2,189
Views
0
CrossRef citations to date
0
Altmetric
Coronavirus

Immunogenicity and safety of single booster dose of KD-414 inactivated COVID-19 vaccine in adults: An open-label, single-center, non-randomized, controlled study in Japan

ORCID Icon, , , , , , , , , , , , , , & show all
Article: 2193074 | Received 02 Oct 2022, Accepted 14 Mar 2023, Published online: 13 Apr 2023

References

  • Mitsuya H. Fight against COVID-19 but avoid disruption of services for other communicable diseases (CDs) and noncommunicable diseases (NCDs). Glob Health Med. 2020;2(6):343–11. doi:10.35772/ghm.2020.01111. PMID: 33409412.
  • R&D Blue Print Team, World Health Organization. COVID-19 vaccine tracker and landscape. Website Operator; 2022 Aug 23 [accessed 2022 Aug 25]. https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines.
  • Krammer F. SARS-CoV-2 vaccines in development. Nature. 2020;586(7830):516–27. doi:10.1038/s41586-020-2798-3. Epub 2020 Sep 23. PMID: 32967006.
  • Epidemiology and prevention of vaccine-preventable diseases. The pink book: course textbook 14th edition. 2021 Washington, DC: Public Health Foundation, Centers for Disease Control and Prevention; [accessed 2022 Nov 10]. https://www.cdc.gov/vaccines/pubs/pinkbook/index.html.
  • Castro Dopico X, Ols S, Loré K, Karlsson Hedestam GB. Immunity to SARS-CoV-2 induced by infection or vaccination. J Intern Med. 2022;291(1):32–50. doi:10.1111/joim.13372. Epub 2021 Aug 5. PMID: 34352148.
  • García-Sastre A. Induction and evasion of type I interferon responses by influenza viruses. Virus Res. 2011;162(1–2):12–18. doi:10.1016/j.virusres.2011.10.017. Epub 2011 Oct 21. PMID: 22027189.
  • Tanishima M, Ibaraki K, Kido K, Nakayama S, Ata K, Nakamura H, Shinmura Y, Endo M, Sonoda K, Ueda K, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, KD-414, in healthy adult and elderly subjects: a randomized, double-blind, placebo-controlled, phase 1/2 clinical study in Japan. medRxiv. 2022. doi:10.1101/2022.06.28.22276794.
  • Prime Minister’s Office of Japan. COVID-19 vaccines. [accessed 2023 Sep 4]. https://www.kantei.go.jp/jp/headline/kansensho/vaccine.html.
  • Sonoda K. Development of an inactivated COVID-19 vaccine. Translat Regulat Sci. 2021;3(3):120–1. doi:10.33611/trs.2021-022.
  • Terayama Y, Tomita N, Terada-Hirashima J, Uemura Y, Shimizu Y, Takeuchi JS, Takamatsu Y, Maeda K, Mikami A, Ujiie M, et al. Protocol of an exploratory single-arm study to evaluate the safety and immunogenicity of KD-414 as a booster vaccine for SARS-CoV-2 in healthy adults (KAPIVARA). Life (Basel). 2022;12(7):966. doi:10.3390/life12070966. PMID: 35888056.
  • Takeuchi JS, Fukunaga A, Yamamoto S, Tanaka A, Matsuda K, Kimura M, Kamikawa A, Kito Y, Maeda K, Ueda G, et al. SARS-CoV-2 specific T cell and humoral immune responses upon vaccination with BNT162b2: a 9 months longitudinal study. Sci Rep. 2022;12(1):15447. doi:10.1038/s41598-022-19581-y. PMID: 36104370.
  • World Medical Association. World medical association declaration of Helsinki: Ethical principles for medical research involving human subjects. Bull World Health Organ. 2001;79(4):373–4. Epub 2003 Jul 2. PMID: 11357217.
  • Clinical Research Act. [accessed 2023 Nov 25]. https://www.mhlw.go.jp/file/06-Seisakujouhou-10800000-Iseikyoku/0000213334.pdf.
