3,009
Views
12
CrossRef citations to date
0
Altmetric
Review

Pathogenic signature of invasive non-typhoidal Salmonella in Africa: implications for vaccine development

ORCID Icon & ORCID Icon
Pages 2056-2071 | Received 30 Jan 2020, Accepted 17 Jun 2020, Published online: 21 Jul 2020

References

  • World Health Organization. WHO estimates of the global burden of foodborne diseases: foodborne disease burden epidemiology reference group 2007–2015. Accessed 2019 Apr 4]. https://apps.who.int/iris/bitstream/handle/10665/199350/9789241565165_eng.pdf
  • Ryan MP, O’Dwyer J, Adley CC. Evaluation of the complex nomenclature of the clinically and veterinary significant pathogen salmonella. Biomed Res Int. 2017;2017:3782182. doi:10.1155/2017/3782182.
  • Khan CM. The dynamic interactions between salmonella and the microbiota, within the challenging niche of the gastrointestinal tract. Int Sch Res Notices. 2014;2014:846049. doi:10.1155/2014/846049.
  • Gordon MA, Kankwatira AM, Mwafulirwa G, Walsh AL, Hopkins MJ, Parry CM, Faragher EB, Zijlstra EE, Heyderman RS, Molyneux ME. Invasive non-typhoid salmonellae establish systemic intracellular infection in HIV-infected adults: an emerging disease pathogenesis. Clin Infect Dis. 2010;50(7):953–62. doi:10.1086/651080.
  • Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial resistance, and antimicrobial management of invasive salmonella infections. Clin Microbiol Rev. 2015;28(4):901–37. doi:10.1128/CMR.00002-15.
  • Stanaway JD, Parisi A, Sarkar K, Blacker BF, Reiner RC, Hay SI, Nixon MR, Dolecek C, James SL, Mokdad AH; GBD 2017 Non-Typhoidal Salmonella Invasive Disease Collaborators. The global burden of non-typhoidal salmonella invasive disease: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Infect Dis. 2019;19(12):1312–24. doi:10.1016/S1473-3099(19)30418-9.
  • Msefula CL, Olgemoeller F, Jambo N, Segula D, Van Tan T, Nyirenda TS, Nedi W, Kennedy N, Graham M, Henrion MYR, et al. Ascertaining the burden of invasive Salmonella disease in hospitalised febrile children aged under four years in Blantyre, Malawi. PLoS Negl Trop Dis. 2019;13(7):e0007539. doi:10.1371/journal.pntd.0007539.
  • Park SE, Pak GD, Aaby P, Adu-Sarkodie Y, Ali M, Aseffa A, Biggs HM, Bjerregaard-Andersen M, Breiman RF, Crump JA, et al. The relationship between invasive nontyphoidal salmonella disease, other bacterial bloodstream infections, and Malaria in Sub-Saharan Africa. Clin Infect Dis. 2016;62(Suppl 1):S23–S31. doi:10.1093/cid/civ893.
  • Uche IV, MacLennan CA, Saul A, Baker S. A systematic review of the incidence, risk factors and case fatality rates of Invasive Nontyphoidal Salmonella (iNTS) Disease in Africa (1966 to 2014). PLOS Negl Trop Dis. 2017;11(1):e0005118. doi:10.1371/journal.pntd.0005118.
  • Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet. 2012;379(9835):2489–99. doi:10.1016/S0140-6736(11)61752-2.
  • Kingsley RA, Msefula CL, Thomson NR, Kariuki S, Holt KE, Gordon MA, Harris D, Clarke L, Whitehead S, Sangal V, et al. Epidemic multiple drug resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res. 2009;19(12):2279–87. doi:10.1101/gr.091017.109.
  • Okoro CK, Kingsley RA, Connor TR, Harris SR, Parry CM, Al-Mashhadani MN, Kariuki S, Msefula CL, Gordon MA, de Pinna E, et al. Intracontinental spread of human invasive Salmonella Typhimurium pathovariants in sub-Saharan Africa. Nat Genet. 2012;44(11):1215–21. doi:10.1038/ng.2423.
  • Feasey NA, Hadfield J, Keddy KH, Dallman TJ, Jacobs J, Deng X, Wigley P, Barquist L, Langridge GC, Feltwell T, et al. Distinct Salmonella Enteritidis lineages associated with enterocolitis in high-income settings and invasive disease in low-income settings. Nat Genet. 2016;48(10):1211–17. doi:10.1038/ng.3644.
  • Kurtz JR, Goggins JA, McLachlan JB. Salmonella infection: interplay between the bacteria and host immune system. Immunol Lett. 2017;190:42–50. doi:10.1016/j.imlet.2017.07.006.
  • Gordon MA. Invasive nontyphoidal Salmonella disease: epidemiology, pathogenesis and diagnosis. Curr Opin Infect Dis. 2011;24(5):484–89. doi:10.1097/QCO.0b013e32834a9980.
  • Kariuki S, Revathi G, Gakuya F, Yamo V, Muyodi J, Hart CA. Lack of clonal relationship between non-typhi Salmonella strain types from humans and those isolated from animals living in close contact. FEMS Immunol Med Microbiol. 2002;33(3):165–71. doi:10.1111/j.1574-695X.2002.tb00587.x.
  • Kariuki S, Revathi G, Kariuki N, Kiiru J, Mwituria J, Muyodi J, Githinji JW, Kagendo D, Munyalo A, Hart CA. Invasive multidrug-resistant non-typhoidal Salmonella infections in Africa: zoonotic or anthroponotic transmission? J Med Microbiol. 2006;55(Pt 5):585–91. doi:10.1099/jmm.0.46375-0.
  • Post AS, Diallo SN, Guiraud I, Lompo P, Tahita MC, Maltha J, Van Puyvelde S, Mattheus W, Ley B, Thriemer K, et al. Supporting evidence for a human reservoir of invasive non-Typhoidal Salmonella from household samples in Burkina Faso. PLoS Negl Trop Dis. 2019;13(10):e0007782. doi:10.1371/journal.pntd.0007782.
  • Gilchrist JJ, MacLennan CA, Hill AV. Genetic susceptibility to invasive Salmonella disease. Nat Rev Immunol. 2015;15(7):452–63. doi:10.1038/nri3858.
  • Gordon MA, Graham SM, Walsh AL, Wilson L, Phiri A, Molyneux E, Zijlstra EE, Heyderman RS, Hart CA, Molyneux ME. Epidemics of invasive Salmonella enterica serovar enteritidis and S. enterica Serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis. 2008;46(7):963–69. doi:10.1086/529146.
  • Feasey NA, Masesa C, Jassi C, Faragher EB, Mallewa J, Mallewa M, MacLennan CA, Msefula C, Heyderman RS, Gordon MA. Three epidemics of invasive multidrug-resistant Salmonella Bloodstream infection in Blantyre, Malawi, 1998–2014. Clin Infect Dis. 2015;61(Suppl 4):S363–S371. doi:10.1093/cid/civ691.
  • Akullian A, Montgomery JM, John-Stewart G, Miller SI, Hayden HS, Radey MC, Hager KR, Verani JR, Ochieng JB, Juma J, et al. Multi-drug resistant non-typhoidal Salmonella associated with invasive disease in western Kenya. PLoS Negl Trop Dis. 2018;12(1):e0006156. doi:10.1371/journal.pntd.0006156.
  • Chu C, Chiu CH. Evolution of the virulence plasmids of non-typhoid Salmonella and its association with antimicrobial resistance. Microbes Infect. 2006;8(7):1931–36. doi:10.1016/j.micinf.2005.12.026.
