2,424
Views
0
CrossRef citations to date
0
Altmetric
Meeting Report

TIPICO XI: report of the first series and podcast on infectious diseases and vaccines (aTIPICO)

ORCID Icon, , , ORCID Icon, , ORCID Icon, , , ORCID Icon, , , & show all
Pages 4299-4327 | Received 15 Jun 2021, Accepted 02 Jul 2021, Published online: 11 Nov 2021

References

  • Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG, Hu Y, Tao ZW, Tian JH, Pei YY, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–69. doi:10.1038/s41586-020-2008-3.
  • Gómez-Carballa A, Bello X, Pardo-Seco J, Pérez Del Molino ML, Martinón-Torres F, Salas A. Phylogeography of SARS-CoV-2 pandemic in Spain: a story of multiple introductions, micro-geographic stratification, founder effects, and super-spreaders. Zool Res. 2020;41:605–20. doi:10.24272/j.2095-8137.2020.217.
  • Gómez-Carballa A, Bello X, Pardo-Seco J, Martinón-Torres F, Salas A. Mapping genome variation of SARS-CoV-2 worldwide highlights the impact of COVID-19 super-spreaders. Genome Res. 2020;30(10):1434–48. doi:10.1101/gr.266221.120.
  • Salas A, Bello X, Pardo-Seco J, Martinón-Torres F, Gómez-Carballa, A. Superspreading: The engine of the SARS-CoV-2 pandemic. Science. https://science.sciencemag.org/content/early/2020/12/09/science.abe3261/tab-e-letters, 2021.
  • McClain MT, Constantine FJ, Nicholson BP, Nichols M, Burke TW, Henao R, Jones DC, Hudson LL, Jaggers LB, Veldman T, et al. A blood-based host gene expression assay for early detection of respiratory viral infection: an index-cluster prospective cohort study. Lancet Infect Dis. 2021;21(3):396–404. doi:10.1016/S1473-3099(20)30486-2.
  • Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH across speciality collaboration. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–34. doi:10.1016/S0140-6736(20)30628-0.
  • Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature. 2020;584(7821):463–69. doi:10.1038/s41586-020-2588-y.
  • Channappanavar R, Fehr AR, Vijay R, Mack M, Zhao J, Meyerholz DK, Perlman S. Dysregulated Type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in SARS-CoV-infected mice. Cell Host Microbe. 2016;19(2):181–93. doi:10.1016/j.chom.2016.01.007.
  • Zhang Q, Liu Z, Moncada-Velez M, Chen J, Ogishi M, Bigio B, Yang R, Arias AA, Zhou Q, Han JE, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370:eabd4570. doi:10.1126/science.abd4570.
  • Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann -H-H, Zhang Y, Dorgham K, Philippot Q, Rosain J, Béziat V, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4585. doi:10.1126/science.abd4585.
  • Gómez-Rial J, Rivero-Calle I, Salas A, Martinón-Torres F. Role of monocytes/macrophages in COVID-19 pathogenesis: implications for therapy. Infect Drug Resist. 2020;13:2485–93. doi:10.2147/IDR.S258639.
  • Gómez-Rial J, Currás-Tuala MJ, Rivero-Calle I, Gómez-Carballa A, Cebey-López M, Rodríguez-Tenreiro C, Dacosta-Urbieta A, Rivero-Velasco C, Rodríguez-Núñez N, Trastoy-Pena R, et al. Increased serum levels of sCD14 and sCD163 indicate a preponderant role for monocytes in COVID-19 immunopathology. Front Immunol. 2020;11:2436. doi:10.3389/fimmu.2020.560381.
  • Gómez-Rial J, Martinón-Torres F. A strategy targeting monocyte-macrophage differentiation to avoid pulmonary complications in SARS-Cov2 infection. Clin Immunol. 2020;216:Article 108442. doi:10.1016/j.clim.2020.108442.
  • Mehta P, Porter JC, Manson JJ, Isaacs JD, Openshaw PJM, McInnes IB, Summers C, Chambers RC. Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities. Lancet Respir Med. 2020;8(8):822–30. doi:10.1016/S2213-2600(20)30267-8.
  • Cevik M, Kuppalli K, Kindrachuk J, Peiris M. Virology, transmission, and pathogenesis of SARS-CoV-2. BMJ. 2020;371:m3862. doi:10.1136/bmj.m3862.
