5,388
Views
7
CrossRef citations to date
0
Altmetric
Novel Vaccines

The applications of animal models in phage therapy: An update

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & show all
Article: 2175519 | Received 25 Aug 2022, Accepted 25 Jan 2023, Published online: 19 Mar 2023

References

  • Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I. Bacteriophages and their implications on future biotechnology: a review. Virol J. 2012;9(1):1–23. doi:10.1186/1743-422X-9-9.
  • Brown N, Cox C. Bacteriophage use in molecular biology and biotechnology. Bacterioph Therapy Biol Technol. 2021; 465–506.
  • Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox EM, Houchens CR, Grayson ML, Hansen P, Singh N, Theuretzbacher U, Magrini N. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018 Mar;18(3):318–327. doi:10.1016/S1473-3099(17)30753-3
  • Srinivasiah S, Bhavsar J, Thapar K, Liles M, Schoenfeld T, Wommack KE. Phages across the biosphere: contrasts of viruses in soil and aquatic environments. Res Microbiol. 2008;159(5):349–57. doi:10.1016/j.resmic.2008.04.010.
  • Oyejobi GK, Sule WF, Akinde SB, Khan FM, Ogolla F. Multidrug-resistant enteric bacteria in Nigeria and potential use of bacteriophages as biocontrol. Sci Total Environ. 2022;824:153842. doi:10.1016/j.scitotenv.2022.153842.
  • Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and delivery of therapeutic phages. Appl Environ Microbiol. 2021;87(5): e01979-20. doi:10.1128/AEM.01979-20.
  • São-José C, Costa AR, Melo LD. Bacteriophages and their lytic enzymes as alternative antibacterial therapies in the age of antibiotic resistance. Front Microbiol. 2022;13:978. doi:10.3389/fmicb.2022.884176.
  • Lin DM, Koskella B, Lin HC. Phage therapy: an alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther. 2017;8(3):162. doi:10.4292/wjgpt.v8.i3.162.
  • Pirnay J, Verbeken G, Ceyssens P-J, Huys I, De Vos D, Ameloot C, Fauconnier A. The magistral phage. Viruses. 2018;10(2):64. doi:10.3390/v10020064.
  • Górski A, Międzybrodzki R, Weber-Dąbrowska B, Fortuna W, Letkiewicz S, Rogóż P, Jończyk-Matysiak E, Dąbrowska K, Majewska J, Borysowski J. Phage therapy: combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol. 2016;7:1515. doi:10.3389/fmicb.2016.01515.
  • Henein A. What are the limitations on the wider therapeutic use of phage? Bacteriophage. 2013;3(2):e24872. doi:10.4161/bact.24872.
  • Pouillot F, Chomton M, Blois H, Courroux C, Noelig J, Bidet P, Bingen E, Bonacorsi S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: h4-ST131 Escherichia coli strain producing CTX-M-15. Antimicrob Agents Chemother. 2012;56(7):3568–75. doi:10.1128/AAC.06330-11.
  • Uchiyama J, Rashel M, Takemura I, Wakiguchi H, Matsuzaki S. In silico and in vivo evaluation of bacteriophage φEF24C, a candidate for treatment of Enterococcus faecalis infections. Appl Environ Microbiol. 2008;74(13):4149–63. doi:10.1128/AEM.02371-07.
  • Shivshetty N, Hosamani R, Ahmed L, Oli AK, Sannauallah S, Sharanbassappa S, Patil SA, Kelmani CR. Experimental protection of diabetic mice against Lethal P. aeruginosa infection by bacteriophage. Biomed Res Int. 2014;2014: 793242. doi:10.1155/2014/793242.
  • Ochieng’oduor JM, Onkoba N, Maloba F, Arodi WO, Nyachieo A. Efficacy of lytic Staphylococcus aureus bacteriophage against multidrug-resistant Staphylococcus aureus in mice. J Infect Dev Ctries. 2016;10(11):1208–13. doi:10.3855/jidc.7931.
  • Chen Y, Guo G, Sun E, Song J, Yang L, Zhu L, Liang W, Hua L, Peng Z, Tang X, et al. Isolation of a T7-like lytic Pasteurella bacteriophage vB_pmup_phb01 and its potential use in therapy against Pasteurella multocida infections. Viruses. 2019;11(1):86. 10.3390/v11010086.
  • Sarker SA, Sultana S, Reuteler G, Moine D, Descombes P, Charton F, Bourdin G, McCallin S, Ngom-Bru C, Neville T, Akter M, Huq S, Qadri F, Talukdar K, Kassam M, Delley M, Loiseau C, Deng Y, El Aidy S, Berger B, Brüssow H. Oral phage therapy of acute bacterial diarrhea tith cwo poliphage Preparations: arandomized trial in children from Bangladesh. EBioMedicine. 2016 Jan 5;4:124–37. doi:10.1016/j.ebiom.2015.12.023.
  • Gindin M, Febvre HP, Rao S, Wallace TC, Weir TL. Bacteriophage for gastrointestinal health (PHAGE) study: evaluating the safety and tolerability of supplemental bacteriophage consumption. J Am Coll Nutr. 2019;38(1):68–75. doi:10.1080/07315724.2018.1483783.
  • Ooi ML, Drilling AJ, Morales S, Fong S, Moraitis S, Macias-Valle L, Vreugde S, Psaltis AJ, Wormald P-J. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to Staphylococcus aureus. JAMA Otolaryngol–Head Neck Surg. 2019;145(8):723–29. doi:10.1001/jamaoto.2019.1191.
  • Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR, Khalid A, Venturini C, Chard R, Morales S, et al. Westmead Bacteriophage Therapy Team. 2020. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020;5(3):465–72. doi:10.1038/s41564-019-0634-z.
  • Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW, Schmidt MG, Norris JS. Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother. 2003;47(4):1301–07. doi:10.1128/AAC.47.4.1301-1307.2003.
  • Łusiak-Szelachowska M, Żaczek M, Weber-Dabrowska B, Międzybrodzki R, Kłak M, Fortuna W, Letkiewicz S, Rogóż P, Szufnarowski K, Jończyk-Matysiak E, et al. Phage neutralization by sera of patients receiving phage therapy. Viral Immunol. 2014;27(6):295–304. doi:10.1089/vim.2013.0128.
  • Speck P, Smithyman A, Millard A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett. 2016;363(3):fnv242. doi:10.1093/femsle/fnv242.
  • Żaczek M, Łusiak-Szelachowska M, Jończyk-Matysiak E, Weber-Dąbrowska B, Międzybrodzki R, Owczarek B, Kopciuch A, Fortuna W, Rogóż P, Górski A. Antibody production in response to staphylococcal MS-1 phage cocktail in patients undergoing phage therapy. Front Microbiol. 2016;7:1681. doi:10.3389/fmicb.2016.01681.
  • Roach DR, Debarbieux L. Phage therapy: awakening a sleeping giant. Emerg Top Life Sci. 2017;1(1):93–103. doi:10.1042/ETLS20170002.
  • Abedon ST. Bacteriophage clinical use as antibacterial “drugs”: utility and precedent. Microbiol Spectr. 2017 Aug;5(4). doi:10.1128/microbiolspec.BAD-0003-2016.
  • Gondil VS, Chhibber S. Evading antibody mediated inactivation of bacteriophages using delivery systems. J Virol Curr Res. 2017;1:555–74. doi:10.19080/JOJIV.2017.01.555574.
  • Lu TK, Koeris MS. The next generation of bacteriophage therapy. Current opinion in microbiology. 2011;14(5):524–31. doi:10.1016/j.mib.2011.07.028.