  • Rodríguez I, Rodicio MR, Guerra B, Hopkins KL. Potential international spread of multidrug-resistant invasive Salmonella enterica serovar enteritidis. Emerg Infect Dis. 2012;18(7):1173–76. doi:10.3201/eid1807.120063.
  • García V, García P, Rodríguez I, Rodicio R, Rodicio MR. The role of IS26 in evolution of a derivative of the virulence plasmid of Salmonella enterica serovar Enteritidis which confers multiple drug resistance. Infect Genet Evol. 2016;45:246–49. doi:10.1016/j.meegid.2016.09.008.
  • Moran NA, Plague GR. Genomic changes following host restriction in bacteria. Curr Opin Genet Dev. 2004;14(6):627–33. doi:10.1016/j.gde.2004.09.003.
  • García V, Mandomando I, Ruiz J, Herrera-León S, Alonso PL, Rodicio MR. Salmonella enterica serovars typhimurium and enteritidis causing mixed infections in febrile children in Mozambique. Infect Drug Resist. 2018;11:195–204. doi:10.2147/IDR.S147243.
  • Msefula CL, Kingsley RA, Gordon MA, Molyneux E, Molyneux ME, MacLennan CA, Dougan G, Heyderman RS, Mantis NJ. Genotypic homogeneity of multidrug resistant S. Typhimurium infecting distinct adult and childhood susceptibility groups in Blantyre, Malawi. PLoS One. 2012;7(7):e42085. doi:10.1371/journal.pone.0042085.
  • Kariuki S, Okoro C, Kiiru J, Njoroge S, Omuse G, Langridge G, Kingsley RA, Dougan G, Revathi G. Ceftriaxone-resistant Salmonella enterica serotype typhimurium sequence type 313 from Kenyan patients is associated with the blaCTX-M-15 gene on a novel IncHI2 plasmid. Antimicrob Agents Chemother. 2015;59(6):3133–39. doi:10.1128/AAC.00078-15.
  • Oneko M, Kariuki S, Muturi-Kioi V, Otieno K, Otieno VO, Williamson JM, Folster J, Parsons MB, Slutsker L, Mahon BE, et al. Emergence of community-acquired, multidrug-resistant invasive nontyphoidal salmonella disease in Rural Western Kenya, 2009–2013. Clin Infect Dis. 2015;61(Suppl 4):S310–S316. doi:10.1093/cid/civ674.
  • Van Puyvelde S, Pickard D, Vandelannoote K, Heinz E, Barbé B, de Block T, Clare S, Coomber EL, Harcourt K, Sridhar S, et al. An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation. Nat Commun. 2019;10(1):4280. doi:10.1038/s41467-019-11844-z.
  • Lunguya O, Lejon V, Phoba MF, Bertrand S, Vanhoof R, Glupczynski Y, Verhaegen J, Muyembe-Tamfum JJ, Jacobs J. Antimicrobial resistance in invasive non-typhoid Salmonella from the Democratic Republic of the Congo: emergence of decreased fluoroquinolone susceptibility and extended-spectrum beta lactamases. PLoS Negl Trop Dis. 2013;7(3):e2103. doi:10.1371/journal.pntd.0002103.
  • Kagambèga A, Lienemann T, Frye JG, Barro N, Haukka K. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso. Trop Med Health. 2018;46:4. doi:10.1186/s41182-018-0086-9.
  • Harrois D, Breurec S, Seck A, Delauné A, Le Hello S, Pardos de la Gándara M, Sontag L, Perrier-Gros-Claude JD, Sire JM, Garin B, et al. Prevalence and characterization of extended-spectrum beta-lactamase-producing clinical Salmonella enterica isolates in Dakar, Senegal, from 1999 to 2009. Clin Microbiol Infect. 2014;20(2):O109–O116. doi:10.1111/1469-0691.12339.
  • Akinyemi KO, Iwalokun BA, Oyefolu AO, Fakorede CO. Occurrence of extended-spectrum and AmpC beta-lactamases in multiple drug resistant Salmonella isolates from clinical samples in Lagos, Nigeria. Infect Drug Resist. 2017;10:19–25. doi:10.2147/IDR.S123646.
  • Shane AL, Mody RK, Crump JA, Tarr PI, Steiner TS, Kotloff K, Langley JM, Wanke C, Warren CA, Cheng AC, et al. 2017 infectious diseases society of America clinical practice guidelines for the diagnosis and management of infectious diarrhea. Clin Infect Dis. 2017;65(12):e45–e80. doi:10.1093/cid/cix669.
  • Cuypers WL, Jacobs J, Wong V, Klemm EJ, Deborggraeve S, Van Puyvelde S. Fluoroquinolone resistance in Salmonella: insights by whole-genome sequencing. Microb Genom. 2018;4:7. doi:10.1099/mgen.0.000195.
  • Tadesse G, Tessema TS, Beyene G, Aseffa A, Chabalgoity JA. Molecular epidemiology of fluoroquinolone resistant Salmonella in Africa: a systematic review and meta-analysis. PLoS One. 2018;13(2):e0192575. doi:10.1371/journal.pone.0192575.
  • Owen SV, Wenner N, Canals R, Makumi A, Hammarlöf DL, Gordon MA, Aertsen A, Feasey NA, Hinton JC. Characterization of the prophage repertoire of African Salmonella Typhimurium ST313 reveals high levels of spontaneous induction of novel phage BTP1. Front Microbiol. 2017;8:235. doi:10.3389/fmicb.2017.00235.
  • Ashton PM, Owen SV, Kaindama L, Rowe WPM, Lane CR, Larkin L, Nair S, Jenkins C, de Pinna EM, Feasey NA, et al. Public health surveillance in the UK revolutionises our understanding of the invasive Salmonella Typhimurium epidemic in Africa. Genome Med. 2017;9(1):92. doi:10.1186/s13073-017-0480-7.
  • Herrero-Fresno A, Wallrodt I, Leekitcharoenphon P, Olsen JE, Aarestrup FM, Hendriksen RS, Bengoechea JA. The role of the st313-td gene in virulence of Salmonella Typhimurium ST313. PLoS One. 2014;9(1):e84566. doi:10.1371/journal.pone.0084566.
  • Kintz E, Davies MR, Hammarlöf DL, Canals R, Hinton JC, van der Woude MW. A BTP1 prophage gene present in invasive non-typhoidal Salmonella determines composition and length of the O-antigen of the lipopolysaccharide. Mol Microbiol. 2015;96(2):263–75. doi:10.1111/mmi.12933.
  • Onsare RS, Micoli F, Lanzilao L, Alfini R, Okoro CK, Muigai AW, Revathi G, Saul A, Kariuki S, MacLennan CA, et al. Relationship between antibody susceptibility and lipopolysaccharide O-antigen characteristics of invasive and gastrointestinal nontyphoidal Salmonellae isolates from Kenya. PLoS Negl Trop Dis. 2015;9(3):e0003573. doi:10.1371/journal.pntd.0003573.
  • Marshall JM, Gunn JS, Bäumler AJ. The O-antigen capsule of salmonella enterica serovar typhimurium facilitates serum resistance and surface expression of FliC. Infect Immun. 2015;83(10):3946–59. doi:10.1128/IAI.00634-15.
  • MacLennan CA, Gondwe EN, Msefula CL, Kingsley RA, Thomson NR, White SA, Goodall M, Pickard DJ, Graham SM, Dougan G, et al. The neglected role of antibody in protection against bacteremia caused by nontyphoidal strains of Salmonella in African children. J Clin Invest. 2008;118(4):1553–62. doi:10.1172/JCI33998.