  • Baumgarth N, Nikolich-Žugich J, Lee FEH, Bhattacharya D. Antibody responses to SARS-CoV-2: let’s stick to known knowns. J Immunol. 2020;205(9):2342–50. doi:10.4049/jimmunol.2000839.
  • Sánchez-Ramón S, Conejero L, Netea MG, Sancho D, Palomares Ó, Subiza JL. Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Front Immunol. 2018;9:2936. doi:10.3389/fimmu.2018.02936.
  • Netea MG, Domínguez-Andrés J, Barreiro LB, Chavakis T, Divangahi M, Fuchs E, Joosten LAB, van der Meer JWM, Mhlanga MM, Mulder WJM, et al. Defining trained immunity and its role in health and disease. Nat Rev Immunol. 2020;20(6):375–88. doi:10.1038/s41577-020-0285-6.
  • BCG. Vaccination to protect healthcare workers against COVID-19 (BRACE) [Internet]. Clin. NCT043272062020 [accessed 2021 Jan 15]. https://clinicaltrials.gov/ct2/show/NCT04327206 .
  • Han J, Gu X, Li Y, Wu Q. Mechanisms of BCG in the treatment of bladder cancer-current understanding and the prospect. Biomed Pharmacother. 2020;129:Article 110393. doi:10.1016/j.biopha.2020.110393.
  • Mina MJ, Metcalf CJE, De Swart RL, Osterhaus ADME, Grenfell BT. Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science. 2015;348(6235):694–99. doi:10.1126/science.aaa3662.
  • Mina MJ, Kula T, Leng Y, Li M, De Vries RD, Knip M, Siljander H, Rewers M, Choy DF, Wilson MS, et al. Measles virus infection diminishes preexisting antibodies that offer protection from other pathogens. Science. 2019;366(6465):599–606. doi:10.1126/science.aay6485.
  • Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 test sensitivity — a strategy for containment. N Engl J Med. 2020;383(22):e120. doi:10.1056/NEJMp2025631.
  • Bryant JE, Azman AS, Ferrari MJ, Arnold BF, Boni MF, Boum Y, Hayford K, Luquero FJ, Mina MJ, Rodriguez-Barraquer I, et al. Serology for SARS-CoV-2: apprehensions, opportunities, and the path forward. Sci Immunol. 2020;5(47):eabc6347. doi:10.1126/sciimmunol.abc6347.
  • Clapham H, Hay J, Routledge I, Takahashi S, Choisy M, Cummings D, Grenfell B, Metcalf CJE, Mina M, Rodriguez-Barraquer I, et al. Seroepidemiologic study designs for determining SARS-COV-2 transmission and immunity. Emerg Infect Dis. 2020;26(9):1978–86. doi:10.3201/eid2609.201840.
  • Pavelka M, Van-Zandvoort K, Abbott S, Sherratt K, Majdan M, Jarčuška P, Krajčí M, Flasche S, Funk S. The effectiveness of population-wide, rapid antigen test based screening in reducing SARS-CoV-2 infection prevalence in Slovakia. medRxiv. 2020;2020.12.02.20240648. Doi: 10.1101/2020.12.02.20240648 .
  • AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19 [Internet]. Astra Zeneca; 2020 [accessed 2021 Feb 5]. https://www.astrazeneca.com/media-centre/press-releases/2020/azd1222hlr.html .
  • Voysey M, Clemens SAC, Madhi SA, Weckx LY, Folegatti PM, Aley PK, Angus B, Baillie VL, Barnabas SL, Bhorat QE, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet. 2021;397:99–111. doi: 10.1016/S0140-6736(20)32661-1 .
  • Sun W, Leist SR, McCroskery S, Liu Y, Slamanig S, Oliva J, Amanat F, Schäfer A, Dinnon KH, García-Sastre A, et al. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBioMedicine. 2020;62:Article 103132. doi:10.1016/j.ebiom.2020.103132.
  • How are vaccines developed, authorised and put on the market? [Internet]. Eur. Comm; 2020 [accessed 2021 Feb 6]; https://ec.europa.eu/info/live-work-travel-eu/coronavirus-response/safe-covid-19-vaccines-europeans/how-are-vaccines-developed-authorised-and-put-market_en .
  • Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020;5(10):1185–91. doi:10.1038/s41564-020-00789-5.
  • Mohn KGI, Smith I, Sjursen H, Cox RJ. Immune responses after live attenuated influenza vaccination. Hum Vaccines Immunother. 2018;14(3):571–78. doi:10.1080/21645515.2017.1377376.
  • Vaccine and Immunization Devices Assessment Team, World Health Organization. Considerations for evaluation of COVID-19 vaccines points to consider for manufacturers of COVID19 vaccines [Internet]. Geneva; 2020 [accessed 2021 Feb 6]. https://www.who.int/immunization_standards/vaccine_quality/EUL/en/ .
  • Safety and immunogenicity study of 2019-nCoV vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 infection (COVID-19) - full text view - clinicalTrials.gov [Internet]. Clin. NCT042834612020 [accessed 2021 Feb 6]. https://clinicaltrials.gov/ct2/show/NCT04283461
  • Barómetro de Noviembre 2020 [Internet]. Cent. Investig. Sociológicas; 2020 [accessed 2021 Feb 6]. http://datos.cis.es/pdf/Es3300marMT_A.pdf .
  • Zhu Z, Lian X, Su X, Wu W, Marraro GA, Zeng Y. From SARS and MERS to COVID-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respir Res. 2020;21(1):224. doi:10.1186/s12931-020-01479-w.
  • Chotpitayasunondh T, Fischer TK, Heraud J-M, Hurt AC, Monto AS, Osterhaus A, Shu Y, Tam JS. Influenza and COVID-19: what does co-existence mean? Influenza Other Respi Viruses. 2021;15(3):407–12. doi:10.1111/irv.12824.
  • Hills T, Kearns N, Kearns C, Beasley R. Influenza control during the COVID-19 pandemic. Lancet. 2020;396(10263):1633–34. doi:10.1016/S0140-6736(20)32166-8.
  • Lo JYC, Tsang THF, Leung Y-H, Yeung EYH, Wu T, Lim WWL. Respiratory infections during SARS outbreak, Hong Kong, 2003. Emerg Infect Dis. 2005;11(11):1738–41. doi:10.3201/eid1111.050729.
  • Casalegno JS, Ottmann M, Bouscambert Duchamp M, Escuret V, Billaud G, Frobert E, Morfin F, Lina B. Rhinoviruses delayed the circulation of the pandemic influenza A (H1N1) 2009 virus in France. Clin Microbiol Infect. 2010;16(4):326–29. doi:10.1111/j.1469-0691.2010.03167.x.
  • Reichert TA, Sugaya N, Fedson DS, Glezen WP, Simonsen L, Tashiro M. The Japanese experience with vaccinating schoolchildren against influenza. N Engl J Med. 2001;344(12):889–96. doi:10.1056/NEJM200103223441204.
  • European Medicines Agency. FIcha técnica: Comirnaty, INN-COVID-19 mRNA Vaccine (nucleoside-modified). 2020.
  • Montoya M, Gresh L, Mercado JC, Williams KL, Vargas MJ, Gutierrez G, Kuan G, Gordon A, Balmaseda A, Harris E. Symptomatic versus inapparent outcome in repeat dengue virus infections is influenced by the time interval between infections and study year. PLoS Negl Trop Dis. 2013;7(8):e2357. doi:10.1371/journal.pntd.0002357.
  • Sarkanen T, Alakuijala A, Julkunen I, Partinen M. Narcolepsy associated with pandemrix vaccine. Curr Neurol Neurosci Rep. 2018;18(7):1–10. doi:10.1007/s11910-018-0851-5.
  • Suder E, Furuyama W, Feldmann H, Marzi A, De Wit E. The vesicular stomatitis virus-based Ebola virus vaccine: from concept to clinical trials. Hum Vaccines Immunother. 2018;14(9):2107–13. doi:10.1080/21645515.2018.1473698.
  • Reperant LA, Osterhaus ADME. AIDS, Avian flu, SARS, MERS, Ebola, Zika… what next? Vaccine. 2017;35(35):4470–74. doi:10.1016/j.vaccine.2017.04.082.
  • Raj VS, Okba NMA, Gutierrez-Alvarez J, Drabek D, van Dieren B, Widagdo W, Lamers MM, Widjaja I, Fernandez-Delgado R, Sola I, et al. Chimeric camel/human heavy-chain antibodies protect against MERS-CoV infection. Sci Adv. 2018;4:9667. doi: 10.1126/sciadv.aas9667 .