  • Azam AH, Tanji Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl Microbiol Biotechnol. 2019;103(11):4279–89. doi:10.1007/s00253-019-09810-2.
  • Moller AG, Lindsay JA, Read TD. Determinants of phage host range in Staphylococcus species. Appl Environ Microbiol. 2019;85(11):e00209–19. doi:10.1128/AEM.00209-19.
  • Kishor C, Mishra R, Saraf S, Kumar M, Srivastav A, Nath G. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res. 2016;143(1):87. doi:10.4103/0971-5916.178615.
  • Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG. Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci. 2003;60(11):2356–70. doi:10.1007/s00018-003-3072-1.
  • Abatángelo V, Peressutti Bacci N, Boncompain CA, Amadio AA, Carrasco S, Suárez CA, Morbidoni HR. Broad-range lytic bacteriophages that kill Staphylococcus aureus local field strains. PloS One. 2017;12(7):e0181671. doi:10.1371/journal.pone.0181671.
  • Cooper CJ, Koonjan S, Nilsson AS. Enhancing whole phage therapy and their derived antimicrobial enzymes through complex formulation. Pharmaceuticals. 2018;11(2):34. doi:10.3390/ph11020034.
  • Lehman SM, Mearns G, Rankin D, Cole R, Smrekar F, Branston S, Morales S. Design and preclinical development of a phage product for the treatment of antibiotic-resistant Staphylococcus aureus infections. Viruses. 2019;11(1):88. doi:10.3390/v11010088.
  • Peng C, Hanawa T, Azam AH, LeBlanc C, Ung P, Matsuda T, Onishi H, Miyanaga K, Tanji Y. Silviavirus phage ɸMR003 displays a broad host range against methicillin-resistant Staphylococcus aureus of human origin. Appl Microbiol Biotechnol. 2019;103(18):7751–65. doi:10.1007/s00253-019-10039-2.
  • Delisle AL, Guo M, Chalmers NI, Barcak GJ, Rousseau GM, Moineau S. Biology and genome sequence of Streptococcus mutans phage M102AD. Appl Environ Microbiol. 2012;78(7):2264–71. doi:10.1128/AEM.07726-11.
  • Bai Q, Zhang W, Yang Y, Tang F, Nguyen X, Liu G, Lu C. Characterization and genome sequencing of a novel bacteriophage infecting Streptococcus agalactiae with high similarity to a phage from Streptococcus pyogenes. Arch Virol. 2013;158(8):1733–41. doi:10.1007/s00705-013-1667-x.
  • Leprohon P, Gingras H, Ouennane S, Moineau S, Ouellette M. A genomic approach to understand interactions between Streptococcus pneumoniae and its bacteriophages. BMC Genomics. 2015;16(1):1–13. doi:10.1186/s12864-015-2134-8.
  • Witold K, Sabri M, Gingras H, Ouellette M, Tremblay DM, Moineau S. Complete Genome Sequence of Streptococcus pneumoniae Virulent Phage MS1. Microbiol Resour Announc. 2017;5(28). doi:10.1128/genomeA.00333-17.
  • McDonnell B, Mahony J, Hanemaaijer L, Neve H, Noben J-P, Lugli GA, Ventura M, Kouwen TR, van Sinderen D. Global survey and genome exploration of bacteriophages infecting the lactic acid bacterium Streptococcus thermophilus. Front Microbiol. 2017;8:1754. doi:10.3389/fmicb.2017.01754.
  • McShan WM, McCullor KA, Nguyen SV, Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI. The bacteriophages of Streptococcus pyogenes. Microbiol Spectrum. 2019;7(3):7.3. 8. doi:10.1128/microbiolspec.GPP3-0059-2018.
  • Duerkop BA, Palmer KL, Horsburgh MJ. Enterococcal bacteriophages and genome defense. In: Gilmore MS, Clewell DB, Ike Y, Shankar N, editors. Enterococci: From commensals to leading causes of drug resistant infection [Internet]. Boston: Massachusetts Eye and Ear Infirmary; 2014 Feb 11.
  • Khalifa L, Gelman D, Shlezinger M, Dessal AL, Coppenhagen-Glazer S, Beyth N, Hazan R. Defeating antibiotic-and phage-resistant Enterococcus faecalis using a phage cocktail in vitro and in a clot model. Front Microbiol. 2018;9:326. doi:10.3389/fmicb.2018.00326.
  • Lee D, Im J, Na H, Ryu S, Yun C-H, Han SH. The novel Enterococcus phage vB_EfaS_HEf13 has broad lytic activity against clinical isolates of Enterococcus faecalis. Front Microbiol. 2019;10:2877. doi:10.3389/fmicb.2019.02877.
  • Melo LD, Ferreira R, Costa AR, Oliveira H, Azeredo J. Efficacy and safety assessment of two enterococci phages in an in vitro biofilm wound model. Sci Rep. 2019;9(1):1–12. doi:10.1038/s41598-019-43115-8.
  • Yuan Y, Zhao F, Wang L, Tan D, Cong C, Li X, Xu Y. Complete genome analysis of the novel Enterococcus faecalis phage vB_efas_al3. Arch Virol. 2019;164(10):2599–603. doi:10.1007/s00705-019-04341-7
  • Alkalay S, Sternberg S, Coppenhagen-Glazer S, Hazan R. Complete genome sequences of three bacillus anthracis bacteriophages. Genome Announc. 2018 Jan 4;6(1):e01164–17. doi:10.1128/genomeA.01164-17.
  • Peng Q, Yuan Y. Characterization of a novel phage infecting the pathogenic multidrug-resistant Bacillus cereus and functional analysis of its endolysin. Appl Microbiol Biotechnol. 2018;102(18):7901–12. doi:10.1007/s00253-018-9219-7.
  • Morris JL, Letson HL, Elliott L, Grant AL, Wilkinson M, Hazratwala K, McEwen P. Evaluation of bacteriophage as an adjunct therapy for treatment of peri-prosthetic joint infection caused by Staphylococcus aureus. PloS One. 2019;14(12):e0226574. doi:10.1371/journal.pone.0226574.
  • Chhibber S, Shukla A, Kaur S. Transfersomal phage cocktail is an effective treatment against methicillin-resistant Staphylococcus aureus-mediated skin and soft tissue infections. Antimicrob Agents Chemother. 2017;61(10): e02146-16. doi:10.1128/AAC.02146-16.
  • Geng H, Zou W, Zhang M, Xu L, Liu F, Li X, Wang L, Xu Y. Evaluation of phage therapy in the treatment of Staphylococcus aureus-induced mastitis in mice. Folia Microbiol (Praha). 2020;65(2):339–51. doi:10.1007/s12223-019-00729-9.
  • Capparelli R, Parlato M, Borriello G, Salvatore P, Iannelli D. Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother. 2007;51(8):2765–73. doi:10.1128/AAC.01513-06.
  • Matsuzaki S, Yasuda M, Nishikawa H, Kuroda M, Ujihara T, Shuin T, Shen Y, Jin Z, Fujimoto S, Nasimuzzaman M, et al. Experimental protection of mice against lethal Staphylococcus aureus infection by novel bacteriophage φMR11. J Infect Dis. 2003;187(4):613–24. doi:10.1086/374001.
  • Hsieh SE, Lo HH, Chen ST, Lee MC, Tseng YH. Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2. Appl Environ Microbiol. 2011 Feb;77(3):756–61. doi:10.1128/AEM.01848-10.
  • Takemura-Uchiyama I, Uchiyama J, Osanai M, Morimoto N, Asagiri T, Ujihara T, Daibata M, Sugiura T, Matsuzaki S. Experimental phage therapy against lethal lung-derived septicemia caused by Staphylococcus aureus in mice. Microb Infect. 2014;16(6):512–17. doi:10.1016/j.micinf.2014.02.011.