  • Thomson NR, Clayton DJ, Windhorst D, Vernikos G, Davidson S, Churcher C, Quail MA, Stevens M, Jones MA, Watson M, et al. Comparative genome analysis of Salmonella Enteritidis PT4 and Salmonella Gallinarum 287/91 provides insights into evolutionary and host adaptation pathways. Genome Res. 2008;18(10):1624–37. doi:10.1101/gr.077404.108.
  • Parkhill J, Dougan G, James KD, Thomson NR, Pickard D, Wain J, Churcher C, Mungall KL, Bentley SD, Holden MT, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature. 2001;413(6858):848–52. doi:10.1038/35101607.
  • McClelland M, Sanderson KE, Clifton SW, Latreille P, Porwollik S, Sabo A, Meyer R, Bieri T, Ozersky P, McLellan M, et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet. 2004;36(12):1268–74. doi:10.1038/ng1470.
  • Liu WQ, Feng Y, Wang Y, Zou QH, Chen F, Guo JT, Peng YH, Jin Y, Li YG, Hu SN, et al. Salmonella paratyphi C: genetic divergence from Salmonella choleraesuis and pathogenic convergence with Salmonella typhi. PLoS One. 2009;4(2):e4510. doi:10.1371/journal.pone.0004510.
  • McClelland M, Sanderson KE, Spieth J, Clifton SW, Latreille P, Courtney L, Porwollik S, Ali J, Dante M, Du F, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature. 2001;413(6858):852–56. doi:10.1038/35101614.
  • Canals R, Hammarlöf DL, Kröger C, Owen SV, Fong WY, Lacharme-Lora L, Zhu X, Wenner N, Carden SE, Honeycutt J, et al. Adding function to the genome of African Salmonella Typhimurium ST313 strain D23580. PLoS Biol. 2019;17(1):e3000059. doi:10.1371/journal.pbio.3000059.
  • Kingsley RA, Kay S, Connor T, Barquist L, Sait L, Holt KE, Sivaraman K, Wileman T, Goulding D, Clare S, et al. Genome and transcriptome adaptation accompanying emergence of the definitive type 2 host-restricted Salmonella enterica serovar Typhimurium pathovar. Mbio. 2013;4(5):e00565–e00513. doi:10.1128/mBio.00565-13.
  • Brink T, Leiss V, Siegert P, Jehle D, Ebner JK, Schwan C, Shymanets A, Wiese S, Nürnberg B, Hensel M, et al. Salmonella Typhimurium effector SseI inhibits chemotaxis and increases host cell survival by deamidation of heterotrimeric Gi proteins. PLoS Pathog. 2018;14(8):e1007248. doi:10.1371/journal.ppat.1007248.
  • Carden SE, Walker GT, Honeycutt J, Lugo K, Pham T, Jacobson A, Bouley D, Idoyaga J, Tsolis RM, Monack D. Pseudogenization of the secreted effector gene ssei confers rapid systemic dissemination of S. Typhimurium ST313 within migratory dendritic cells. Cell Host Microbe. 2017;21(2):182–94. doi:10.1016/j.chom.2017.01.009.
  • Porwollik S, Santiviago CA, Cheng P, Florea L, Jackson S, McClelland M. Differences in gene content between Salmonella enterica serovar enteritidis isolates and comparison to closely related serovars Gallinarum and Dublin. J Bacteriol. 2005;187(18):6545–55. doi:10.1128/JB.187.18.6545-6555.2005.
  • Feng Y, Johnston RN, Liu G-R, Liu S-L, Chakravortty D. Genomic comparison between Salmonella Gallinarum and Pullorum: differential pseudogene formation under common host restriction. PLoS One. 2013;8(3):e59427. doi:10.1371/journal.pone.0059427.
  • Klemm EJ, Gkrania-Klotsas E, Hadfield J, Forbester JL, Harris SR, Hale C, Heath JN, Wileman T, Clare S, Kane L, et al. Emergence of host-adapted Salmonella Enteritidis through rapid evolution in an immunocompromised host. Nat Microbiol. 2016;1:15023. doi:10.1038/nmicrobiol.2015.23.
  • Cummings LA, Barrett SL, Wilkerson WD, Fellnerova I, Cookson BT. FliC-specific CD4+ T cell responses are restricted by bacterial regulation of antigen expression. J Immunol. 2005;174(12):7929–38. doi:10.4049/jimmunol.174.12.7929.
  • Yim L, Sasías S, Martínez A, Betancor L, Estevez V, Scavone P, Bielli A, Sirok A, Chabalgoity JA, Bäumler AJ. Repression of flagella is a common trait in field isolates of Salmonella enterica serovar Dublin and is associated with invasive human infections. Infect Immun. 2014;82(4):1465–76. doi:10.1128/IAI.01336-13.
  • Winter SE, Raffatellu M, Wilson RP, Rüssmann H, Bäumler AJ. The Salmonella enterica serotype Typhi regulator TviA reduces interleukin-8 production in intestinal epithelial cells by repressing flagellin secretion. Cell Microbiol. 2008;10(1):247–61. doi:10.1111/j.1462-5822.2007.01037.x.
  • Ramachandran G, Perkins DJ, Schmidlein PJ, Tulapurkar ME, Tennant SM, Baker S. Invasive Salmonella Typhimurium ST313 with naturally attenuated flagellin elicits reduced inflammation and replicates within macrophages. PLoS Negl Trop Dis. 2015;9(1):e3394. doi:10.1371/journal.pntd.0003394.
  • Carden S, Okoro C, Dougan G, Monack D. Non-typhoidal Salmonella Typhimurium ST313 isolates that cause bacteremia in humans stimulate less inflammasome activation than ST19 isolates associated with gastroenteritis. Pathog Dis. 2015;73:4. doi:10.1093/femspd/ftu023.
  • Lokken KL, Stull-Lane AR, Poels K, Tsolis RM, Raffatellu M. Malaria parasite-mediated alteration of macrophage function and increased iron availability predispose to disseminated nontyphoidal salmonella infection. Infect Immun. 2018;86(9):9. doi:10.1128/IAI.00301-18.
  • Hammarlöf DL, Kröger C, Owen SV, Canals R, Lacharme-Lora L, Wenner N, Schager AE, Wells TJ, Henderson IR, Wigley P, et al. Role of a single noncoding nucleotide in the evolution of an epidemic African clade of Salmonella. Proc Natl Acad Sci U S A. 2018;115(11):E2614–e2623. doi:10.1073/pnas.1714718115.
  • Faucher SP, Porwollik S, Dozois CM, McClelland M, Daigle F. Transcriptome of Salmonella enterica serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci U S A. 2006;103(6):1906–11. doi:10.1073/pnas.0509183103.
  • Valenzuela LM, Hidalgo AA, Rodríguez L, Urrutia IM, Ortega AP, Villagra NA, Paredes-Sabja D, Calderón IL, Gil F, Saavedra CP, et al. Pseudogenization of sopA and sopE2 is functionally linked and contributes to virulence of Salmonella enterica serovar Typhi. Infect Genet Evol. 2015;33:131–42. doi:10.1016/j.meegid.2015.04.021.
  • Okoro CK, Barquist L, Connor TR, Harris SR, Clare S, Stevens MP, Arends MJ, Hale C, Kane L, Pickard DJ, et al. Signatures of adaptation in human invasive Salmonella Typhimurium ST313 populations from sub-Saharan Africa. PLoS Negl Trop Dis. 2015;9(3):e0003611. doi:10.1371/journal.pntd.0003611.