  • World Health Organization. Considerations for the evaluation of COVID-19 vaccines. https://extranet.who.int/pqweb/sites/default/files/documents/Considerations_Assessment_Covid-19_Vaccines_v30March2022.pdf.
  • Maeda K, Amano M, Uemura Y, Tsuchiya K, Matsushima T, Noda K, Shimizu Y, Fujiwara A, Takamatsu Y, Ichikawa Y, et al. Correlates of neutralizing/SARS-CoV-2-S1-binding antibody response with adverse effects and immune kinetics in BNT162b2-vaccinated individuals. Sci Rep. 2021;11(1):22848. doi:10.1038/s41598-021-01930-y. PMID: 34819514.
  • Takamatsu Y, Imai M, Maeda K, Nakajima N, Higashi-Kuwata N, Iwatsuki-Horimoto K, Ito M, Kiso M, Maemura T, Takeda Y, et al. Highly neutralizing COVID-19 convalescent plasmas potently block SARS-CoV-2 replication and pneumonia in Syrian hamsters. J Virol. 2022;96(4):e0155121. doi:10.1128/JVI.01551-21. Epub 2021 Nov 24. PMID: 34818068.
  • Jaganathan S, Stieber F, Rao SN, Nikolayevskyy V, Manissero D, Allen N, Boyle J, Howard J. Preliminary evaluation of QuantiFERON SARS-CoV-2 and QIAreach anti-SARS-CoV-2 total test in recently vaccinated individuals. Infect Dis Ther. 2021;10(4):2765–76. doi:10.1007/s40121-021-00521-8. Epub 2021 Aug 25. PMID: 34435336.
  • Takamatsu Y, Omata K, Shimizu Y, Kinoshita-Iwamoto N, Terada M, Suzuki T, Morioka S, Uemura Y, Ohmagari N, Maeda K, et al. SARS-CoV-2-neutralizing humoral IgA response occurs earlier but is modest and diminishes faster than IgG response. Microbiol Spectr. 2022 Dec 21; 10(6):e0271622. doi:10.1128/spectrum.02716-22. Epub 2022 Oct 11. PMID: 36219096.
  • Normark J, Vikström L, Gwon YD, Persson IL, Edin A, Björsell T, Dernstedt A, Christ W, Tevell S, Evander M, et al. Heterologous ChAdOx1 nCoV-19 and mRNA-1273 vaccination. N Engl J Med. 2021;385(11):1049–51. doi:10.1056/NEJMc2110716. Epub 2021 Jul 14. PMID: 34260850.
  • Atmar RL, Lyke KE, Deming ME, Jackson LA, Branche AR, El Sahly HM, Rostad CA, Martin JM, Johnston C, Rupp RE, et al. Homologous and heterologous COVID-19 booster vaccinations. N Engl J Med. 2022;386(11):1046–57. doi:10.1056/NEJMoa2116414. Epub 2022 Jan 26. PMID: 35081293.
  • Tan SHX, Pung R, Wang LF, Lye DC, Ong B, Cook AR, Tan KB. Association of homologous and heterologous vaccine boosters with COVID-19 incidence and severity in Singapore. JAMA. 2022;327(12):1181–2. doi:10.1001/jama.2022.1922. PMID: 35147657.
  • Mayr FB, Talisa VB, Shaikh O, Yende S, Butt AA. Effectiveness of homologous or heterologous COVID-19 boosters in veterans. N Engl J Med. 2022;386(14):1375–7. doi:10.1056/NEJMc2200415. Epub 2022 Feb 9. PMID: 35139265.
  • Zuo F, Abolhassani H, Du L, Piralla A, Bertoglio F, de Campos-Mata L, Wan H, Schubert M, Cassaniti I, Wang Y, et al. Heterologous immunization with inactivated vaccine followed by mRNA-booster elicits strong immunity against SARS-CoV-2 Omicron variant. Nat Commun. 2022;13(1):2670. doi:10.1038/s41467-022-30340-5. PMID: 35562366.