  • Wang C, Li W, Drabek D, Okba NMA, van Haperen R, Osterhaus ADME, van Kuppeveld FJM, Haagmans BL, Grosveld F, Bosch BJ. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat Commun. 2020;11:Article 2251. doi:10.1038/s41467-020-16256-y .
  • Osterhaus A, Mackenzie J. Pandemic preparedness planning in peacetime: what is missing? One Health Outlook. 2020;2(1):19. doi:10.1186/s42522-020-00027-2.
  • Shi T, Denouel A, Tietjen AK, Campbell I, Moran E, Li X, Campbell H, Demont C, Nyawanda BO, Chu HY, et al. Global disease burden estimates of respiratory syncytial virus–associated acute respiratory infection in older adults in 2015: a systematic review and meta-analysis. J Infect Dis. 2020;222(Supplement_7):S577–83. doi:10.1093/infdis/jiz059.
  • Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2012;380(9859):2095–128. doi:10.1016/S0140-6736(12)61728-0.
  • Falsey AR, Hennessey PA, Formica MA, Cox C, Walsh EE Respiratory syncytial virus infection in elderly and high-risk adults. 2005; N Engl J Med. 2005; 352(17):1749-59. doi:10.1056/NEJMoa043951.
  • Heinonen S, Rodriguez-Fernandez R, Diaz A, Rodriguez-Pastor SO, Ramilo O, Mejias A. Infant immune response to respiratory viral infections. Immunol Allergy Clin North Am. 2019;39(3):361–76. doi:10.1016/j.iac.2019.03.005.
  • Ramaswamy M, Shi L, Monick MM, Hunninghake GW, Look DC Specific Inhibition of Type I Interferon Signal Transduction by Respiratory Syncytial Virus. Am J Respir Cell Mol Biol. 2004; 30(6):893-900. doi:10.1165/rcmb.2003-0410OC .
  • Teng MN, Mejias A, Ramilo O, Peeples ME. Live attenuated vaccine with a stabilized mutation and gene deletion for prevention of respiratory syncytial virus disease in young children. J Infect Dis. 2020;221(4):501–03. doi:10.1093/infdis/jiz604.
  • Ramilo O, Rodriguez-Fernandez R, Peeples ME, Mejias A. Advanced live attenuated vaccines for the prevention of respiratory syncytial virus infections in young children. J Infect Dis. 2020;222(1):4–6. doi:10.1093/infdis/jiz409.
  • Broggi A, Ghosh S, Sposito B, Spreafico R, Balzarini F, Lo Cascio A, Clementi N, de Santis M, Mancini N, Granucci F, et al. Type III interferons disrupt the lung epithelial barrier upon viral recognition. Science. 2020;369(6504):706–12. doi:10.1126/science.abc3545.
  • Mejias A, Rodríguez-Fernández R, Oliva S, Peeples ME, Ramilo O. The journey to a respiratory syncytial virus vaccine. Ann Allergy, Asthma Immunol. 2020;125(1):36–46. doi:10.1016/j.anai.2020.03.017.
  • Taveras J, Ramilo O, Mejias A. Preventive strategies for respiratory syncytial virus infection in young infants. Neoreviews. 2020;21(8):e535–45. doi:10.1542/neo.21-8-e535.
  • Graham BS. Rapid COVID-19 vaccine development. Science. 2020;368(6494):945–46. doi:10.1126/science.abb8923.
  • Graham BS, Anderson LJ. Challenges and opportunities for respiratory syncytial virus vaccines. Curr Top Microbiol Immunol. 2013;372:391–404. doi:10.1007/978-3-642-38919-1_20 .
  • Nguyen-Contant P, Embong AK, Kanagaiah P, Chaves FA, Yang H, Branche AR, Topham DJ, Sangster MY, Ellebedy A, Schultz-Cherry S. S protein-reactive IGG and memory B cell production after human SARS-CoV-2 infection includes broad reactivity to the S2 subunit. MBio. 2020;11(5):1–11. doi:10.1128/mBio.01991-20.