  • Kingsley RA, Humphries AD, Weening EH, De Zoete MR, Winter S, Papaconstantinopoulou A, Dougan G, Bäumler AJ. Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype typhimurium: identification of intestinal colonization and persistence determinants. Infect Immun. 2003;71(2):629–40. doi:10.1128/iai.71.2.629-640.2003.
  • Bogomolnaya LM, Andrews KD, Talamantes M, Maple A, Ragoza Y, Vazquez-Torres A, Andrews-Polymenis H, Swanson M. The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress. Mbio. 2013;4(6):e00630–e00613. doi:10.1128/mBio.00630-13.
  • Feasey NA, Archer BN, Heyderman RS, Sooka A, Dennis B, Gordon MA, Keddy KH. Typhoid fever and invasive nontyphoidal salmonellosis, Malawi and South Africa. Emerg Infect Dis. 2010;16:1448–51. doi:10.3201/eid1609.100125.
  • Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ, Crump JA. Global burden of invasive nontyphoidal Salmonella disease, 2010(1). Emerg Infect Dis. 2015;21:6. doi:10.3201/eid2106.140999.
  • Balasubramanian R, Im J, Lee J-S, Jeon HJ, Mogeni OD, Kim JH, Rakotozandrindrainy R, Baker S, Marks F. The global burden and epidemiology of invasive non-typhoidal Salmonella infections. Hum Vaccin Immunother. 2019;15(6):1421–26. doi:10.1080/21645515.2018.1504717.
  • Keddy KH, Musekiwa A, Sooka A, Karstaedt A, Nana T, Seetharam S, Nchabaleng M, Lekalakala R, Angulo FJ, Klugman KP; for GERMS-SA. Clinical and microbiological features of invasive nontyphoidal Salmonella associated with HIV-infected patients, Gauteng Province, South Africa. Medicine (Baltimore). 2017;96(13):e6448. doi:10.1097/MD.0000000000006448.
  • Bachou H, Tylleskär T, Kaddu-Mulindwa DH, Tumwine JK. Bacteraemia among severely malnourished children infected and uninfected with the human immunodeficiency virus-1 in Kampala, Uganda. BMC Infect Dis. 2006;6(1):160. doi:10.1186/1471-2334-6-160.
  • Keddy KH, Takuva S, Musekiwa A, Puren AJ, Sooka A, Karstaedt A, Klugman KP, Angulo FJ, Vermund SH. An association between decreasing incidence of invasive nontyphoidal salmonellosis and increased use of antiretroviral therapy, Gauteng Province, South Africa, 2003–2013. PLoS One. 2017;12:e0173091. doi:10.1371/journal.pone.0173091.
  • Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, Godinez I, Sankaran S, Paixao TA, Gordon MA, et al. Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med. 2008;14(4):421–28. doi:10.1038/nm1743.
  • Bailer RT, Holloway A, Sun J, Margolick JB, Martin M, Kostman J, Montaner LJ. IL-13 and IFN-gamma secretion by activated T cells in HIV-1 infection associated with viral suppression and a lack of disease progression.. J Immunol. 1999;162:7534–42.
  • Clerici M, Shearer GM. A TH1–>TH2 switch is a critical step in the etiology of HIV infection. Immunol Today. 1993;14(3):107–11. doi:10.1016/0167-5699(93)90208-3.
  • MacLennan CA, Gilchrist JJ, Gordon MA, Cunningham AF, Cobbold M, Goodall M, Kingsley RA, van Oosterhout JJ, Msefula CL, Mandala WL, et al. Dysregulated humoral immunity to nontyphoidal Salmonella in HIV-infected African adults. Science. 2010;328(5977):508–12. doi:10.1126/science.1180346.
  • Goh YS, Necchi F, O’Shaughnessy CM, Micoli F, Gavini M, Young SP, Msefula CL, Gondwe EN, Mandala WL, Gordon MA, et al. Bactericidal immunity to Salmonella in Africans and mechanisms causing its failure in HIV infection. PLoS Negl Trop Dis. 2016;10(4):e0004604. doi:10.1371/journal.pntd.0004604.
  • Siggins MK, O’Shaughnessy CM, Pravin J, Cunningham AF, Henderson IR, Drayson MT, MacLennan CA. Differential timing of antibody-mediated phagocytosis and cell-free killing of invasive African Salmonella allows immune evasion. Eur J Immunol. 2014;44(4):1093–98. doi:10.1002/eji.201343529.
  • Mooney JP, Butler B 2, Lokken K 1, Xavier MN, Chau JY, Schaltenberg N, Dandekar S, George MD, Santos RL, Luckhart S, et al. The mucosal inflammatory response to non-typhoidal Salmonella in the intestine is blunted by IL-10 during concurrent malaria parasite infection. Mucosal Immunol. 2014;7(6):1302–11. doi:10.1038/mi.2014.18.
  • Huang H, Lamikanra AA, Alkaitis MS, Thézénas ML, Ramaprasad A, Moussa E, Roberts DJ, Casals-Pascual C, Craig AG. Interleukin-10 regulates hepcidin in Plasmodium falciparum malaria. PLoS One. 2014;9(2):e88408. doi:10.1371/journal.pone.0088408.
  • Nix RN, Altschuler SE, Henson PM, Detweiler CS, Isberg RR. Hemophagocytic macrophages harbor Salmonella enterica during persistent infection. PLoS Pathogens. 2007;3(12):e193. doi:10.1371/journal.ppat.0030193.
  • Roux CM, Butler BP, Chau JY, Paixao TA, Cheung KW, Santos RL, Luckhart S, Tsolis RM. Both hemolytic anemia and malaria parasite-specific factors increase susceptibility to Nontyphoidal Salmonella enterica serovar typhimurium infection in mice. Infect Immun. 2010;78(4):1520–27. doi:10.1128/IAI.00887-09.
  • Nairz M, Schroll A, Sonnweber T, Weiss G. The struggle for iron – a metal at the host-pathogen interface. Cell Microbiol. 2010;12(12):1691–702. doi:10.1111/j.1462-5822.2010.01529.x.
  • Cunnington AJ, de Souza JB, Walther M, Riley EM. Malaria impairs resistance to Salmonella through heme- and heme oxygenase–dependent dysfunctional granulocyte mobilization. Nat Med. 2012;18(1):120–27. doi:10.1038/nm.2601.
  • Cunnington AJ, Njie M, Correa S, Takem EN, Riley EM, Walther M. Prolonged neutrophil dysfunction after Plasmodium falciparum malaria is related to hemolysis and heme oxygenase-1 induction. J Immunol. 2012;189(11):5336–46. doi:10.4049/jimmunol.1201028.
  • Nyirenda TS, Nyirenda JT, Tembo DL, Storm J, Dube Q, Msefula CL, Jambo KC, Mwandumba HC, Heyderman RS, Gordon MA, et al. Loss of humoral and cellular immunity to invasive nontyphoidal Salmonella during current or convalescent Plasmodium falciparum infection in Malawian children. Clin Vaccine Immunol. 2017;24(7):7. doi:10.1128/CVI.00057-17.
  • Martinsen TC, Bergh K, Waldum HL. Gastric juice: a barrier against infectious diseases. Basic Clin Pharmacol Toxicol. 2005;96(2):94–102. doi:10.1111/j.1742-7843.2005.pto960202.x.
  • Jose DG, Shelton M, Tauro GP, Belbin R, Hosking CS. Deficiency of immunological and phagocytic function in aboriginal children with protein-calorie malnutrition. Med J Aust. 1975;2(18):699–705. doi:10.5694/j.1326-5377.1975.tb106221.x.