  • Accorsi EK, Britton A, Shang N, Fleming-Dutra KE, Link-Gelles R, Smith ZR, Derado G, Miller J, Schrag SJ, Verani JR. Effectiveness of homologous and heterologous COVID-19 boosters against Omicron. N Engl J Med. 2022;386(25):2433–5. doi:10.1056/NEJMc2203165. Epub 2022 May 25. PMID: 35613039.
  • Munro APS, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dodd K, et al. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet. 2021;398(10318):2258–76. doi:10.1016/S0140-6736(21)02717-3. Epub 2021 Dec 2. Erratum in: Lancet. 2021;398(10318):2246. PMID: 34863358.
  • Stuart ASV, Shaw RH, Liu X, Greenland M, Aley PK, Andrews NJ, Cameron JC, Charlton S, Clutterbuck EA, Collins AM, et al. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. Lancet. 2022;399(10319):36–49. doi:10.1016/S0140-6736(21)02718-5. Epub 2021 Dec 6. Erratum in: Lancet. 2022;399(10327):802. PMID: 34883053.
  • Costa Clemens SA, Weckx L, Clemens R, Almeida Mendes AV, Ramos Souza A, Silveira MBV, da Guarda SNF, de Nobrega MM, de Moraes Pinto MI, Gonzalez IGS, et al. Heterologous versus homologous COVID-19 booster vaccination in previous recipients of two doses of CoronaVac COVID-19 vaccine in Brazil (RHH-001): a phase 4, non-inferiority, single blind, randomised study. Lancet. 2022;399(10324):521–9. doi:10.1016/S0140-6736(22)00094-0. Epub 2022 Jan 21. PMID: 35074136.
  • Zeng G, Wu Q, Pan H, Li M, Yang J, Wang L, Wu Z, Jiang D, Deng X, Chu K, et al. Immunogenicity and safety of a third dose of CoronaVac, and immune persistence of a two-dose schedule, in healthy adults: interim results from two single-centre, double-blind, randomised, placebo-controlled phase 2 clinical trials. Lancet Infect Dis. 2022;22(4):483–95. doi:10.1016/S1473-3099(21)00681-2. Epub 2021 Dec 8. PMID: 34890537.
  • Chen LL, Lu L, Choi CY, Cai JP, Tsoi HW, Chu AW, Ip JD, Chan WM, Zhang RR, Zhang X, et al. Impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant-associated receptor binding domain (RBD) mutations on the susceptibility to serum antibodies elicited by coronavirus disease 2019 (COVID-19) infection or vaccination. Clin Infect Dis. 2022;74(9):1623–30. doi:10.1093/cid/ciab656. PMID: 34309648.
  • Kedzierska K, Thomas PG. Count on us: t cells in SARS-CoV-2 infection and vaccination. Cell Rep Med. 2022;3(3):100562. doi:10.1016/j.xcrm.2022.100562. PMID: 35474748.
  • Rodda LB, Netland J, Shehata L, Pruner KB, Morawski PA, Thouvenel CD, Takehara KK, Eggenberger J, Hemann EA, Waterman HR, et al. Functional SARS-CoV-2-specific immune memory persists after mild COVID-19. Cell. 2021;184(1):169–83.e17. doi:10.1016/j.cell.2020.11.029. Epub 2020 Nov 23. PMID: 33296701.
  • Rodda LB, Morawski PA, Pruner KB, Fahning ML, Howard CA, Franko N, Logue J, Eggenberger J, Stokes C, Golez I, et al. Imprinted SARS-CoV-2-specific memory lymphocytes define hybrid immunity. Cell. 2022;185(9):1588–601.e14. doi:10.1016/j.cell.2022.03.018. Epub 2022 Mar 17. PMID: 35413241.
  • Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371(6529):eabf4063. doi:10.1126/science.abf4063. Epub 2021 Jan 6. PMID: 33408181.