  • Griffin MP, Yuan Y, Takas T, Domachowske JB, Madhi SA, Manzoni P, Simões EAF, Esser MT, Khan AA, Dubovsky F, et al. Single-dose nirsevimab for prevention of RSV in preterm infants. N Engl J Med. 2020;383(5):415–25. doi:10.1056/NEJMoa1913556.
  • Noel GJ, Davis JM, Ramilo O, Bradley JS, Connor E. Key clinical research priorities for the pediatric community during the COVID-19 pandemic. Pediatr Res. 2021;89(4):730-732. doi:10.1038/s41390-020-0962-y.
  • European Medicines Agency. Summary of product characteristics. Cervarix, INN-human papillomavirus vaccine [Types 16, 18] (Recombinant, adjuvanted, adsorbed) [Internet]; 2012 [accessed 2021 Feb 11]. https://www.ema.europa.eu/en/documents/product-information/cervarix-epar-product-information_en.pdf .
  • European Medicines Agency. Summary of product characteristics. Gardasil, INN- human papillomavirus vaccine [Types 6, 11, 16, 18] (Recombinant, adsorbed) [Internet]; 2011 [accessed 2021 Feb 11]. https://www.ema.europa.eu/en/documents/product-information/gardasil-epar-product-information_en.pdf .
  • Drolet M, Bénard É, Pérez N, Brisson M, Ali H, Boily M-C, Baldo V, Brassard P, Brotherton JML, Callander D, et al. Population-level impact and herd effects following the introduction of human papillomavirus vaccination programmes: updated systematic review and meta-analysis. Lancet. 2019;394(10197):497–509. doi:10.1016/S0140-6736(19)30298-3.
  • Lei J, Ploner A, Elfström KM, Wang J, Roth A, Fang F, Sundström K, Dillner J, Sparén P. HPV vaccination and the risk of invasive cervical cancer. N Engl J Med. 2020;383(14):1340–48. doi:10.1056/NEJMoa1917338.
  • Vorsters A, Van Damme P, Bosch FX. HPV vaccination: are we overlooking additional opportunities to control HPV infection and transmission? Int J Infect Dis. 2019;88:110–12. doi:10.1016/j.ijid.2019.09.006.
  • Wissing MD, Burchell AN, El-Zein M, Tellier -P-P, Coutlee F, Franco EL. Vaccination of young women decreases human papillomavirus transmission in heterosexual couples: findings from the HITCH cohort study. Cancer Epidemiol Biomarkers Prev. 2019;28(11):1825–34. doi:10.1158/1055-9965.EPI-19-0618.
  • Bosch FX, Robles C, Díaz M, Arbyn M, Baussano I, Clavel C, Ronco G, Dillner J, Lehtinen M, Petry K-U, et al. HPV-FASTER: broadening the scope for prevention of HPV-related cancer. Nat Rev Clin Oncol. 2016;13(2):119–32. doi:10.1038/nrclinonc.2015.146.
  • Picchio CA, Carrasco MG, Sagué-Vilavella M, Rius C. Knowledge, attitudes and beliefs about vaccination in primary healthcare workers involved in the administration of systematic childhood vaccines, Barcelona, 2016/17. Eurosurveillance. 2019;24(6):1800117. doi:10.2807/1560-7917.ES.2019.24.6.1800117.
  • Johnson NF, Velásquez N, Restrepo NJ, Leahy R, Gabriel N, El Oud S, Zheng M, Manrique P, Wuchty S, Lupu Y. The online competition between pro- and anti-vaccination views. Nature. 2020;582(7811):230–33. doi:10.1038/s41586-020-2281-1.
  • Ten threats to global health in 2019 [Internet]. World Heal. Organ; 2019 [accessed 2021 Mar 7]. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 .
  • Centro de Investigaciones Sociológicas (CIS). Efectos y consecuencias del coronavirus (ii) avance de resultados. 2020.
  • Cherry JD, Feigin RD, Lobes LA, Hinthorn DR, Shackelford PG, Shirley RH, Lins RD, Choi SC. Urban measles in the vaccine era: a clinical, epidemiologic, and serologic study. J Pediatr. 1972;81(2):217–30. doi:10.1016/S0022-3476(72)80287-7.
  • Aaby P, Samb B, Simondon F, Seck AMC, Knudsen K, Whittle H. Non-specific beneficial effect of measles immunisation: analysis of mortality studies from developing countries. BMJ. 1995;311(7003):481. doi:10.1136/bmj.311.7003.481.