  • Almaghrabi MK. Isolation and characterisation of bacteriophages that infect capsulated Streptococcus pneumonia [Thesis]. University of Leicester; 2013. https://hdl.handle.net/2381/28085
  • Shlezinger M, Friedman M, Houri-Haddad Y, Hazan R, Beyth N. Phages in a thermoreversible sustained-release formulation targeting E. faecalis in vitro and in vivo. PloS One. 2019;14(7):e0219599. doi:10.1371/journal.pone.0219599.
  • Gelman D, Beyth S, Lerer V, Adler K, Poradosu-Cohen R, Coppenhagen-Glazer S, Hazan R. Combined bacteriophages and antibiotics as an efficient therapy against VRE Enterococcus faecalis in a mouse model. Res Microbiol. 2018;169(9):531–39. doi:10.1016/j.resmic.2018.04.008.
  • Manohar P, Shanthini T, Ayyanar R, Bozdogan B, Wilson A, Tamhankar AJ, Nachimuthu R, Lopes BS. The distribution of carbapenem-and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. J Med Microbiol. 2017;66(7):874–83. doi:10.1099/jmm.0.000508.
  • Shiley JR, Comfort KK, Robinson JB. Immunogenicity and antimicrobial effectiveness of Pseudomonas aeruginosa specific bacteriophage in a human lung in vitro model. Appl Microbiol Biotechnol. 2017;101(21):7977–85. doi:10.1007/s00253-017-8504-1.
  • Fong SA, Drilling A, Morales S, Cornet ME, Woodworth BA, Fokkens WJ, Psaltis AJ, Vreugde S, Wormald P-J. Activity of bacteriophages in removing biofilms of Pseudomonas aeruginosa isolates from chronic rhinosinusitis patients. Front Cell Infect Microbiol. 2017;7:418. doi:10.3389/fcimb.2017.00418.
  • Waters EM, Neill DR, Kaman B, Sahota JS, Clokie MRJ, Winstanley C, Kadioglu A. Phage therapy is highly effective against chronic lung infections with Pseudomonas aeruginosa. Thorax. 2017;72(7):666–67. doi:10.1136/thoraxjnl-2016-209265.
  • Shafique M, Alvi IA, Abbas Z, Ur Rehman S. Assessment of biofilm removal capacity of a broad host range bacteriophage JHP against Pseudomonas aeruginosa. Apmis. 2017;125(6):579–84. doi:10.1111/apm.12691.
  • Alvi IA, Asif M, Tabassum R, Aslam R, Abbas Z, Rehman SU. RLP, a bacteriophage of the family Podoviridae, rescues mice from bacteremia caused by multi-drug-resistant Pseudomonas aeruginosa. Arch Virol. 2020;165(6):1289–97. doi:10.1007/s00705-020-04601-x
  • Pabary R, Singh C, Morales S, Bush A, Alshafi K, Bilton D, Alton EWFW, Smithyman A, Davies JC. Antipseudomonal bacteriophage reduces infective burden and inflammatory response in murine lung. Antimicrob Agents Chemother. 2016;60(2):744–51. doi:10.1128/AAC.01426-15.
  • Tkhilaishvili T, Winkler T, Müller M, Perka C, Trampuz A. Bacteriophages as adjuvant to antibiotics for the treatment of periprosthetic joint infection caused by multidrug-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2019;64(1): e00924-19. doi:10.1128/AAC.00924-19.
  • Chan BK, Turner PE, Kim S, Mojibian HR, Elefteriades JA, Narayan D. Phage treatment of an aortic graft infected with Pseudomonas aeruginosa. Evol Med Public Health. 2018;2018(1):60–66. doi:10.1093/emph/eoy005.
  • Ong SP, Azam AH, Sasahara T, Miyanaga K, Tanji Y. Characterization of Pseudomonas lytic phages and their application as a cocktail with antibiotics in controlling Pseudomonas aeruginosa. J Biosci Bioeng. 2020;129(6):693–99. doi:10.1016/j.jbiosc.2020.02.001.
  • Kusradze I, Karumidze N, Rigvava S, Dvalidze T, Katsitadze M, Amiranashvili I, Goderdzishvili M. Characterization and testing the efficiency of Acinetobacter baumannii phage vB-GEC_Ab-M-G7 as an antibacterial agent. Front Microbiol. 2016;7:1590. doi:10.3389/fmicb.2016.01590.
  • Regeimbal JM, Jacobs AC, Corey BW, Henry MS, Thompson MG, Pavlicek RL, Quinones J, Hannah RM, Ghebremedhin M, Crane NJ, et al. Personalized therapeutic cocktail of wild environmental phages rescues mice from Acinetobacter baumannii wound infections. Antimicrob Agents Chemother. 2016;60(10):5806–16. doi:10.1128/AAC.02877-15.
  • Hua Y, Luo T, Yang Y, Dong D, Wang R, Wang Y, Xu M, Guo X, Hu F, He P. Phage therapy as a promising new treatment for lung infection caused by carbapenem-resistant Acinetobacter baumannii in mice. Front Microbiol. 2018;8:2659. doi:10.3389/fmicb.2017.02659.
  • Zhou W, Feng Y, Zong Z. Two new lytic bacteriophages of the Myoviridae family against carbapenem-resistant Acinetobacter baumannii. Front Microbiol. 2018;9:850. doi:10.3389/fmicb.2018.00850.
  • Yin S, Huang G, Zhang Y, Jiang B, Yang Z, Dong Z, You B, Yuan Z, Hu F, Zhao Y, et al. Phage Abp1 rescues human cells and mice from infection by pan-drug resistant Acinetobacter baumannii. Cell Physiol Biochem. 2017;44(6):2337–45. doi:10.1159/000486117.
  • Schooley RT, Biswas B, Gill JJ, Hernandez-Morales A, Lancaster J, Lessor L, Barr JJ, Reed SL, Rohwer F, Benler S, et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother. 2017;61(10): e00954-17. doi: 10.1128/AAC.00954-17.
  • Kumari S, Harjai K, Chhibber S. Bacteriophage versus antimicrobial agents for the treatment of murine burn wound infection caused by Klebsiella pneumoniae B5055. J Med Microbiol. 2011;60(2):205–10. doi:10.1099/jmm.0.018580-0.
  • Manohar P, Nachimuthu R, Lopes BS. The therapeutic potential of bacteriophages targeting gram-negative bacteria using Galleria mellonella infection model. BMC Microbiol. 2018;18(1):1–11. doi:10.1186/s12866-018-1234-4.
  • Hsieh SE, Lo HH, Chen ST, Lee MC, Tseng YH. Wide host range and strong lytic activity of Staphylococcus aureus lytic phage Stau2. Appl Environ Microbiol. 2011 Feb;77(3):756–61. doi:10.1128/AEM.01848-10.
  • Dufour N, Debarbieux L, Fromentin M, Ricard J-D. Treatment of highly virulent extraintestinal pathogenic Escherichia coli pneumonia with bacteriophages. Crit Care Med. 2015;43(6):e190–98. doi:10.1097/CCM.0000000000000968.
  • Kaabi SAG, Musafer HK. An experimental mouse model for phage therapy of bacterial pathogens causing bacteremia. Microb Pathog. 2019;137:103770. doi:10.1016/j.micpath.2019.103770.
  • Matsushita K, Uchiyama J, Kato S-I, Ujihara T, Hoshiba H, Sugihara S, Muraoka A, Wakiguchi H, Matsuzaki S. Morphological and genetic analysis of three bacteriophages of Serratia marcescens isolated from environmental water. FEMS Microbiol Lett. 2009;291(2):201–08. doi:10.1111/j.1574-6968.2008.01455.x.