  • Vásquez-Garibay E, Campollo-Rivas O, Romero-Velarde E, Méndez-Estrada C, García-Iglesias T, Alvizo-Mora JG, Vizmanos-Lamotte B. Effect of renutrition on natural and cell-mediated immune response in infants with severe malnutrition. J Pediatr Gastroenterol Nutr. 2002;34(3):296–301. doi:10.1097/00005176-200203000-00015.
  • Nájera O, González C, Toledo G, López L, Ortiz R. Flow cytometry study of lymphocyte subsets in malnourished and well-nourished children with bacterial infections. Clin Diagn Lab Immunol. 2004;11(3):577–80. doi:10.1128/CDLI.11.3.577-580.2004.
  • Nájera O, González C, Toledo G, López L, Cortés E, Betancourt M, Ortiz R. CD45RA and CD45RO isoforms in infected malnourished and infected well-nourished children. Clin Exp Immunol. 2001;126(3):461–65. doi:10.1046/j.1365-2249.2001.01694.x.
  • Nájera O, González C, Cortés E, Toledo G, Ortiz R. Effector T lymphocytes in well-nourished and malnourished infected children. Clin Exp Immunol. 2007;148(3):501–06. doi:10.1111/j.1365-2249.2007.03369.x.
  • Gilchrist JJ, MacLennan CA. Invasive nontyphoidal Salmonella disease in Africa. EcoSal Plus. 2019;8(2):2. doi:10.1128/ecosalplus.ESP-0007-2018.
  • Roos D. Chronic granulomatous disease. Br Med Bull. 2016;118(1):50–63. doi:10.1093/bmb/ldw009.
  • International Union of Immunological Societies Expert Committee on Primary Immunodeficiencies; Notarangelo LD, Fischer A, Geha RS, Casanova J-L, Chapel H, Conley ME, Cunningham-Rundles C, Etzioni A, Hammartröm L, Nonoyama S, et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009;124(6):1161–78. doi:10.1016/j.jaci.2009.10.013.
  • MacLennan CA. Antibodies and protection against invasive salmonella disease. Front Immunol. 2014 Dec 22;5:635. doi:10.3389/fimmu.2014.00635.
  • Humbert JR, Winsor EL, Githens JM, Schmitz JB. Neutrophil dysfunctions in sickle cell disease. Biomed Pharmacother. 1990;44(3):153–58. doi:10.1016/0753-3322(90)90002-q.
  • Evans C, Orf K, Horvath E, Levin M, De La Fuente J, Chakravorty S, Cunnington AJ. Impairment of neutrophil oxidative burst in children with sickle cell disease is associated with heme oxygenase-1. Haematologica. 2015;100(12):1508–16. doi:10.3324/haematol.2015.128777.
  • Falcão RP, Donadi EA. [Infection and immunity in sickle cell disease]. AMB Rev Assoc Med Bras. 1989;35:70–74.
  • Sanhadji K, Chout R, Gessain A, Sasco AJ, Yoyo M, Mezard F, de The G, Touraine JL. Cell-mediated immunity in patients with sickle cell anaemia. Thymus. 1988;12:203–13.
  • Hand WL, King NL. Deficiency of serum bactericidal activity against Salmonella typhimurium in sickle cell anaemia. Clin Exp Immunol. 1977;30:262–70.
  • Williams TN, Uyoga S, Macharia A, Ndila C, McAuley CF, Opi DH, Mwarumba S, Makani J, Komba A, Ndiritu MN, et al. Bacteraemia in Kenyan children with sickle-cell anaemia: a retrospective cohort and case-control study. Lancet. 2009;374(9698):1364–70. doi:10.1016/S0140-6736(09)61374-X.
  • Makani J, Mgaya J, Balandya E, Msami K, Soka D, Cox SE, Komba AN, Rwezaula S, Meda E, Muturi D, et al. Bacteraemia in sickle cell anaemia is associated with low haemoglobin: a report of 890 admissions to a tertiary hospital in Tanzania. Br J Haematol. 2015;171(2):273–76. doi:10.1111/bjh.13553.
  • Douamba S, Nagalo K, Tamini L, Traoré I, Kam M, Kouéta F, Yé D. [Major sickle cell syndromes and infections associated with this condition in children in Burkina Faso]. Pan Afr Med J. 2017;26:7. doi:10.11604/pamj.2017.26.7.9971.
  • Alima Yanda AN, Nansseu JR, Mbassi Awa HD, Tatah SA, Seungue J, Eposse C, Koki PO. Burden and spectrum of bacterial infections among sickle cell disease children living in Cameroon. BMC Infect Dis. 2017;17(1):211. doi:10.1186/s12879-017-2317-9.
  • Soothill G, Darboe S, Bah G, Bolarinde L, Cunnington A, Anderson ST. Invasive bacterial infections in Gambians with sickle cell anemia in an era of widespread pneumococcal and hemophilus influenzae type b vaccination. Medicine (Baltimore). 2016;95(49):e5512. doi:10.1097/MD.0000000000005512.
  • Odey F, Okomo U, Oyo-Ita A. Vaccines for preventing invasive salmonella infections in people with sickle cell disease. Cochrane Database Syst Rev. 2009;(4)CD006975. doi:10.1002/14651858.CD006975.pub2.
  • Gilchrist JJ, Rautanen A, Fairfax BP, Mills TC, Naranbhai V, Trochet H, Pirinen M, Muthumbi E, Mwarumba S, Njuguna P, et al. Risk of nontyphoidal Salmonella bacteraemia in African children is modified by STAT4. Nat Commun. 2018;9(1):1014. doi:10.1038/s41467-017-02398-z.
  • Spees AM, Kingsbury DD, Wangdi T, Xavier MN, Tsolis RM, Bäumler AJ, Morrison RP. Neutrophils are a source of gamma interferon during acute Salmonella enterica serovar Typhimurium colitis. Infect Immun. 2014;82(4):1692–97. doi:10.1128/IAI.01508-13.
  • Vazquez-Torres A, Jones-Carson J, Mastroeni P, Ischiropoulos H, Fang FC. Antimicrobial actions of the NADPH phagocyte oxidase and inducible nitric oxide synthase in experimental salmonellosis. I. Effects on microbial killing by activated peritoneal macrophages in vitro. J Exp Med. 2000;192(2):227–36. doi:10.1084/jem.192.2.227.
  • Fierer J. Polymorphonuclear leukocytes and innate immunity to Salmonella infections in mice. Microb Infect. 2001;3(14–15):1233–37. doi:10.1016/s1286-4579(01)01483-6.
  • Cheminay C, Chakravortty D, Hensel M. Role of neutrophils in murine salmonellosis. Infect Immun. 2004;72(1):468–77. doi:10.1128/iai.72.1.468-477.2004.
  • Conlan JW. Neutrophils prevent extracellular colonization of the liver microvasculature by Salmonella typhimurium. Infect Immun. 1996;64(3):1043–47. doi:10.1128/IAI.64.3.1043-1047.1996.
  • Muotiala A, Mäkelä PH. Role of gamma interferon in late stages of murine salmonellosis. Infect Immun. 1993;61(10):4248–53. doi:10.1128/IAI.61.10.4248-4253.1993.
  • Mittrücker HW, Kaufmann SH. Immune response to infection with Salmonella typhimurium in mice. J Leukoc Biol. 2000;67(4):457–63. doi:10.1002/jlb.67.4.457.
  • Hughes EA, Galán JE. Immune response to Salmonella: location, location, location? Immunity. 2002;16(3):325–28. doi:10.1016/s1074-7613(02)00293-5.
  • Barr TA, Brown S, Mastroeni P, Gray D. B cell intrinsic MyD88 signals drive IFN-gamma production from T cells and control switching to IgG2c. J Immunol. 2009;183:1005–12. doi:10.4049/jimmunol.0803706.