  • CDC. National Notifiable Diseases Surveillance System and Supplemental Pertussis Surveillance System,United States, 1922-2013, passive reports to the Public Health Service.
  • Cherry JD. The epidemiology of pertussis: a comparison of the epidemiology of the disease pertussis with the epidemiology of Bordetella pertussis infection. Pediatrics. 2005;115(5):1422–27. doi:10.1542/peds.2004-2648.
  • Cherry JD. “Pertussis vaccine encephalopathy”: it is time to recognize it as the myth that it is. JAMA. 1990;263(12):1679–80. doi:10.1001/jama.1990.03440120101046.
  • Griffin MR, Ray WA, Livengood JR, Schaffner W. Risk of sudden infant death syndrome after immunization with the diphtheria–tetanus–pertussis vaccine. N Engl J Med. 1988;319(10):618–23. doi:10.1056/NEJM198809083191006.
  • Hoffman HJ, Hunter JC, Damus K, Pakter J, Peterson DR, Van Belle G, Hasselmeyer EG. Diphtheria-tetanus-pertussis immunization and sudden infant death: results of the national institute of child health and human development cooperative epidemiological study of sudden infant death syndrome risk factors. Pediatrics. 1987;79:598–611.
  • World Health Organization. Global tuberculosis report 2020. Geneva; 2020.
  • Tait DR, Hatherill M, Van Der Meeren O, Ginsberg AM, Van Brakel E, Salaun B, Scriba TJ, Akite EJ, Ayles HM, Bollaerts A, et al. Final analysis of a trial of M72/AS01 E vaccine to prevent tuberculosis. N Engl J Med. 2019;381(25):2429–39. doi:10.1056/NEJMoa1909953.
  • Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA, et al. Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet. 2013;381(9871):1021–28. doi:10.1016/S0140-6736(13)60177-4.
  • Nemes E, Geldenhuys H, Rozot V, Rutkowski KT, Ratangee F, Bilek N, Mabwe S, Makhethe L, Erasmus M, Toefy A, et al. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N Engl J Med. 2018;379(2):138–49. doi:10.1056/NEJMoa1714021.
  • Martin C, Aguilo N, Marinova D, Gonzalo-Asensio J. Update on TB vaccine pipeline. Appl Sci. 2020;10(7):2632. doi:10.3390/app10072632.
  • Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. MTBVAC from discovery to clinical trials in tuberculosis-endemic countries. Expert Rev Vaccines. 2017;16(6):565–76. doi:10.1080/14760584.2017.1324303.
  • Gonzalo-Asensio J, Marinova D, Martin C, Aguilo N. MTBVAC: attenuating the human pathogen of Tuberculosis (TB) toward a promising vaccine against the TB epidemic. Front Immunol. 2017;8:1803. doi:10.3389/fimmu.2017.01803.
  • White AD, Sibley L, Sarfas C, Morrison A, Gullick J, Clark S, Gleeson F, McIntyre A, Arlehamn CL, Sette A, et al. MTBVAC vaccination protects rhesus macaques against aerosol challenge with M. tuberculosis and induces immune signatures analogous to those observed in clinical studies. Npj Vaccines. 2021;6(1):Article 4. doi:10.1038/s41541-020-00262-8.
  • Spertini F, Audran R, Chakour R, Karoui O, Steiner-Monard V, Thierry A-C, Mayor CE, Rettby N, Jaton K, Vallotton L, et al. Safety of human immunisation with a live-attenuated Mycobacterium tuberculosis vaccine: a randomised, double-blind, controlled phase I trial. Lancet Respir Med. 2015;3(12):953–62. doi:10.1016/S2213-2600(15)00435-X.
  • Tameris M, Mearns H, Penn-Nicholson A, Gregg Y, Bilek N, Mabwe S, Geldenhuys H, Shenje J, Luabeya AKK, Murillo I, et al. Live-attenuated Mycobacterium tuberculosis vaccine MTBVAC versus BCG in adults and neonates: a randomised controlled, double-blind dose-escalation trial. Lancet Respir Med. 2019;7(9):757–70. doi:10.1016/S2213-2600(19)30251-6.
