2,300
Views
1
CrossRef citations to date
0
Altmetric
Coronavirus

Covid-19 vaccines elicit effective IgG responses in an elderly thymus cancer patient with chemotherapy

ORCID Icon & ORCID Icon
Article: 2188035 | Received 07 Dec 2022, Accepted 03 Mar 2023, Published online: 16 Apr 2023

References

  • Doria-Rose N, Suthar MS, Makowski M, O’Connell S, McDermott AB, Flach B, Ledgerwood JE, Mascola JR, Graham BS, Lin BC, et al. Antibody persistence through 6 months after the second dose of mRNA-1273 vaccine for covid-19. N Engl J Med. 2021;384(23):2259–6. doi:10.1056/NEJMc2103916.
  • Khoury DS, Cromer D, Reynaldi A, Schlub TE, Wheatley AK, Juno JA, Subbarao K, Kent SJ, Triccas JA, Davenport MP. Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. Nat Med. 2021;27(7):1205–11. doi:10.1038/s41591-021-01377-8.
  • Rose R, Neumann F, Grobe O, Lorentz T, Fickenscher H, Krumbholz A. Humoral immune response after different SARS-CoV-2 vaccination regimens. BMC Med. 2022;20:31. doi:10.1186/s12916-021-02231-x.
  • Ng DL, Goldgof GM, Shy BR, Levine AG, Balcerek J, Bapat SP, Prostko J, Rodgers M, Coller K, Pearce S, et al. SARS-CoV-2 seroprevalence and neutralizing activity in donor and patient blood. Nat Commun. 2020;11(1):4698. doi:10.1038/s41467-020-18468-8.
  • Eyre DW, Lumley SF, O’Donnell D, Stoesser NE, Matthews PC, Howarth A, Hatch SB, Marsden BD, Cox S, James T, et al. Stringent thresholds in SARS-CoV-2 IgG assays lead to under-detection of mild infections. BMC Infect Dis. 2021;21(1):187. doi:10.1186/s12879-021-05878-2.
  • Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernan MA, Lipsitch M, Reis B, Balicer RD. BNT162b2 mRNA covid-19 vaccine in a nationwide mass vaccination setting. N Engl J Med. 2021;384(15):1412–23. doi:10.1056/NEJMoa2101765.
  • Kamar N, Abravanel F, Marion O, Couat C, Izopet J, Del Bello A. Three doses of an mRNA covid-19 vaccine in solid-organ transplant recipients. N Engl J Med. 2021;385(7):661–62. doi:10.1056/NEJMc2108861.
  • Narasimhan M, Mahimainathan L, Clark AE, Usmani A, Cao J, Araj E, Torres F, Sarode R, Kaza V, Lacelle C, et al. Serological response in lung transplant recipients after two doses of SARS-CoV-2 mRNA vaccines. Vaccines (Basel). 2021;9(7). doi:10.3390/vaccines9070708.
  • Benotmane I, Gautier-Vargas G, Cognard N, Olagne J, Heibel F, Braun-Parvez L, Martzloff J, Perrin P, Moulin B, Fafi-Kremer S, et al. Weak anti-SARS-CoV-2 antibody response after the first injection of an mRNA COVID-19 vaccine in kidney transplant recipients. Kidney Int. 2021;99(6):1487–89. doi:10.1016/j.kint.2021.03.014.
  • Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, Tan W, Wu G, Xu M, Lou Z, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis. 2021;21(1):39–51. doi:10.1016/S1473-3099(20)30831-8.
  • Saeed U, Uppal SR, Piracha ZZ, Uppal R. SARS-CoV-2 spike antibody levels trend among Sinopharm vaccinated people. Iran J Public Health. 2021;50(7):1486–87. doi:10.18502/ijph.v50i7.6640.
  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–78. doi:10.1016/j.ejphar.2014.07.025.
  • LLC WCC. 2022. Cisplatin: package insert. https://www.accessdatafdagov/drugsatfda_docs/label/2019/018057s089lblpdf.
  • Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in our understanding of the molecular mechanisms of action of Cisplatin in cancer therapy. J Exp Pharmacol. 2021;13:303–28. doi:10.2147/JEP.S267383.
  • Dezsi L, Meszaros T, Kozma TG, Velkei M, Olah C, Szabo M, Patko Z, Fulop GF, Hennies M, Szebeni M, et al. A naturally hypersensitive porcine model may help understanding the mechanism of COVID-19 vaccine-induced (pseudo)allergic reactions: complement activation as a possible contributing factor. Geroscience. 2022;44:597–618. doi:10.1007/s11357-021-00495-y.