  • Gondwe EN, Molyneux ME, Goodall M, Graham SM, Mastroeni P, Drayson MT, MacLennan CA. Importance of antibody and complement for oxidative burst and killing of invasive nontyphoidal Salmonella by blood cells in Africans. Proc Natl Acad Sci U S A. 2010;107(7):3070–75. doi:10.1073/pnas.0910497107.
  • Rondini S, Lanzilao L, Necchi F, O’Shaughnessy CM, Micoli F, Saul A, MacLennan CA. Invasive African Salmonella Typhimurium induces bactericidal antibodies against O-antigens. Microb Pathog. 2013;63:19–23. doi:10.1016/j.micpath.2013.05.014.
  • Nyirenda TS, Gilchrist JJ, Feasey NA, Glennie SJ, Bar-Zeev N, Gordon MA, MacLennan CA, Mandala WL, Heyderman RS. Sequential acquisition of T cells and antibodies to nontyphoidal Salmonella in Malawian children. J Infect Dis. 2014;210(1):56–64. doi:10.1093/infdis/jiu045.
  • Ko HJ, Yang JY, Shim DH, Yang H, Park SM, Curtiss R 3rd, MN K. Innate immunity mediated by MyD88 signal is not essential for induction of lipopolysaccharide-specific B cell responses but is indispensable for protection against Salmonella enterica serovar Typhimurium infection. J Immunol. 2009;182(4):2305–12. doi:10.4049/jimmunol.0801980.
  • MacLennan C, Fieschi C, DA L, Picard C, Dorman SE, Sanal O, MacLennan JM, Holland SM, Ottenhoff TH, Casanova JL, et al. Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in humans. J Infect Dis. 2004;190(10):1755–57. doi:10.1086/425021.
  • Goh YS, Necchi F, Rondini S, O’Shaughnessy CM, Micoli F, Gavini M, Msefula CL, Gondwe EN, Mandala WL, Gordon MA, et al. Bactericidal potential of S. Typhimurium LPS-specific antibodies from HIV-infected African adults. Poster presented at: the 8th International Conference on Typhoid Fever and Other Invasive Salmonelloses; 2013 Mar 1–2;Dhaka, Bangladesh.
  • Mooney JP, Lee S-J, Lokken KL, Nanton MR, Nuccio S-P, McSorley SJ, Tsolis RM, Ryan ET. Transient loss of protection afforded by a live attenuated non-typhoidal Salmonella vaccine in mice co-infected with malaria. PLOS Negl Trop Dis. 2015;9(9):e0004027. doi:10.1371/journal.pntd.0004027.
  • Prendergast AJ. Malnutrition and vaccination in developing countries. Philos Trans R Soc Lond B Biol Sci. 2015;370(1671):20140141. doi:10.1098/rstb.2014.0141.
  • Robbins JB, Pearson HA. Normal response of sickle cell anemia patients to immunization with salmonella vaccines. J Pediatr. 1965;66(5):877–82. doi:10.1016/s0022-3476(65)80062-2.
  • Mastroeni P, Rossi O. Immunology, epidemiology and mathematical modelling towards a better understanding of invasive non-typhoidal Salmonella disease and rational vaccination approaches. Expert Rev Vaccines. 2016;15(12):1545–55. doi:10.1080/14760584.2016.1189330.
  • MacLennan CA, Martin LB, Micoli F. Vaccines against invasive Salmonella disease. Hum Vaccin Immunother. 2014;10(6):1478–93. doi:10.4161/hv.29054.
  • Sahastrabuddhe S 1, Saluja T. Overview of the typhoid conjugate vaccine pipeline: current status and future plans. Clin Infect Dis. 2019;68(Suppl Supplement_1):S22–S26. doi:10.1093/cid/ciy884.
  • Hindle Z, Chatfield SN, Phillimore J, Bentley M, Johnson J, Cosgrove CA, Ghaem-Maghami M, Sexton A, Khan M, Brennan FR, et al. Characterization of Salmonella enterica derivatives harboring defined aroC and Salmonella pathogenicity island 2 type III secretion system (ssaV) mutations by immunization of healthy volunteers. Infect Immun. 2002;70(7):3457–67. doi:10.1128/iai.70.7.3457-3467.2002.
  • Tennant SM, Wang J-Y, Galen JE, Simon R, Pasetti MF, Gat O, Levine MM, Fang FC. Engineering and preclinical evaluation of attenuated nontyphoidal Salmonella strains serving as live oral vaccines and as reagent strains. Infect Immun. 2011;79(10):4175–85. doi:10.1128/IAI.05278-11.
  • Tennant SM, Schmidlein P, Simon R, Pasetti MF, Galen JE, Levine MM, Palmer GH. Refined live attenuated Salmonella enterica serovar Typhimurium and Enteritidis vaccines mediate homologous and heterologous serogroup protection in mice. Infect Immun. 2015;83(12):4504–12. doi:10.1128/IAI.00924-15.
  • Li P, Liu Q, Luo H, Liang K, Yi J, Luo Y, Hu Y, Han Y, Kong Q. O-serotype conversion in Salmonella Typhimurium induces protective immune responses against invasive non-typhoidal Salmonella infections. Front Immunol. 2017;8:1647. doi:10.3389/fimmu.2017.01647.
  • Zhao X, Dai Q, Jia R, Zhu D, Liu M, Wang M, Chen S, Sun K, Yang Q, Wu Y, et al. Two novel Salmonella bivalent vaccines confer dual protection against two salmonella serovars in Mice. Front Cell Infect Microbiol. 2017;7:391. doi:10.3389/fcimb.2017.00391.
  • Ramachandran G, Panda A, Higginson EE, Ateh E, Lipsky MM, Sen S, Matson CA, Permala-Booth J, DeTolla LJ, Tennant SM. Virulence of invasive Salmonella Typhimurium ST313 in animal models of infection. PLOS Negl Trop Dis. 2017;11(8):e0005697. doi:10.1371/journal.pntd.0005697.
  • Abd El Ghany M, Jansen A, Clare S, Hall L, Pickard D, Kingsley RA, Dougan G. Candidate live, attenuated Salmonella enterica serotype Typhimurium vaccines with reduced fecal shedding are immunogenic and effective oral vaccines. Infect Immun. 2007;75(4):1835–42. doi:10.1128/IAI.01655-06.
  • Wang Y, Li J, Xiong K, Chen Z, Zheng C, Tan Y, Cong Y, Gerlach RG. Elimination of persistent vaccine bacteria of Salmonella enterica serovar Typhimurium in the guts of immunized mice by inducible expression of truncated YncE. PLoS One. 2017;12(6):e0179649. doi:10.1371/journal.pone.0179649.
  • Van Immerseel F 1, Methner U, Rychlik I, Nagy B, Velge P, Martin G, Foster N, Ducatelle R, Barrow PA. Vaccination and early protection against non-host-specific Salmonella serotypes in poultry: exploitation of innate immunity and microbial activity. Epidemiol Infect. 2005;133(6):959–78. doi:10.1017/S0950268805004711.
  • Shakya M, Colin-Jones R, Theiss-Nyland K, Voysey M, Pant D, Smith N, Liu X, Tonks S, Mazur O, Farooq YG, et al. Phase 3 efficacy analysis of a typhoid conjugate vaccine trial in Nepal. N Engl J Med. 2019;381(23):2209–18. doi:10.1056/NEJMoa1905047.