  • Keeton R, Tincho MB, Ngomti A, Baguma R, Benede N, Suzuki A, Khan K, Cele S, Bernstein M, Karim F, et al. T cell responses to SARS-CoV-2 spike cross-recognize Omicron. Nature. 2022;603(7901):488–92. doi:10.1038/s41586-022-04460-3. Epub 2022 Jan 31. Erratum in: Nature. 2022;604(7907):E25. PMID: 35102311.
  • Heitmann JS, Bilich T, Tandler C, Nelde A, Maringer Y, Marconato M, Reusch J, Jäger S, Denk M, Richter M, et al. A COVID-19 peptide vaccine for the induction of SARS-CoV-2 T cell immunity. Nature. 2022;601(7894):617–22. doi:10.1038/s41586-021-04232-5. Epub 2021 Nov 23. PMID: 34814158.
  • Okamoto A, Fujigaki H, Iriyama C, Goto N, Yamamoto H, Mihara K, Inaguma Y, Miura Y, Furukawa K, Yamamoto Y, et al. CD19-positive lymphocyte count is critical for acquisition of anti-SARS-CoV-2 IgG after vaccination in B-cell lymphoma. Blood Adv. 2022;6(11):3230–3. doi:10.1182/bloodadvances.2021006302. PMID: 35026843.
  • Borobia AM, Carcas AJ, Pérez-Olmeda M, Castaño L, Bertran MJ, García-Pérez J, Campins M, Portolés A, González-Pérez M, García Morales MT, et al. Immunogenicity and reactogenicity of BNT162b2 booster in ChAdOx1-S-primed participants (CombiVacs): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet. 2021;398(10295):121–30. doi:10.1016/S0140-6736(21)01420-3. Epub 2021 Jun 25. Erratum in: Lancet. 2021;398(10300):582. PMID: 34181880.
  • Kouhpayeh H, Ansari H. Adverse events following COVID-19 vaccination: a systematic review and meta-analysis. Int Immunopharmacol. 2022;109:108906. doi:10.1016/j.intimp.2022.108906. Epub 2022 May 30. PMID: 35671640.
  • Stefanizzi P, Bianchi FP, Brescia N, Ferorelli D, Tafuri S. Vaccination strategies between compulsion and incentives. The Italian Green Pass experience. Expert Rev Vaccines. 2022;21(4):423–5. doi:10.1080/14760584.2022.2023012. Epub 2022 Jan 13. PMID: 34962214.
  • Hoffmann M, Krüger N, Schulz S, Cossmann A, Rocha C, Kempf A, Nehlmeier I, Graichen L, Moldenhauer AS, Winkler MS, et al. The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell. 2022;185(3):447–56.e11. doi:10.1016/j.cell.2021.12.032. Epub 2021 Dec 24. PMID: 35026151.
  • Takashita E, Yamayoshi S, Simon V, van Bakel H, Sordillo EM, Pekosz A, Fukushi S, Suzuki T, Maeda K, Halfmann P, et al. Efficacy of antibodies and antiviral drugs against Omicron BA.2.12.1, BA.4, and BA.5 subvariants. N Engl J Med. 2022;387(5):468–70. doi:10.1056/NEJMc2207519. Epub 2022 Jul 20. PMID: 35857646.
  • Takashita E, Kinoshita N, Yamayoshi S, Sakai-Tagawa Y, Fujisaki S, Ito M, Iwatsuki-Horimoto K, Halfmann P, Watanabe S, Maeda K, et al. Efficacy of antiviral agents against the SARS-CoV-2 Omicron subvariant BA.2. N Engl J Med. 2022;386(15):1475–7. doi:10.1056/NEJMc2201933. Epub 2022 Mar 9. PMID: 35263535.
  • Amano M, Maeda K, Tsuchiya K, Shimada S, Mitsuya H. Third-dose BNT162b2 vaccination elicits markedly high-level SARS-CoV-2–neutralizing antibodies in vaccinees who responded poorly to a second dose in Japan. J Infect Dis. 2022;226:jiac209. doi:10.1093/infdis/jiac209. Epub ahead of print. PMID: 35580786.