and evolution of human influenza A (H3N2) viruses circulating between 1968 and 2011. J Virology. 2014;88(5):2844–57. doi:10.1128/JVI.02163-13. PMID:24371052.
  • Huang Z-Z, Yu L, Huang P, Liang LJ, Guo Q. Charged amino acid variability related to N-glyco-sylation and epitopes in A/H3N2 influenza: Hem-agglutinin and neuraminidase. PloS one. 2017;12(7):e0178231. doi:10.1371/journal.pone.0178231. PMID:28708860.
  • Peng W, de Vries RP, Grant OC, Thompson AJ, McBride R, Tsogtbaatar B, Lee PS, Razi N, Wilson IA, Woods RJ, et al., Recent H3N2 viruses have evolved specificity for extended, branched human-type receptors, conferring potential for increased avidity. Cell Host & Microbe. 2017;21(1):23–34. doi:10.1016/j.chom.2016.11.004.
  • Ushirogawa H, Naito T, Tokunaga H, Tanaka T, Nakano T, Terada K, Ohuchi M, Saito M. Re-emergence of H3N2 strains carrying potential neutralizing mutations at the N-linked glycosylation site at the hemagglutinin head, post the 2009 H1N1 pandemic. BMC Infectious Dis. 2016;16(1):380. doi:10.1186/s12879-016-1738-1.
  • Shao W, Li X, Goraya MU, Wang S, Chen JL. Evolution of Influenza A Virus by Mutation and Re-Assortment. International J Molecular Sci. 2017;18(8):1650. doi:10.3390/ijms18081650.
  • Hooper KA, Crowe JE, and Bloom JD. Influenza viruses with receptor-binding N1 neuraminidases occur sporadically in several lineages and show no attenuation in cell culture or mice. J Virology. 2015;89(7):3737–45. doi:10.1128/JVI.00012-15. PMID:25609803.
  • Medeiros R, Escriou N, Naffakh N, Manuguerra JC, van der Werf S. Hemagglutinin residues of recent human A (H3N2) influenza viruses that contribute to the inability to agglutinate chicken erythrocytes. Virology. 2001;289(1):74–85. doi:10.1006/viro.2001.1121. PMID:11601919.
  • Yang H, Carney PJ, Chang JC, Guo Z, Villanueva JM, Stevens J. Structure and receptor binding preferences of recombinant human A (H3N2) virus hemagglutinins. Virology. 2015;477:18–31. doi:10.1016/j.virol.2014.12.024. PMID:25617824.
  • Yokoyama M, Fujisaki S, Shirakura M, Watanabe S, Odagiri T, Ito K, Sato H. Molecular dynamics simulation of the influenza A (H3N2) hemagglutinin trimer reveals the structural basis for adaptive evolution of the recent epidemic clade 3C. 2a. Frontiers in Microbiology. 2017;8:548. doi:10.3389/fmicb.2017.00584.
  • Van Poucke S, Doedt J, Baumann J, Qiu Y, Matrosovich T, Klenk HD, Van Reeth K, Matrosovich M. Role of Substitutions in the Hemagglutinin in the Emergence of the 1968 Pandemic Influenza Virus. J Virology. 2015;89(23):12211–6. doi:10.1128/JVI.01292-15. PMID:26378170.
  • Koel BF, Burke DF, Bestebroer TM, van der Vliet S, Zondag GC, Vervaet G, Skepner E, Lewis NS, Spronken MI, Russell CA, et al., Substitutions near the receptor binding site determine major antigenic change during influenza virus evolution. Science. 2013;342(6161):976–9. doi:10.1126/science.1244730. PMID:24264991.
  • Kobayashi Y and Suzuki Y. Compensatory evolution of net-charge in influenza A virus hemagglutinin. PloS one. 2012;7(7):e40422. doi:10.1371/journal.pone.0040422. PMID:22808159.
  • Asaoka N, Tanaka Y, Sakai T, Fujii Y, Ohuchi R, Ohuchi M. Low growth ability of recent influenza clinical isolates in MDCK cells is due to their low receptor binding affinities. Microbes Infect. 2006;8(2):511–9. doi:10.1016/j.micinf.2005.08.006. PMID:16300986.
  • Parker L, Wharton SA, Martin SR, Cross K, Lin Y, Liu Y, Feizi T, Daniels RS, McCauley JW. Effects of egg-adaptation on receptor-binding and antigenic properties of recent influenza A (H3N2) vaccine viruses. J Gen Virology. 2016;97(6):1333–44. doi:10.1099/jgv.0.000457.
  • Hervé P-L, Lorin V, Jouvion G, Da Costa B, Escriou N. Addition of N-glycosylation sites on the globular head of the H5 hemagglutinin induces the escape of highly pathogenic avian influenza A H5N1 viruses from vaccine-induced immunity. Virology. 2015;486:134–45. doi:10.1016/j.virol.2015.08.033. PMID:26433051.
  • Harvala H, Frampton D, Grant P, Raffle J, Ferns RB, Kozlakidis Z, Kellam P, Pillay D, Hayward A, Nastouli E. Emergence of a novel subclade of influenza A (H3N2) virus in London, December 2016 to January 2017. Eurosurveillance. 2017;22(8):30466. doi:10.2807/1560-7917.ES.2017.22.8.30466.