  • Mai V, Ukhanova M, Reinhard MK, Li M, Sulakvelidze A. Bacteriophage administration significantly reduces Shigella colonization and shedding by Shigella-challenged mice without deleterious side effects and distortions in the gut microbiota. Bacteriophage. 2015;5(4):e1088124. doi:10.1080/21597081.2015.1088124.
  • Alves DR, Nzakizwanayo J, Dedi C, Olympiou C, Hanin A, Kot W, Hansen L, Lametsch R, Gahan CGM, Schellenberger P, et al. Genomic and ecogenomic characterization of Proteus mirabilis bacteriophages. Front Microbiol. 2019;10:1783. doi:10.3389/fmicb.2019.01783.
  • Dallal MMS, Nikkhahi F, Alimohammadi M, Douraghi M, Rajabi Z, Foroushani AR, Azimi A, Fardsanei F. Phage therapy as an approach to control Salmonella enterica serotype enteritidis infection in mice. Rev Soc Bras Med Trop. 2019;52:e20190290. doi:10.1590/0037-8682-0290-2019.
  • Chang RYK, Chen K, Wang J, Wallin M, Britton W, Morales S, Kutter E, Li J, Chan H-K. Proof-of-principle study in a murine lung infection model of antipseudomonal activity of phage PEV20 in a dry-powder formulation. Antimicrob Agents Chemother. 2018;62(2):e01714–17. doi:10.1128/AAC.01714-17.
  • Forti F, Roach DR, Cafora M, Pasini ME, Horner DS, Fiscarelli EV, Rossitto M, Cariani L, Briani F, Debarbieux L, et al. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob Agents Chemother. 2018;62(6):e02573–17 doi: 10.1128/AAC.02573-17.
  • Fukuda K, Ishida W, Uchiyama J, Rashel M, Kato S-I, Morita T, Muraoka A, Sumi T, Matsuzaki S, Daibata M, et al. Pseudomonas aeruginosa keratitis in mice: effects of topical bacteriophage KPP12 administration. PloS One. 2012;7(10):e47742. doi:10.1371/journal.pone.0047742.
  • Schneider G, Szentes N, Horváth M, Dorn Á, Cox A, Nagy G, Doffkay Z, Maróti G, Rákhely G, Kovács T. Kinetics of targeted phage rescue in a mouse model of systemic Escherichia coli K1. Biomed Res Int. 2018;2018:2018. doi:10.1155/2018/7569645.
  • Brix A, Cafora M, Aureli M, Pistocchi A. Animal models to translate phage therapy to human medicine. Int J Mol Sci. 2020;21(10):3715. doi:10.3390/ijms21103715.
  • Augustine J, Gopalakrishnan MV, Bhat SG. Application of ΦSP-1 and ΦSP-3 as a therapeutic strategy against Salmonella Enteritidis infection using Caenorhabditis elegans as model organism. FEMS Microbiol Lett. 2014;356(1):113–17. doi:10.1111/1574-6968.12493.
  • Głowacka-Rutkowska A, Gozdek A, Empel J, Gawor J, Żuchniewicz K, Kozińska A, Dębski J, Gromadka R, Łobocka M. The ability of lytic staphylococcal podovirus vB_saup_phiago1. 3 to coexist in equilibrium with its host facilitates the selection of host mutants of attenuated virulence but does not preclude the phage antistaphylococcal activity in a nematode infection model. Front Microbiol. 2018;9:3227. doi:10.3389/fmicb.2018.03227.
  • Buchon N, Silverman N, Cherry S. Immunity in Drosophila melanogaster—from microbial recognition to whole-organism physiology. Nat Rev Immunol. 2014;14(12):796–810. doi:10.1038/nri3763.
  • Lindberg HM, McKean KA, Wang I-N. Phage fitness may help predict phage therapy efficacy. Bacteriophage. 2014;4(4):e964081. 10.4161/21597073.2014.964081
  • Cao F, Wang X, Wang L, Li Z, Che J, Wang L, Li X, Cao Z, Zhang J, Jin L, Xu Y. Evaluation of the efficacy of a bacteriophage in the treatment of pneumonia induced by multidrug resistance Klebsiella pneumoniae in mice. Biomed Res Int. 2015;2015:752930. doi:10.1155/2015/752930.
  • Heo YJ, Lee YR, Jung HH, Lee J, Ko G, Cho YH. Antibacterial efficacy of phages against Pseudomonas aeruginosa infections in mice and Drosophila melanogaster. Antimicrob Agents Chemother. 2009 Jun;53(6):2469–74. doi:10.1128/AAC.01646-08.
  • Seed KD, Dennis JJ. Experimental bacteriophage therapy increases survival of Galleria mellonella larvae infected with clinically relevant strains of the Burkholderia cepacia complex. Antimicrob Agents Chemother. 2009;53(5):2205–08. doi:10.1128/AAC.01166-08.
  • Nale JY, Chutia M, Carr P, Hickenbotham PT, Clokie MRJ. ‘Get in early’; biofilm and wax moth (Galleria mellonella) models reveal new insights into the therapeutic potential of Clostridium difficile bacteriophages. Front Microbiol. 2016;7:1383. doi:10.3389/fmicb.2016.01383.
  • Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infect Immun. 2002;70(7):3904–14. doi:10.1128/IAI.70.7.3904-3914.2002.
  • Al-Zubidi M, Widziolek M, Court EK, Gains AF, Smith RE, Ansbro K, Alrafaie A, Evans C, Murdoch C, Mesnage S, et al. Identification of novel bacteriophages with therapeutic potential that target Enterococcus faecalis. Infect Immun. 2019;87(11):512–19. doi:10.1128/IAI.00512-19.
  • Cafora M, Deflorian G, Forti F, Ferrari L, Binelli G, Briani F, Ghisotti D, Pistocchi A. Phage therapy against Pseudomonas aeruginosa infections in a cystic fibrosis zebrafish model. Sci Rep. 2019;9(1):1527. doi:10.1038/s41598-018-37636-x.
  • Ahmadi M, Karimi Torshizi MA, Rahimi S, Dennehy JJ. Prophylactic bacteriophage administration more effective than post-infection administration in reducing Salmonella enterica serovar Enteritidis shedding in quail. Front Microbiol. 2016;7:1253. doi:10.3389/fmicb.2016.01253.
  • Wernicki A, Nowaczek A, Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J. 2017;14(1):1–13. doi:10.1186/s12985-017-0849-7.
  • Colom J, Cano-Sarabia M, Otero J, Aríñez-Soriano J, Cortés P, Maspoch D, Llagostera M. Microencapsulation with alginate/CaCO3: a strategy for improved phage therapy. Sci Rep. 2017;7(1):1–10. doi:10.1038/srep41441.
  • Colom J, Cano-Sarabia M, Otero J, Cortés P, Maspoch D, Llagostera M. Liposome-encapsulated bacteriophages for enhanced oral phage therapy against Salmonella spp. Appl Environ Microbiol. 2015;81(14):4841–49. doi:10.1128/AEM.00812-15.
  • Waseh S, Hanifi-Moghaddam P, Coleman R, Masotti M, Ryan S, Foss M, MacKenzie R, Henry M, Szymanski CM, Tanha J, et al. Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PloS One. 2010;5(11):e13904. doi:10.1371/journal.pone.0013904.
  • Jang HJ, Bae HW, Cho YH. Exploitation of Drosophila infection models to evaluate antibacterial efficacy of phages. Methods Mol Biol. 2019;1898:183–190. doi:10.1007/978-1-4939-8940-9_15.