  • Szebeni J, Storm G, Ljubimova JY, Castells M, Phillips EJ, Turjeman K, Barenholz Y, Dobrovolskaia MA, Crommelin DJA. Applying lessons learned from nanomedicines to understand rare hypersensitivity reactions to mRNA-based SARS-CoV-2 vaccines. Nat Nanotechnol. 2022;17:337–46. doi:10.1038/s41565-022-01071-x.
  • Kozma TG, Meszaros T, Berenyi P, Facsko R, Patko Z, Olah C, Nagy A, Fulop G, Glatter KA, Radovits T, et al. Role of anti-polyethylene glycol (PEG) antibodies in the allergic reactions and immunogenicity of PEG-containing Covid-19. medrxiv.Org/cgi/content/short/2022.10.03.22280227v1. doi:10.1101/2022.10.03.22280227
  • Senti ME, de Jongh Ca, Dijkxhoorn K, Verhoef JJF, Szebeni J, Storm G. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J Controlled Release. 2021;341:475–86. doi:10.1016/j.jconrel.2021.11.042.
  • Shi D, Beasock D, Fessler A, Szebeni J, Ljubimova JY, Afonin KA, Dobrovolskaia MA. To PEGylate or not to PEGylate: immunological properties of nanomedicine’s most popular component, polyethylene glycol and its alternatives. Adv Drug Deliv Rev. 2022;180:114079. doi:10.1016/j.addr.2021.114079.
  • Noda K, Matsuda K, Yagishita S, Maeda K, Akiyama Y, Terada-Hirashima J, Matsushita H, Iwata S, Yamashita K, Atarashi Y, et al. A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies. Sci Rep. 2021;11(1):5198. doi:10.1038/s41598-021-84387-3.
  • Abbot. SARS-COV-2 immunoassays; 2022. https://wwwcorelaboratoryabbott/int/en/offerings/segments/infectious-disease/sars-cov-2-.
  • Neumann F, Rose R, Rompke J, Grobe O, Lorentz T, Fickenscher H, Krumbholz A. Development of SARS-CoV-2 specific IgG and virus-neutralizing antibodies after infection with variants of concern or vaccination. Vaccines (Basel). 2021;9(7). doi:10.3390/vaccines9070700.
  • Martinez-Gallo M, Esperalba J, Pujol-Borrell R, Sanda V, Arrese-Munoz I, Fernandez-NavalC, Anton A, Cardona V, Labrador-Horrillo M, Pumarola T, et al. Commercialized kits to assess T-cell responses against SARS-CoV-2 S peptides. A pilot study in health care workers. Med Clin (Barc). 2021;159(3): 116–123.doi:10.1016/j.medcli.2021.09.013.
  • Qiagen. Quantiferon RUO; 2022. https://wwwqiagencom/us/products/diagnostics-and-clinical-research/infectious-disease/quantiferon-sars-cov-2-ruo/.
  • Sinkovits G, Mezo B, Reti M, Muller V, Ivanyi Z, Gal J, Gopcsa L, Remenyi P, Szathmary B, Lakatos B, et al. Complement overactivation and consumption predicts in-hospital mortality in SARS-CoV-2 infection. Front Immunol. 2021;12:663187. doi:10.3389/fimmu.2021.663187.
  • Andreano E, Nicastri E, Paciello I, Pileri P, Manganaro N, Piccini G, Manenti A, Pantano E, Kabanova A, Troisi M, et al. Extremely potent human monoclonal antibodies from COVID-19 convalescent patients. Cell. 2021;184(7):1821–35 e16. doi:10.1016/j.cell.2021.02.035.
  • Perkmann T, Perkmann-Nagele N, Koller T, Mucher P, Radakovics A, Marculescu R, Wolzt M, Wagner OF, Binder CJ, Haslacher H. Anti-spike protein assays to determine SARS-CoV-2 antibody levels: a head-to-head comparison of five quantitative assays. Microbiol Spectr. 2021;9(1):e0024721. doi:10.1128/Spectrum.00247-21.
  • Van Praet JT, Vandecasteele S, De Roo A, De Vriese AS, Reynders M. Humoral and cellular immunogenicity of the BNT162b2 messenger RNA coronavirus disease 2019 vaccine in nursing home residents. Clin Infect Dis. 2021;73(11):2145–47. doi:10.1093/cid/ciab300.
  • Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2020;93:250–56. doi:10.1002/jmv.26232.
  • Mahmudpour M, Roozbeh J, Keshavarz M, Farrokhi S, Nabipour I. COVID-19 cytokine storm: the anger of inflammation. Cytokine. 2020;133:155151. doi:10.1016/j.cyto.2020.155151.