  • Vierboom MPM, Dijkman K, Sombroek CC, Hofman SO, Boot C, Vervenne RAW, Haanstra KG, van der Sande M, van Emst L, Domínguez-Andrés J, et al. Stronger induction of trained immunity by mucosal BCG or MTBVAC vaccination compared to standard intradermal vaccination. Cell Reports Medicine. 2021;2(1):Article 100185. doi:10.1016/j.xcrm.2020.100185.
  • Dijkman K, Aguilo N, Boot C, Hofman SO, Sombroek CC, Vervenne RAW, Kocken CHM, Marinova D, Thole J, Rodríguez E, et al. Pulmonary MTBVAC vaccination induces immune signatures previously correlated with prevention of tuberculosis infection. Cell Reports Med. 2021;2:Article 100187. doi:10.1016/j.xcrm.2020.100187.
  • Darrah PA, Zeppa JJ, Maiello P, Hackney JA, Wadsworth MH, Hughes TK, Pokkali S, Swanson PA, Grant NL, Rodgers MA, et al. Prevention of tuberculosis in macaques after intravenous BCG immunization. Nature. 2020;577(7788):95–102. doi:10.1038/s41586-019-1817-8.
  • Tarancón R, Mata E, Uranga S, Gómez AB, Marinova D, Otal I, Martín C, Aguiló N. Therapeutic efficacy of pulmonary live tuberculosis vaccines against established asthma by subverting local immune environment. EBioMedicine. 2021;64:Article 103186. doi:10.1016/j.ebiom.2020.103186.
  • Kleinnijenhuis J, Quintin J, Preijers F, Joosten LAB, Ifrim DC, Saeed S, Jacobs C, Van Loenhout J, De Jong D, Hendrik S, et al. Bacille Calmette-Guérin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci U S A. 2012;109:17537–42. doi:10.1073/pnas.1202870109.
  • Arts RJW, Moorlag SJCFM, Novakovic B, Li Y, Wang S-Y, Oosting M, Kumar V, Xavier RJ, Wijmenga C, Joosten LAB, et al. BCG vaccination protects against experimental viral infection in humans through the induction of cytokines associated with trained immunity. Cell Host Microbe. 2018;23(1):89–100.e5. doi:10.1016/j.chom.2017.12.010.
  • Moorlag SJCFM, Arts RJW, Van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25(12):1473–78. doi:10.1016/j.cmi.2019.04.020.
  • Tarancón R, Domínguez-Andrés J, Uranga S, Ferreira AV, Groh LA, Domenech M, González-Camacho F, Riksen NP, Aguilo N, Yuste J, et al. New live attenuated tuberculosis vaccine MTBVAC induces trained immunity and confers protection against experimental lethal pneumonia. PLOS Pathog. 2020;16(4):e1008404. doi:10.1371/journal.ppat.1008404.
  • World Health Organization. Bacille Calmette-Guérin (BCG) vaccination and COVID-19 [Internet]. World Heal. Organ; 2020 [accessed 2021 Jan 15]. https://www.who.int/news-room/commentaries/detail/bacille-calmette-guérin-(bcg)-vaccination-and-covid-19 .
  • Giamarellos-Bourboulis EJ, Tsilika M, Moorlag S, Antonakos N, Kotsaki A, Domínguez-Andrés J, Kyriazopoulou E, Gkavogianni T, Adami M-E, Damoraki G, et al. Activate: randomized clinical trial of BCG vaccination against infection in the elderly. Cell. 2020;183(2):315–323.e9. doi:10.1016/j.cell.2020.08.051.
  • Amin-Chowdhury Z, Aiano F, Mensah A, Sheppard C, Litt D, Fry NK, Andrews N, Ramsay ME, Ladhani SN. Impact of the COVID-19 pandemic on invasive pneumococcal disease and risk of pneumococcal coinfection with SARS-CoV-2: prospective national cohort study, England. Clin Infect Dis. 2021;72(5):e65-e75. doi:10.1093/cid/ciaa1728.
  • Ladhani SN, Andrews N, Ramsay ME. Summary of evidence to reduce the two-dose infant priming schedule to a single dose of the 13-valent pneumococcal conjugate vaccine in the national immunisation programme in the UK. Lancet Infect Dis. 2021;21(4):E93–102. doi:10.1016/S1473-3099(20)30492-8.