  • Wills QF, Kerrigan C, Soothill JS. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother. 2005;49(3):1220–21. doi:10.1128/AAC.49.3.1220-1221.2005.
  • Abedon ST. Commentary: phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Front Microbiol. 2016 Aug 10;7:1251. doi:10.3389/fmicb.2016.01251.
  • Yen M, Cairns LS, Camilli A. A cocktail of three virulent bacteriophages prevents Vibrio cholerae infection in animal models. Nat Commun. 2017;8(1):1–7. doi:10.1038/ncomms14187.
  • Nale JY, Spencer J, Hargreaves KR, Buckley AM, Trzepiński P, Douce GR, Clokie MRJ. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother. 2016;60(2):968–81. doi:10.1128/AAC.01774-15.
  • Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L. Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis. 2010;201(7):1096–104. doi:10.1086/651135.
  • Leshkasheli L, Kutateladze M, Balarjishvili N, Bolkvadze D, Save J, Oechslin F, Que Y-A, Resch G. Efficacy of newly isolated and highly potent bacteriophages in a mouse model of extensively drug-resistant Acinetobacter baumannii bacteraemia. J Global Antimicrob Resist. 2019;19:255–61. doi:10.1016/j.jgar.2019.05.005.
  • Melo LD, Oliveira H, Pires DP, Dabrowska K, Azeredo J. Phage therapy efficacy: a review of the last 10 years of preclinical studies. Crit Rev Microbiol. 2020;46(1):78–99. doi:10.1080/1040841X.2020.1729695.
  • Jault P, Leclerc T, Jennes S, Pirnay JP, Que Y-A, Resch G, Rousseau AF, Ravat F, Carsin H, Le Floch R, et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis. 2019;19(1):35–45. doi:10.1016/S1473-3099(18)30482-1.
  • Leitner L, Ujmajuridze A, Chanishvili N, Goderdzishvili M, Chkonia I, Rigvava S, Chkhotua A, Changashvili G, McCallin S, Schneider MP, et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect Dis. 2021;21(3):427–36. doi:10.1016/S1473-3099(20)30330-3.
  • Srivastava AS, Kaido T, Carrier E. Immunological factors that affect the in vivo fate of T7 phage in the mouse. J Virol Methods. 2004;115(1):99–104. doi:10.1016/j.jviromet.2003.09.009.
  • Jikia D, Chkhaidze N, Imedashvili E, Mgaloblishvili I, Tsitlanadze G, Katsarava R, Glenn Morris J, Sulakvelidze A. The use of a novel biodegradable preparation capable of the sustained release of bacteriophages and ciprofloxacin, in the complex treatment of multidrug-resistant Staphylococcus aureus-infected local radiation injuries caused by exposure to Sr90. Clin Exp Dermatol: Clin Dermatol. 2005;30(1):23–26. doi:10.1111/j.1365-2230.2004.01600.x.
  • Hatfull GF, Dedrick RM, Schooley RT. Phage therapy for antibiotic-resistant bacterial infections. Annu Rev Med. 2022;73(1):197–211. doi:10.1146/annurev-med-080219-122208.
  • Petrovic Fabijan A, Lin RCY, Ho J, Maddocks S, Ben Zakour NL, Iredell JR, Khalid A, Venturini C, Chard R, Morales S, et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat Microbiol. 2020;5(3):465–72. doi:10.1038/s41564-019-0634-z.
  • Schooley RT, Strathdee S. Treat phage like living antibiotics. Nat Microbiol. 2020;5(3):391–92. doi:10.1038/s41564-019-0666-4.
  • Van Nieuwenhuyse B, Van der Linden D, Chatzis O, Lood C, Wagemans J, Lavigne R, Schroven K, Paeshuyse J, de Magnée C, Sokal E, et al. Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat Commun. 2022;13(1):5725. doi:10.1038/s41467-022-33294-w.
  • Tan X, Chen H, Zhang M, Zhao Y, Jiang Y, Liu X, Huang W, Ma Y. Clinical experience of personalized phage therapy against carbapenem-resistant Acinetobacter baumannii lung infection in a patient with chronic obstructive pulmonary disease. Front Cell Infect Microbiol. 2021;11:631585. doi:10.3389/fcimb.2021.631585.
  • Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019;25(5):730–33. doi:10.1038/s41591-019-0437-z.
  • Little JS, Dedrick RM, Freeman KG, Cristinziano M, Smith BE, Benson CA, Jhaveri TA, Baden LR, Solomon DA, Hatfull GF. Bacteriophage treatment of disseminated cutaneous Mycobacterium chelonae infection. Nat Commun. 2022;13(1):1–7. doi:10.1038/s41467-022-29689-4.
  • Llamas MA, van der Sar AM. Assessing Pseudomonas virulence with nonmammalian host: zebrafish. Methods Mol Biol. 2014;1149:709–21. doi:10.1007/978-1-4939-0473-0_55.
  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon S. Phage therapy in clinical practice: treatment of human infections. curr Pharmac Biotechnol. 2010;11(1):69–86. doi:10.2174/138920110790725401.
  • Roach DR, Leung CY, Henry M, Morello E, Singh D, Di Santo JP, Weitz JS, Debarbieux L. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe. 2017;22(1):38–47. e4. doi:10.1016/j.chom.2017.06.018.
  • Wright A, Hawkins CH, Änggård EE, Harper DR. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa ; a preliminary report of efficacy. Clin Otolaryngol. 2009;34(4):349–57. doi:10.1111/j.1749-4486.2009.01973.x.
  • Rhoads D, Wolcott RD, Kuskowski MA, Wolcott BM, Ward LS, Sulakvelidze A. Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial. J Wound Care. 2009;18(6):237–43. doi:10.12968/jowc.2009.18.6.42801.
  • Dąbrowska K, Miernikiewicz P, Piotrowicz A, Hodyra K, Owczarek B, Lecion D, Kaźmierczak Z, Letarov A, Górski A. Immunogenicity studies of proteins forming the T4 phage head surface. J Virol. 2014;88(21):12551–57. doi:10.1128/JVI.02043-14.
  • Stacey HJ, De Soir S, Jones JD. The safety and efficacy of phage therapy: a systematic review of clinical and safety trials. Antibiotics. 2022;11(10):1340. doi:10.3390/antibiotics11101340.
  • Suh GA, Lodise TP, Tamma PD, Knisely JM, Alexander J, Aslam S, Barton KD, Bizzell E, Totten KMC, Campbell JL, et al. Considerations for the Use of Phage Therapy in Clinical Practice. Antimicrob Agents Chemother. 2022;66(3): e02071-21 doi: 10.1128/aac.02071-21.
  • Uyttebroek S, Chen B, Onsea J, Ruythooren F, Debaveye Y, Devolder D, Spriet I, Depypere M, Wagemans J, Lavigne R, et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect Dis. 2022;22(8):e208–20. doi:10.1016/S1473-3099(21)00612-5.
  • Nick JA, Dedrick RM, Gray AL, Vladar EK, Smith BE, Freeman KG, Malcolm KC, Epperson LE, Hasan NA, Hendrix J, Callahan K, Walton K, Vestal B, Wheeler E, Rysavy NM, Poch K, Caceres S, Lovell VK, Hisert KB, de Moura VC, Chatterjee D, De P, Weakly N, Martiniano SL, Lynch DA, Daley CL, Strong M, Jia F, Hatfull GF, Davidson RM. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection. Cell. 2022 May 26;185(11):1860–1874.e12. doi:10.1016/j.cell.2022.04.024.
  • Lin J, Du F, Long M, Li P. Limitations of phage therapy and corresponding optimization strategies: a review. Molecules. 2022;27(6):1857. doi:10.3390/molecules27061857.