  • Capeding MR, Teshome S, Saluja T, Syed KA, Kim DR, Park JY, Yang JS, Kim YH, Park J, Jo S-K. Safety and immunogenicity of a Vi-DT typhoid conjugate vaccine: phase I trial in healthy filipino adults and children. Vaccine. 2018;36(26):3794–801. doi:10.1016/j.vaccine.2018.05.038.
  • Capeding MR, Alberto E, Sil A, Saluja T, Teshome S, Kim DR, Park JY, Yang JS, Chinaworapong S, Park J, et al. Immunogenicity, safety and reactogenicity of a Phase II trial of Vi-DT typhoid conjugate vaccine in healthy Filipino infants and toddlers: A preliminary report. Vaccine. 2019;S0264–410X(19)31302–7. doi:10.1016/j.vaccine.2019.09.074.
  • Simon R, Tennant SM, Wang JY, Schmidlein PJ, Lees A, Ernst RK, Pasetti MF, Galen JE, Levine MM, Baümler AJ. Salmonella enterica serovar enteritidis core o polysaccharide conjugated to H:g,m Flagellin as a candidate vaccine for protection against invasive infection with S. enteritidis. Infect Immun. 2011;79(10):4240–49. doi:10.1128/IAI.05484-11.
  • Carlin NI, Svenson SB, Lindberg AA. Role of monoclonal O-antigen antibody epitope specificity and isotype in protection against experimental mouse typhoid. Microb Pathog. 1987;2(3):171–83. doi:10.1016/0882-4010(87)90019-2.
  • Svenson SB, Lindberg AA. Artificial Salmonella vaccines: salmonella typhimurium O-antigen-specific oligosaccharide-protein conjugates elicit protective antibodies in rabbits and mice. Infect Immun. 1981;32(2):490–96. doi:10.1128/IAI.32.2.490-496.1981.
  • Rondini S, Micoli F, Lanzilao L, Gavini M, Alfini R, Brandt C, Clare S, Mastroeni P, Saul A, MacLennan CA. Design of glycoconjugate vaccines against invasive African Salmonella enterica serovar Typhimurium. Infect Immun. 2015;83(3):996–1007. doi:10.1128/IAI.03079-14.
  • Baliban SM, Yang M, Ramachandran G, Curtis B, Shridhar S, Laufer RS, Wang JY, Van Druff J, Higginson EE, Hegerle N, et al. Development of a glycoconjugate vaccine to prevent invasive Salmonella Typhimurium infections in sub-Saharan Africa. PLOS Negl Trop Dis. 2017;11(4):e0005493. doi:10.1371/journal.pntd.0005493.
  • Fiorino F, Rondini S, Micoli F, Lanzilao L, Alfini R, Mancini F, MacLennan CA, Medaglini D. Immunogenicity of a bivalent adjuvanted glycoconjugate vaccine against Salmonella Typhimurium and Salmonella Enteritidis. Front Immunol. 2017;8:168. doi:10.3389/fimmu.2017.00168.
  • Lanzilao L, Stefanetti G, Saul A, MacLennan CA, Micoli F, Rondini S, Mantis NJ. Strain selection for generation of O-antigen-based glycoconjugate vaccines against invasive nontyphoidal Salmonella disease. PLoS One. 2015;10(10):e0139847. doi:10.1371/journal.pone.0139847.
  • Alving CR, Beck Z, Matyas GR, Rao M. Liposomal adjuvants for human vaccines. Expert Opin Drug Deliv. 2016;13(6):807–16. doi:10.1517/17425247.2016.1151871.
  • Tritama E, Riani C, Rudiansyah I, Hidayat A, Kharisnaeni SA, Retnoningrum DS. Evaluation of alum-based adjuvant on the immunogenicity of salmonella enterica serovar typhi conjugates vaccines. Hum Vaccin Immunother. 2018;14(6):1524–29. doi:10.1080/21645515.2018.1431599.
  • Ramachandran G, Tennant SM, Boyd MA, Wang JY, Tulapurkar ME, Pasetti MF, Levine MM, Simon R, Hensel M. Functional activity of antibodies directed towards Flagellin proteins of non-typhoidal Salmonella. PLoS One. 2016;11(3):e0151875. doi:10.1371/journal.pone.0151875.
  • Simon R, Wang JY, Boyd MA, Tulapurkar ME, Ramachandran G, Tennant SM, Pasetti M, Galen JE, Levine MM, Chakravortty D. Sustained protection in mice immunized with fractional doses of Salmonella enteritidis core and O polysaccharide-flagellin glycoconjugates. PLoS One. 2013;8(5):e64680. doi:10.1371/journal.pone.0064680.
  • Soyer Y, Moreno Switt A, Davis MA, Maurer J, McDonough PL, Schoonmaker-Bopp DJ, Dumas NB, Root T, Warnick LD, Gröhn YT, et al. Salmonella enterica serotype 4,5,12: i:-,an emerging Salmonella serotype that represents multiple distinct clones. J Clin Microbiol. 2009;47(11):3546–56. doi:10.1128/JCM.00546-09.
  • Baliban SM, Curtis B, Toema D, Tennant SM, Levine MM, Pasetti MF, Simon R, Darton TC. Immunogenicity and efficacy following sequential parenterally-administered doses of Salmonella enteritidis COPS:FliC glycoconjugates in infant and adult mice. PLOS Negl Trop Dis. 2018;12(5):e0006522. doi:10.1371/journal.pntd.0006522.
  • Baliban SM, Curtis B, Amin MN, Levine MM, Pasetti MF, Simon R. Maternal antibodies elicited by immunization with an O- polysaccharide glycoconjugate vaccine protect infant mice against lethal Salmonella Typhimurium infection. Front Immunol. 2019;10:2124. doi:10.3389/fimmu.2019.02124.
  • Baliban SM, Allen JC, Curtis B, Amin MN, Lees A, Rao RN, Naidu G, Venkatesan R, Rao DY, Mohan VK, et al. Immunogenicity and induction of functional antibodies in rabbits immunized with a trivalent typhoid-invasive nontyphoidal Salmonella glycoconjugate formulation. Molecules. 2018;23(7):7. doi:10.3390/molecules23071749.
  • Ellis TN, Kuehn MJ. Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiol Mol Biol Rev. 2010;74(1):81–94. doi:10.1128/MMBR.00031-09.
  • Beernink PT, Vianzon V, Lewis LA, Moe GR, Granoff DM, Pirofski L-A. A meningococcal outer membrane vesicle vaccine with overexpressed mutant FHbp elicits higher protective antibody responses in infant rhesus macaques than a licensed serogroup B vaccine. mBio. 2019;10(3). doi:10.1128/mBio.01231-19.
  • Pastor Y, Camacho AI, Zúñiga-Ripa A, Merchán A, Rosas P, Irache JM, Gamazo C. Towards a subunit vaccine from a shigella flexneri ΔtolR mutant. Vaccine. 2018;36(49):7509–19. doi:10.1016/j.vaccine.2018.10.066.
  • Liu Q, Liu Q, Yi J, Liang K, Hu B, Zhang X, Curtiss R 3rd, Kong Q. Outer membrane vesicles from flagellin-deficient Salmonella enterica serovar Typhimurium induce cross-reactive immunity and provide cross-protection against heterologous Salmonella challenge. Sci Rep. 2016;6(1):34776. doi:10.1038/srep34776.
  • Liu Q, Tan K, Yuan J, Song K, Li R, Huang X, Liu Q. Flagellin-deficient outer membrane vesicles as adjuvant induce cross-protection of Salmonella Typhimurium outer membrane proteins against infection by heterologous Salmonella serotypes. Int J Med Microbiol. 2018;308(7):796–802. doi:10.1016/j.ijmm.2018.06.001.