  • Kozma GT, Meszaros T, Bakos T, Hennies M, Bencze D, Uzonyi B, Gyorffy B, Cedrone E, Dobrovolskaia MA, Jozsi M, et al. Mini-factor H modulates complement-dependent IL-6 and IL-10 release in an immune cell culture (PBMC) model: potential benefits against cytokine storm. Front Immunol. 2021;12:642860. doi:10.3389/fimmu.2021.642860.
  • Jiang Y, Rubin L, Peng T, Liu L, Xing X, Lazarovici P, Zheng W. Cytokine storm in COVID-19: from viral infection to immune responses, diagnosis and therapy. Int J Biol Sci. 2022;18(2):459–72. doi:10.7150/ijbs.59272.
  • Abu Lila AS, Shimizu T, Ishida T. PEGylation and anti-PEG antibodies. In: Engineering of biomaterials for drug delivery systems: beyond polyethylene glycol. Woodhead Publishing Series in Biomaterials; 2018. p. 51–68. doi:10.1016/B978-0-08-101750-0.00003-9.
  • Shimizu T, Abu Lila AS, Awata M, Kubo Y, Mima Y, Hashimoto Y, Ando H, Okuhira K, Ishima Y, Ishida T. A cell assay for detecting anti-PEG immune response against PEG-modified therapeutics. Pharm Res. 2018;35(11):223. doi:10.1007/s11095-018-2505-3.
  • CDC. Interim considerations: preparing for the potential management of anaphylaxis at COVID-19 vaccination sites summary. CDC; 2020. https://www.cdc.gov/vaccines/covid-19/info-by-product/pfizer/downloads/anaphylaxis-management.pdf.
  • Banerji A, Wickner PG, Saff R, Stone CA Jr., Robinson LB, Long AA, Wolfson AR, Williams P, Khan DA, Phillips E, et al. mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach. J Allergy Clin Immunol Pract. 2020;9:1423–37. doi:10.1016/j.jaip.2020.12.047.
  • Garvey LH, Nasser S. Anaphylaxis to the first COVID-19 vaccine: is polyethylene glycol (PEG) the culprit? Br J Anesthesia. 2020;126:e106–08. doi:10.1016/j.bja.2020.12.020.
  • Risma KA, Edwards KM, Hummell DS, Little FF, Norton AE, Stallings A, Wood RA, Milner JD. Potential mechanisms of anaphylaxis to COVID-19 mRNA vaccines. J Allergy Clin Immunol. 2021;147:2075–82.e2. doi:10.1016/j.jaci.2021.04.002.
  • Shimabukuro T, Nair N. Allergic reactions including anaphylaxis after receipt of the first dose of Pfizer-BioNTech COVID-19 vaccine. JAMA. 2021;325:780. doi:10.1001/jama.2021.0600.
  • Team CC-R, Food, Drug A. Allergic reactions including anaphylaxis after receipt of the first dose of moderna COVID-19 vaccine - United States, December 21, 2020-January 10, 2021. MMWR Morb Mortal Wkly Rep. 2021;70(4):125–29. doi:10.15585/mmwr.mm7004e1.
  • Vrieze J. Suspicions grow that nanoparticles in Pfizer’s COVID-19 vaccine trigger rare allergic reactions. Science. 2020. https://www.sciencemag.org/news/2020/12/suspicions-grow-nanoparticles-pfizer-s-covid-19-vaccine-trigger-rare-allergic-reactions.
  • Ju Y, Lee SW, Kelly HG, Pilkington EH, Wragg KM, Subbarao K, Nguyen THO, Rowntree LC, Allen LF, Bond K, et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. medRxiv 2022. doi:10.1101/2022.01.08.22268953.
  • Ichihara M, Shimizu T, Imoto A, Hashiguchi Y, Uehara Y, Ishida T, Kiwada H. Anti-PEG IgM response against PEGylated liposomes in mice and rats. Pharmaceutics. 2010;3(1):1–11. doi:10.3390/pharmaceutics3010001.
  • Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H. Pegylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release. 2007;122(3):349–55. doi:10.1016/j.jconrel.2007.05.015.
  • Koide H, Asai T, Hatanaka K, Akai S, Ishii T, Kenjo E, Ishida T, Kiwada H, Tsukada H, Oku N. T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes. Int J Pharm. 2010;392(1–2):218–23. doi:10.1016/j.ijpharm.2010.03.022.
  • Shimizu T, Ishida T, Kiwada H. Transport of PEGylated liposomes from the splenic marginal zone to the follicle in the induction phase of the accelerated blood clearance phenomenon. Immunobiology. 2013;218(5):725–32. doi:10.1016/j.imbio.2012.08.274.
  • Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, Planchais C, Porrot F, Robillard N, Puech J, et al. Reduced sensitivity of SARS-CoV-2 variant delta to antibody neutralization. Nature. 2021;596(7871):276–80. doi:10.1038/s41586-021-03777-9.