  • Gill JJ, Hyman P. Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol. 2010;11(1):2–14. doi:10.2174/138920110790725311.
  • Carascal MB, Dela Cruz-Papa DM, Remenyi R, Cruz MCB, Destura RV. Phage revolution against multidrug-resistant clinical pathogens in Southeast Asia. Front Microbiol. 2022;13:34. doi:10.3389/fmicb.2022.820572.
  • Tsonos J, Vandenheuvel D, Briers Y, De Greve H, Hernalsteens J-P, Lavigne R. Hurdles in bacteriophage therapy: deconstructing the parameters. Vet Microbiol. 2014;171(3–4):460–69. doi:10.1016/j.vetmic.2013.11.001.
  • Fauconnier A. Phage therapy regulation: from night to dawn. Viruses. 2019;11(4):352. 10.3390/v11040352
  • Verbeken G, Pirnay J-P, Lavigne R, Jennes S, De Vos D, Casteels M, Huys I. Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp (Warsz). 2014;62(2):117–29. doi:10.1007/s00005-014-0269-y.
  • Oechslin F. Resistance Development to Bacteriophages Occurring during Bacteriophage Therapy. Viruses. 2018;10(7):351. doi:10.3390/v10070351.
  • Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol. 2010;70:217–48.
  • Rath D, Amlinger L, Rath A, Lundgren M. The CRISPR-Cas immune system: biology, mechanisms and applications. Biochimie. 2015;117:119–28. doi:10.1016/j.biochi.2015.03.025.
  • Deveau H, Garneau JE, Moineau S. CRISPR/Cas system and its role in phage-bacteria interactions. Annu Rev Microbiol. 2010;64(1):475–93. doi:10.1146/annurev.micro.112408.134123.
  • Merril CR. Interaction of bacteriophages with animals. Cambridge, UK: Cambridge University Press; 2008. p. 332–52.
  • Gill J, Pacan JC, Carson ME, Leslie KE, Griffiths MW, Sabour PM. Efficacy and pharmacokinetics of bacteriophage therapy in treatment of subclinical Staphylococcus aureus mastitis in lactating dairy cattle. Antimicrob Agents Chemother. 2006;50(9):2912–18. doi:10.1128/AAC.01630-05.
  • Zelasko S, Gorski A, Dabrowska K. Delivering phage therapy per os: benefits and barriers. Expert Rev Anti Infect Ther. 2017;15(2):167–79. doi:10.1080/14787210.2017.1265447.
  • Huh H, Wong S, St. Jean J, Slavcev R. Bacteriophage interactions with mammalian tissue: therapeutic applications. Adv Drug Deliv Rev. 2019;145:4–17. doi:10.1016/j.addr.2019.01.003.
  • Goodridge LD. Designing phage therapeutics. Curr Pharm Biotechnol. 2010;11(1):15–27. doi:10.2174/138920110790725348.
  • Labrie SJ, Samson JE, Moineau S. Nat Rev Microbiol. 2010;8(5):317–27. 10.1038/nrmicro2315.
  • Park K, Cha K, Myung H. Observation of inflammatory responses in mice orally fed with bacteriophage T 7. J Appl Microbiol. 2014;117(3):627–33. doi:10.1111/jam.12565.
  • Miernikiewicz P, Dąbrowska K, Piotrowicz A, Owczarek B, Wojas-Turek J, Kicielińska J, Rossowska J, Pajtasz-Piasecka E, Hodyra K, Macegoniuk K, et al. T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PloS One. 2013;8(8):e71036. doi:10.1371/journal.pone.0071036.
  • Hwang J-Y, Kim J-E, Song Y-J, Park J-H. Safety of using Escherichia coli bacteriophages as a sanitizing agent based on inflammatory responses in rats. Food Sci Biotechnol. 2016;25(1):355–60. doi:10.1007/s10068-016-0050-6.
  • Carmody LA, Gill J, Summer E, Sajjan U, Gonzalez C, Young R, LiPuma J. Efficacy of bacteriophage therapy in a model of Burkholderia cenocepacia pulmonary infection. J Infect Dis. 2010;201(2):264–71. doi:10.1086/649227.
  • Kaźmierczak Z, Majewska J, Miernikiewicz P, Międzybrodzki R, Nowak S, Harhala M, Lecion D, Kęska W, Owczarek B, Ciekot J, et al. Immune response to therapeutic staphylococcal bacteriophages in mammals: kinetics of induction, immunogenic structural proteins, natural and induced antibodies. Front Immunol. 2021;12:2073. doi:10.3389/fimmu.2021.639570.
  • Van Belleghem JD, Dąbrowska K, Vaneechoutte M, Barr J, Bollyky P. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses. 2018;11(1):10. doi:10.3390/v11010010.
  • Balogh B, Jones J, Iriarte F, Momol M. Phage therapy for plant disease control. curr Pharmac Biotechnol. 2010;11(1):48–57. doi:10.2174/138920110790725302.
  • Tetz GV, Ruggles KV, Zhou H, Heguy A, Tsirigos A, Tetz V. Bacteriophages as potential new mammalian pathogens. Sci Rep. 2017;7(1):1–9. doi:10.1038/s41598-017-07278-6.
  • McVay CS, Velásquez M, Fralick JA. Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother. 2007;51(6):1934–38. doi:10.1128/AAC.01028-06.
  • Viscardi M, Perugini AG, Auriemma C, Capuano F, Morabito S, Kim K-P, Loessner MJ, Iovane G. Isolation and characterisation of two novel coliphages with high potential to control antibiotic-resistant pathogenic Escherichia coli (EHEC and EPEC). Int J Antimicrob Agents. 2008;31(2):152–57. doi:10.1016/j.ijantimicag.2007.09.007.
  • Lenneman BR, Fernbach J, Loessner MJ, Lu TK, Kilcher S. Enhancing phage therapy through synthetic biology and genome engineering. Curr Opin Biotechnol. 2021;68:151–59. doi:10.1016/j.copbio.2020.11.003.
  • Yue H, Li Y, Yang M, Mao C. T7 Phage as an Emerging Nanobiomaterial with Genetically Tunable Target Specificity. Adv Sci. 2022;9(4):2103645. doi:10.1002/advs.202103645.
  • Omidfar K, Daneshpour M. Advances in phage display technology for drug discovery. Expert Opin Drug Discov. 2015;10(6):651–69. doi:10.1517/17460441.2015.1037738.
  • Peng S-Y, You R-I, Lai M-J, Lin N-T, Chen L-K, Chang K-C. Highly potent antimicrobial modified peptides derived from the Acinetobacter baumannii phage endolysin LysAB2. Sci Rep. 2017;7(1):1–12. doi:10.1038/s41598-017-11832-7.
  • Pelfrene E, Willebrand E, Cavaleiro Sanches A, Sebris Z, Cavaleri M. Bacteriophage therapy: a regulatory perspective. J Antimicrob Chemother. 2016;71(8):2071–74. doi:10.1093/jac/dkw083.
  • Furfaro LL, Payne MS, Chang BJ. Bacteriophage therapy: clinical trials and regulatory hurdles. Front Cell Infect Microbiol. 2018;8:376. doi:10.3389/fcimb.2018.00376.
  • Luong T, Salabarria A-C, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protoc. 2020;15(9):2867–90. doi:10.1038/s41596-020-0346-0.
  • Cui Z, Guo X, Feng T, Li L. Exploring the whole standard operating procedure for phage therapy in clinical practice. J Transl Med. 2019;17(1):1–7. doi:10.1186/s12967-019-2120-z.