  • Ladhani SN, Ramsay M, Borrow R, Riordan A, Watson JM, Pollard AJ. Enter B and W: two new meningococcal vaccine programmes launched. Arch Dis Child. 2016;101(1):91–95. doi:10.1136/archdischild-2015-308928.
  • Campbell H, Edelstein M, Andrews N, Borrow R, Ramsay M, Ladhani S. Emergency meningococcal ACWY vaccination program for teenagers to control group W meningococcal disease, England, 2015–2016. Emerg Infect Dis. 2017;23(7):1184–87. doi:10.3201/eid2307.170236.
  • Ladhani SN, Campbell H, Andrews N, Parikh SR, White J, Edelstein M, Clark SA, Lucidarme J, Borrow R, Ramsay ME. First real-world evidence of meningococcal group B vaccine, 4CMenB, protection against meningococcal group W disease: prospective enhanced national surveillance, England. Clin Infect Dis. 2020;ciaa1244. doi:10.1093/cid/ciaa1244.
  • Ladhani SN, Andrews N, Parikh SR, Campbell H, White J, Edelstein M, Bai X, Lucidarme J, Borrow R, Ramsay ME. Vaccination of Infants with Meningococcal Group B Vaccine (4CMenB) in England. N Engl J Med. 2020;382(4):309–17. doi:10.1056/NEJMoa1901229.
  • Martinón-Torres F, Carmona Martinez A, Simkó R, Infante Marquez P, Arimany JL, Gimenez-Sanchez F, Couceiro Gianzo JA, Kovács É, Rojo P, Wang H, et al. Antibody persistence and booster responses 24–36 months after different 4CMenB vaccination schedules in infants and children: a randomised trial. J Infect. 2018;76(3):258–69. doi:10.1016/j.jinf.2017.12.005.
  • Martinón-Torres F, Safadi MAP, Martinez AC, Marquez PI, Torres JCT, Weckx LY, Moreira ED, Mensi I, Calabresi M, Toneatto D. Reduced schedules of 4CMenB vaccine in infants and catch-up series in children: immunogenicity and safety results from a randomised open-label phase 3b trial. Vaccine. 2017;35(28):3548–57. doi:10.1016/j.vaccine.2017.05.023.
  • Ladhani SN, Amin-Chowdhury Z, Davies HG, Aiano F, Hayden I, Lacy J, Sinnathamby M, De Lusignan S, Demirjian A, Whittaker H, et al. COVID-19 in children: analysis of the first pandemic peak in England. Arch Dis Child. 2020;105(12):1180–85. doi:10.1136/archdischild-2020-320042.
  • Waterfield T, Watson C, Moore R, Ferris K, Tonry C, Watt A, McGinn C, Foster S, Evans J, Lyttle MD, et al. Seroprevalence of SARS-CoV-2 antibodies in children: a prospective multicentre cohort study. Arch Dis Child. 2021;106(7):680-686. doi: 10.1136/archdischild-2020-320558.
  • Aiano F, Mensah A, McOwat K, Obi C, Visirikala A, Powell A, Flood J, Bosowski J, Letley L, Jones S, et al. COVID-19 outbreaks following full reopening of primary and secondary schools in England: retrospective, cross-sectional national surveillance. SSRN Electron J. 2021. doi: 10.2139/ssrn.3761838 .
  • Wong BLH, Ramsay ME, Ladhani SN. Should children be vaccinated against COVID-19 now? Arch Dis Child. 2021;archdischild-2020-321225. doi:10.1136/archdischild-2020-321225 .
  • Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson E, Harrison EM, Hayward A, Hemingway H, Horby P, Mehta N, et al. Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ. 2020;371:m3731. doi:10.1136/bmj.m3731.
  • Buzic I, Giuffra V. The paleopathological evidence on the origins of human tuberculosis: a review. J Prev Med Hyg. 2020;61:E3–8. doi:10.15167/2421-4248/jpmh2020.61.1s1.1379 .
  • Zeberg H, Pääbo S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature. 2020;587(7835):610–12. doi:10.1038/s41586-020-2818-3.
  • Bermúdez de Castro JM, Martinón-Torres M, Arsuaga JL, Carbonell E. Twentieth anniversary of Homo antecessor (1997-2017): a review. Evol Anthropol. 2017;26(4):157–71. doi:10.1002/evan.21540.