  • Park AW, Daly JM, Lewis NS, Smith DJ, Wood JL, Grenfell BT. Quantifying the impact of immune escape on transmission dynamics of influenza. Science. 2009;326(5953):726–8. doi:10.1126/science.1175980. PMID:19900931.
  • Skowronski DM, Sabaiduc S, Chambers C, Eshaghi A, Gubbay JB, Krajden M, Drews SJ, Martineau C, De Serres G, Dickinson JA, et al., Mutations acquired during cell culture isolation may affect antigenic characterisation of influenza A (H3N2) clade 3C. 2a viruses. Eurosurveillance. 2016;21(3):30122. doi:10.2807/1560-7917.ES.2016.21.3.30112.
  • Chambers BS, Parkhouse K, Ross TM, Alby K, Hensley SE. Identification of hemagglutinin residues responsible for H3N2 antigenic drift during the 2014–2015 influenza season. Cell Rep. 2015;12(1):1–6. doi:10.1016/j.celrep.2015.06.005. PMID:26119736.
  • Wu NC, Zost SJ, Thompson AJ, et al., A structural explanation for the low effectiveness of the seasonal influenza H3N2 vaccine. PLoS Pathogens. 2017;13(10):e1006682. doi:10.1371/journal.ppat.1006682. PMID:29059230.
  • Wang B, Russell ML, Brewer A, et al., Single radial haemolysis compared to haemagglutinin inhibition and microneutralization as a correlate of protection against influenza A H3N2 in children and adolescents. Influenza and Other Respir Viruses. 2017;11(3):283–8. doi:10.1111/irv.12450. PMID:28218983.
  • Trombetta CM, Perini D, Mather S, Temperton N, Montomoli E. Overview of serological techniques for influenza vaccine evaluation: past, present and future. Vaccines. 2014;2(4):707–34. doi:10.3390/vaccines2040707. PMID:26344888.
  • Gulati S, Smith DF, Cummings RD, Couch RB, Griesemer SB, St George K, Webster RG, Air GM. Human H3N2 influenza viruses isolated from 1968 to 2012 show varying preference for receptor substructures with no apparent consequences for disease or spread. PloS one. 2013;8(6):e66325. doi:10.1371/journal.pone.0066325. PMID:23805213.
  • Lin YP, Xiong X, Wharton SA, Martin SR, Coombs PJ, Vachieri SG, Christodoulou E, Walker PA, Liu J, Skehel JJ, et al., Evolution of the receptor binding properties of the influenza A (H3N2) hemagglutinin. Proc Natl Academy of Sciences. 2012;109(52):21474–9. doi:10.1073/pnas.1218841110.
  • Barr IG, McCauley J, Cox N, Daniels R, Engelhardt OG, Fukuda K, Grohmann G, Hay A, Kelso A, Klimov A, et al., Epidemiological, antigenic and genetic characteristics of seasonal influenza A (H1N1), A (H3N2) and B influenza viruses: basis for the WHO recommendation on the composition of influenza vaccines for use in the 2009–2010 Northern Hemisphere season. Vaccine. 2010;28(5):1156–67. doi:10.1016/j.vaccine.2009.11.043. PMID:20004635.
  • Oh DY, Barr IG, Mosse JA, Laurie KL MDCK-SIAT1 cells show improved isolation rates for recent human influenza viruses compared to conventional MDCK cells. J Clinical Microbiology. 2008;46(7):2189–94. doi:10.1128/JCM.00398-08.
  • Matrosovich M, Matrosovich T, Carr J, Roberts NA, Klenk HD. Overexpression of the α-2, 6-sialyltransferase in MDCK cells increases influenza virus sensitivity to neuraminidase inhibitors. J Virology. 2003;77(15):8418–25. doi:10.1128/JVI.77.15.8418-8425.2003. PMID:12857911.
  • Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J Virology. 2004;78(22):12665–7. doi:10.1128/JVI.78.22.12665-12667.2004. PMID:15507653.
  • Mishin VP, Sleeman K, Levine M, Carney PJ, Stevens J, Gubareva LV. The effect of the MDCK cell selected neuraminidase D151G mutation on the drug susceptibility assessment of influenza A (H3N2) viruses. Antiviral Res. 2014;101:93–96. doi:10.1016/j.antiviral.2013.11.001. PMID:24239666.
  • Colman PM, Varghese J, and Laver W. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature. 1983;303(5912):41–44. doi:10.1038/303041a0. PMID:6188957.
  • van Baalen CA, Jeeninga RE, Penders GH, van Gent B, van Beek R, Koopmans MP, Rimmelzwaan GF. ViroSpot microneutralization assay for antigenic characterization of human influenza viruses. Vaccine. 2017;35(1):46–52. doi:10.1016/j.vaccine.2016.11.060. PMID:27899226.
  • Lin Y, Gu Y, and McCauley JW. Optimization of a Quantitative Micro-neutralization Assay. Journal of visualized experiments: JoVE. 2016(118):54897.
  • Sullivan K, Kloess J, Qian C, Bell D, Hay A, Lin YP, Gu Y. High throughput virus plaque quantitation using a flatbed scanner. J Virological Methods. 2012;179(1):81–89. doi:10.1016/j.jviromet.2011.10.003.