  • Morrisette T, Kebriaei R, Lev KL, Morales S, Rybak MJ. Bacteriophage therapeutics: a primer for clinicians on phage-antibiotic combinations. Pharmacotherapy: J Hum Pharmacol Drug Therapy. 2020;40(2):153–68. doi:10.1002/phar.2358.
  • Oechslin F, Piccardi P, Mancini S, Gabard J, Moreillon P, Entenza JM, Resch G, Que Y-A. Synergistic interaction between phage therapy and antibiotics clears Pseudomonas aeruginosa infection in endocarditis and reduces virulence. J Infect Dis. 2017;215(5):703–12. doi:10.1093/infdis/jiw632.
  • Akturk E, Oliveira H, Santos SB, Costa S, Kuyumcu S, Melo LDR, Azeredo J. Synergistic action of phage and antibiotics: parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics. 2019;8(3):103. doi:10.3390/antibiotics8030103.
  • Gayder S, Parcey M, Nesbitt D, Castle AJ, Svircev AM. Population dynamics between Erwinia amylovora, Pantoea agglomerans and bacteriophages: exploiting synergy and competition to improve phage cocktail efficacy. Microorganisms. 2020;8(9):1449. doi:10.3390/microorganisms8091449.
  • García P, Martínez B, Rodríguez L, Rodríguez A. Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int J Food Microbiol. 2010;141(3):151–55. doi:10.1016/j.ijfoodmicro.2010.04.029.
  • Titze I, Krömker V. Antimicrobial activity of a phage mixture and a lactic acid bacterium against Staphylococcus aureus from bovine mastitis. Vet Sci. 2020;7(1):31. doi:10.3390/vetsci7010031.
  • Aslam S, Lampley E, Wooten D, Karris M, Benson C, Strathdee S, Schooley RT. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect Dis. 2020 Aug 27 ;7(9):ofaa389. doi:10.1093/ofid/ofaa389.
  • Vashisth M, Yashveer S, Anand T, Virmani N, Bera BC, Vaid RK. Antibiotics targeting bacterial protein synthesis reduce the lytic activity of bacteriophages. Virus Res. 2022 Nov;321:198909. doi:10.1016/j.virusres.2022.198909.
  • Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, Sabour PM. Microencapsulation of bacteriophage Felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol. 2008;74(15):4799–805. doi:10.1128/AEM.00246-08.
  • Dini C, Islan GA, Castro GR. Characterization and stability analysis of biopolymeric matrices designed for phage-controlled release. Appl Biochem Biotechnol. 2014;174(6):2031–47. doi:10.1007/s12010-014-1152-3.
  • Otero J, García-Rodríguez A, Cano-Sarabia M, Maspoch D, Marcos R, Cortés P, Llagostera M. Biodistribution of liposome-encapsulated bacteriophages and their transcytosis during oral phage therapy. Front Microbiol. 2019;10:689. doi:10.3389/fmicb.2019.00689.
  • Abedon ST, Thomas-Abedon C. Phage therapy pharmacology. Curr Pharm Biotechnol. 2010;11(1):28–47. doi:10.2174/138920110790725410.
  • Kaur P, Gondil VS, Chhibber S. A novel wound dressing consisting of PVA-SA hybrid hydrogel membrane for topical delivery of bacteriophages and antibiotics. Int J Pharm. 2019;572:118779. doi:10.1016/j.ijpharm.2019.118779.
  • Gondil VS, Chhibber S. Bacteriophage and endolysin encapsulation systems: a promising strategy to improve therapeutic outcomes. Front Pharmacol. 2021;12:675440. doi:10.3389/fphar.2021.675440.
  • Fischetti VA. Development of phage lysins as novel therapeutics: a historical perspective. Viruses. 2018;10(6):310. doi:10.3390/v10060310.
  • Khan FM, Gondil VS, Li C, Jiang M, Li J, Yu J, Wei H, Yang H. A novel Acinetobacter baumannii bacteriophage endolysin LysAB54 with high antibacterial activity against multiple Gram-negative microbes. Front Cell Infect Microbiol. 2021;11:637313. doi:10.3389/fcimb.2021.637313.
  • Li C, Jiang M, Khan FM, Zhao X, Wang G, Zhou W, Li J, Yu J, Li Y, Wei H, et al. Intrinsic antimicrobial peptide facilitates a new broad-spectrum lysin LysP53 to kill Acinetobacter baumannii in vitro and in a mouse burn infection model. ACS Infect Dis. 2021;7(12):3336–44. doi:10.1021/acsinfecdis.1c00497.
  • Waddell TE, Franklin K, Mazzocco A, Johnson RP. Preparation and characterization of anti-phage serum. Methods Mol Biol. 2009;501:287–92. doi:10.1007/978-1-60327-164-6_24.
  • Abdelrahman F, Easwaran M, Daramola OI, Ragab S, Lynch S, Oduselu TJ, Khan FM, Ayobami A, Adnan F, Torrents E, et al. Phage-encoded endolysins. Antibiotics. 2021;10(2):124. doi:10.3390/antibiotics10020124.
  • Gondil VS, Harjai K, Chhibber S. Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. Int J Antimicrob Agents. 2020;55(2):105844. doi:10.1016/j.ijantimicag.2019.11.001.
  • Seijsing J, Sobieraj AM, Keller N, Shen Y, Zinkernagel AS, Loessner MJ, Schmelcher M. Improved biodistribution and extended serum half-life of a bacteriophage endolysin by albumin binding domain fusion. Front Microbiol. 2018;9:2927. doi:10.3389/fmicb.2018.02927.
  • Tagliaferri TL, Jansen M, Horz H-P. Fighting pathogenic bacteria on two fronts: phages and antibiotics as combined strategy. Front Cell Infect Microbiol. 2019;9:22. doi:10.3389/fcimb.2019.00022.
  • Gondil VS, Khan FM, Mehra N, Kumar D, Khullar A, Sharma T, Sharma A, Mehta R, Yang H. Clinical potential of bacteriophage and endolysin based therapeutics: A futuristic approach. In: Arora PK, editor. Microbial products for health, environment and agriculture. Singapore: Springer Singapore; 2021. p. 39–58. doi:10.1007/978-981-16-1947-2_3.
  • Harhala MA, Gembara K, Nelson DC, Miernikiewicz P, Dąbrowska K. Immunogenicity of Endolysin PlyC. Antibiotics. 2022;11(7):966. doi:10.3390/antibiotics11070966.
  • Kim S, Lee D-W, Jin J-S, Kim J. Antimicrobial activity of LysSS, a novel phage endolysin, against Acinetobacter baumannii and Pseudomonas aeruginosa. J Global Antimicrob Resist. 2020;22:32–39. doi:10.1016/j.jgar.2020.01.005.
  • Li X, Wang S, Nyaruaba R, Liu H, Yang H, Wei H. A highly active chimeric lysin with a calcium-enhanced bactericidal activity against Staphylococcus aureus in vitro and in vivo. Antibiotics. 2021;10(4):461. doi:10.3390/antibiotics10040461.
  • Yang H, Zhang Y, Yu J, Huang Y, Zhang X-E, Wei H. Novel chimeric lysin with high-level antimicrobial activity against methicillin-resistant Staphylococcus aureus in vitro and in vivo. Antimicrob Agents Chemother. 2014;58(1):536–42. doi:10.1128/AAC.01793-13.
  • Yang H, Zhang H, Wang J, Yu J, Wei H. A novel chimeric lysin with robust antibacterial activity against planktonic and biofilm methicillin-resistant Staphylococcus aureus. Sci Rep. 2017;7(1):1–13. doi:10.1038/srep40182.