  • Liu Q, Liu Q, Yi J, Liang K, Liu T, Roland KL, Jiang Y, Kong Q. Outer membrane vesicles derived from Salmonella Typhimurium mutants with truncated LPS induce cross-protective immune responses against infection of Salmonella enterica serovars in the mouse model. Int J Med Microbiol. 2016;306(8):697–706. doi:10.1016/j.ijmm.2016.08.004.
  • Kong Q, Six DA, Roland KL, Liu Q, Gu L, Reynolds CM, Wang X, Raetz CR, Curtiss R 3rd. Salmonella synthesizing 1-dephosphorylated [corrected] lipopolysaccharide exhibits low endotoxic activity while retaining its immunogenicity. J Immunol. 2011;187(1):412–23. doi:10.4049/jimmunol.1100339.
  • Kong Q, Yang J, Liu Q, Alamuri P, Roland KL, Curtiss R 3rd, McCormick BA. Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect Immun. 2011;79(10):4227–39. doi:10.1128/IAI.05398-11.
  • Xiao Y, Liu F, Yang J, Zhong M, Zhang E, Li Y, Zhou D, Cao Y, Li W, Yu J, et al. Over-activation of TLR5 signaling by high-dose flagellin induces liver injury in mice. Cell Mol Immunol. 2015;12(6):729–42. doi:10.1038/cmi.2014.110.
  • Gerke C, Colucci AM, Giannelli C, Sanzone S, Vitali CG, Sollai L, Rossi O, Martin LB, Auerbach J, Di Cioccio V, et al. Production of a shigella sonnei vaccine based on Generalized Modules for Membrane Antigens (GMMA), 1790GAHB. PLoS One. 2015;10(8):e0134478. doi:10.1371/journal.pone.0134478.
  • De Benedetto G, Alfini R, Cescutti P, Caboni M, Lanzilao L, Necchi F, Saul A, MacLennan CA, Rondini S, Micoli F. Characterization of O-antigen delivered by Generalized Modules for Membrane Antigens (GMMA) vaccine candidates against nontyphoidal Salmonella. Vaccine. 2017;35(3):419–26. doi:10.1016/j.vaccine.2016.11.089.
  • Koeberling O, Ispasanie E, Hauser J, Rossi O, Pluschke G, Caugant DA, Saul A, MacLennan CA. A broadly-protective vaccine against meningococcal disease in sub-Saharan Africa based on generalized modules for membrane antigens (GMMA). Vaccine. 2014;32(23):2688–95. doi:10.1016/j.vaccine.2014.03.068.
  • Micoli F, Rondini S, Alfini R, Lanzilao L, Necchi F, Negrea A, Rossi O, Brandt C, Clare S, Mastroeni P, et al. Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proc Natl Acad Sci U S A. 2018;115(41):10428–33. doi:10.1073/pnas.1807655115.
  • Schager AE, Dominguez-Medina CC, Necchi F, Micoli F, Goh YS, Goodall M, Flores-Langarica A, Bobat S, Cook CNL, Arcuri M, et al. IgG responses to porins and lipopolysaccharide within an outer membrane-based vaccine against nontyphoidal Salmonella develop at discordant rates. mBio. 2018;9(2):2. doi:10.1128/mBio.02379-17.
  • Obiero CW, Ndiaye AGW, Sciré AS, Kaunyangi BM, Marchetti E, Gone AM, Schütte LD, Riccucci D, Auerbach J, Saul A, et al. A phase 2a randomized study to evaluate the safety and immunogenicity of the 1790GAHB generalized modules for membrane antigen vaccine against shigella sonnei administered intramuscularly to adults from a shigellosis-endemic country. Front Immunol. 2017;8:1884. doi:10.3389/fimmu.2017.01884.
  • Launay O, Ndiaye AGW, Conti V, Loulergue P, Sciré AS, Landre AM, Ferruzzi P, Nedjaai N, Schütte LD, Auerbach J, et al. Booster vaccination with GVGH shigella sonnei 1790GAHB GMMA vaccine compared to single vaccination in unvaccinated healthy European adults: results from a phase 1 clinical trial. Front Immunol. 2019;10:335. doi:10.3389/fimmu.2019.00335.
  • Barat S, Willer Y, Rizos K, Claudi B, Mazé A, Schemmer AK, Kirchhoff D, Schmidt A, Burton N, Bumann D. Immunity to intracellular Salmonella depends on surface-associated antigens. PLoS Pathog. 2012;8(10):e1002966. doi:10.1371/journal.ppat.1002966.
  • Feodorova VA, Lyapina AM, Zaitsev SS, Khizhnyakova MA, Sayapina LV, Ulianova OV, Ulyanov SS, Motin VL. New promising targets for synthetic omptin-based peptide vaccine against gram-negative pathogens. Vaccines (Basel). 2019;7:2. doi:10.3390/vaccines7020036.
  • Samykannu G, Vijayababu P, Antonyraj CB, Perumal P, Narayanan S, Basheer Ahamed SI, Natarajan J. In silico characterization of B cell and T cell epitopes for subunit vaccine design of Salmonella typhi PgtE: a molecular dynamics simulation approach. J Comput Biol. 2019;26(2):105–16. doi:10.1089/cmb.2018.0010.
  • Gil-Cruz C, Bobat S, Marshall JL, Kingsley RA, Ross EA, Henderson IR, Leyton DL, Coughlan RE, Khan M, Jensen KT, et al. The porin OmpD from nontyphoidal Salmonella is a key target for a protective B1b cell antibody response. Proc Natl Acad Sci U S A. 2009;106(24):9803–08. doi:10.1073/pnas.0812431106.
  • Hegazy WA, Xu X, Metelitsa L, Hensel M, Bäumler AJ. Evaluation of Salmonella enterica type III secretion system effector proteins as carriers for heterologous vaccine antigens. Infect Immun. 2012;80(3):1193–202. doi:10.1128/IAI.06056-11.
  • Lee SJ, Benoun J, Sheridan BS, Fogassy Z, Pham O, Pham QM, Puddington L, McSorley SJ. Dual immunization with SseB/flagellin provides enhanced protection against Salmonella infection mediated by circulating memory cells. J Immunol. 2017;199(4):1353–61. doi:10.4049/jimmunol.1601357.
  • Jneid B, Moreau K, Plaisance M, Rouaix A, Dano J, Simon S, Ryan ET. Role of T3SS-1 SipD protein in protecting mice against non-typhoidal salmonella typhimurium. PLoS Negl Trop Dis. 2016;10(12):e0005207. doi:10.1371/journal.pntd.0005207.
  • Kurtz JR, Petersen HE, Frederick DR, Morici LA, McLachlan JB. Vaccination with a single CD4 T cell peptide epitope from a Salmonella type III-secreted effector protein provides protection against lethal infection. Infect Immun. 2014;82(6):2424–33. doi:10.1128/IAI.00052-14.
  • McSorley SJ, Cookson BT, Jenkins MK. Characterization of CD4+ T cell responses during natural infection with Salmonella typhimurium. J Immunol. 2000;164(2):986–93. doi:10.4049/jimmunol.164.2.986.
  • Sette A, Rappuoli R. Reverse vaccinology: developing vaccines in the era of genomics. Immunity. 2010;33(4):530–41. doi:10.1016/j.immuni.2010.09.017.
  • Dougan G, John V, Palmer S, Mastroeni P. Immunity to salmonellosis. Immunol Rev. 2011;240(1):196–210. doi:10.1111/j.1600-065X.2010.00999.x.
  • Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics. 2015;18(1):40–51. doi:10.1159/000367962.