  • Yang H, Luo D, Etobayeva I, Li X, Gong Y, Wang S, Li Q, Xu P, Yin W, He J, et al. Linker editing of pneumococcal lysin ClyJ conveys improved bactericidal activity. Antimicrob Agents Chemother. 2020;64(2):e01610–19. doi:10.1128/AAC.01610-19.
  • Yang H, Gong Y, Zhang H, Etobayeva I, Miernikiewicz P, Luo D, Li X, Zhang X, Dąbrowska K, Nelson DC, et al. ClyJ is a novel pneumococcal chimeric lysin with a cysteine-and histidine-dependent amidohydrolase/peptidase catalytic domain. Antimicrob Agents Chemother. 2019;63(4): e02043-18 doi:10.1128/AAC.02043-18.
  • Yang H, Linden SB, Wang J, Yu J, Nelson DC, Wei H. A chimeolysin with extended-spectrum streptococcal host range found by an induced lysis-based rapid screening method. Sci Rep. 2015;5(1):1–12. doi:10.1038/srep17257.
  • Xu J, Yang H, Bi Y, Li W, Wei H, Li Y. Activity of the chimeric lysin ClyR against common Gram-positive oral microbes and its anticaries efficacy in rat models. Viruses. Viruses. 2018;10(7):380. 10.3390/v10070380
  • Huang L, Luo D, Gondil VS, Gong Y, Jia M, Yan D, He J, Hu S, Yang H, Wei H. Construction and characterization of a chimeric lysin ClyV with improved bactericidal activity against Streptococcus agalactiae in vitro and in vivo. Appl Microbiol Biotechnol. 2020;104(4):1609–19. doi:10.1007/s00253-019-10325-z.
  • Jun SY, Jung GM, Yoon SJ, Choi Y-J, Koh WS, Moon KS, Kang SH. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother. 2014;58(4):2084–88. doi:10.1128/AAC.02232-13.
  • Harhala M, Nelson D, Miernikiewicz P, Heselpoth R, Brzezicka B, Majewska J, Linden S, Shang X, Szymczak A, Lecion D, et al. Safety studies of pneumococcal endolysins Cpl-1 and Pal. Viruses Viruses. 2018;10(11):638. doi:10.3390/v10110638.
  • Corsini B, Díez-Martínez R, Aguinagalde L, González-Camacho F, García-Fernández E, Letrado P, García P, Yuste J. Chemotherapy with phage lysins reduces pneumococcal colonization of the respiratory tract. Antimicrob Agents Chemother. 2018;62(6):e02212–17. doi:10.1128/AAC.02212-17.
  • Wang Z, Ma J, Wang J, Yang D, Kong L, Fu Q, Cheng Y, Wang H, Yan Y, Sun J. Application of the phage lysin Ply5218 in the treatment of Streptococcus suis infection in piglets. Viruses. Viruses. 2019;11(8):715. doi:10.3390/v11080715.
  • Vázquez R, García P. Synergy between two chimeric lysins to kill Streptococcus pneumoniae. Front Microbiol. 2019;10:1251. doi:10.3389/fmicb.2019.01251.
  • Letrado P, Corsini B, Díez-Martínez R, Bustamante N, Yuste JE, García P. Bactericidal synergism between antibiotics and phage endolysin Cpl-711 to kill multidrug-resistant pneumococcus. Future Microbiol. 2018;13(11):1215–23. doi:10.2217/fmb-2018-0077.
  • Shah SU, Xiong YQ, Abdelhady W, Iwaz J, Pak Y, Schuch R, Cassino C, Lehoux D, Bayer AS. Effect of the lysin exebacase on cardiac vegetation progression in a rabbit model of methicillin-resistant Staphylococcus aureus endocarditis as determined by echocardiography. Antimicrob Agents Chemother. 2020;64(7): e00482-20. doi:10.1128/AAC.00482-20.
  • Karau MJ, Schmidt-Malan SM, Yan Q, Greenwood-Quaintance KE, Mandrekar J, Lehoux D, Schuch R, Cassino C, Patel R. Exebacase in addition to daptomycin is more active than daptomycin or exebacase alone in methicillin-resistant Staphylococcus aureus osteomyelitis in rats. Antimicrob Agents Chemother. 2019;63(10): e01235-19. doi:10.1128/AAC.01235-19.
  • Imanishi I, Uchiyama J, Tsukui T, Hisatsune J, Ide K, Matsuzaki S, Sugai M, Nishifuji K. Therapeutic potential of an endolysin derived from kayvirus S25-3 for staphylococcal impetigo. Viruses. 2019;11(9):769. doi:10.3390/v11090769.
  • Blasco L, Ambroa A, Trastoy R, Bleriot I, Moscoso M, Fernández-Garcia L, Perez-Nadales E, Fernández-Cuenca F, Torre-Cisneros J, Oteo-Iglesias J, et al. In vitro and in vivo efficacy of combinations of colistin and different endolysins against clinical strains of multi-drug resistant pathogens. Sci Rep. 2020;10(1):1–12. doi:10.1038/s41598-020-64145-7.
  • Wu M, Hu K, Xie Y, Liu Y, Mu D, Guo H, Zhang Z, Zhang Y, Chang D, Shi Y. A novel phage PD-6A3, and its endolysin Ply6A3, with extended lytic activity against Acinetobacter baumannii. Front Microbiol. 2019;9:3302. doi:10.3389/fmicb.2018.03302.
  • Cheng M, Zhang L, Zhang H, Li X, Wang Y, Xia F, Wang B, Cai R, Guo Z, Zhang Y, et al. An ointment consisting of the phage lysin LysGH15 and apigenin for decolonization of methicillin-resistant Staphylococcus aureus from skin wounds. Viruses. 2018;10(5):244. doi:10.3390/v10050244.
  • Raz A, Serrano A, Hernandez A, Euler CW, Fischetti VA. Isolation of phage lysins that effectively kill Pseudomonas aeruginosa in mouse models of lung and skin infection. Antimicrob Agents Chemother. 2019;63(7): e00024-19. doi:10.1128/AAC.00024-19.
  • Gutiérrez D, Garrido V, Fernández L, Portilla S, Rodríguez A, Grilló MJ, García P. Phage lytic protein LysRODI prevents staphylococcal mastitis in mice. Front Microbiol. 2020;11:7. doi:10.3389/fmicb.2020.00007.
  • Wang F, Ji X, Li Q, Zhang G, Peng J, Hai J, Zhang Y, Ci B, Li H, Xiong Y, et al. Tspphg Lysin from the extremophilic thermus bacteriophage TSP4 as a potential antimicrobial agent against both gram-negative and gram-positive pathogenic bacteria. Viruses. 2020;12(2):192. doi:10.3390/v12020192.
  • Heselpoth RD, Euler CW, Schuch R, Fischetti VA. Lysocins: bioengineered antimicrobials that deliver lysins across the outer membrane of Gram-negative bacteria. Antimicrob Agents Chemother. 2019;63(6): e00342-19. doi:10.1128/AAC.00342-19.
  • Fraga AG, Trigo G, Murthy RK, Akhtar S, Hebbur M, Pacheco AR, Dominguez J, Silva-Gomes R, Gonçalves CM, Oliveira H, et al. Antimicrobial activity of Mycobacteriophage D29 Lysin B during Mycobacterium ulcerans infection. PLoS Negl Trop Dis. 2019;13(8): e0007113 doi:10.1371/journal.pntd.0007113.
  • Manohar P, Loh B, Elangovan N, Loganathan A, Nachimuthu R, Leptihn S. A multiwell-plate Caenorhabditis elegans assay for assessing the therapeutic potential of Bacteriophages against Clinical Pathogens. Microbiol Spectrum. 2022;10(1): e01393-21. doi:10.1128/spectrum.01393-21.